JP2890852B2 - Manufacturing method of laminated battery - Google Patents

Manufacturing method of laminated battery

Info

Publication number
JP2890852B2
JP2890852B2 JP3010748A JP1074891A JP2890852B2 JP 2890852 B2 JP2890852 B2 JP 2890852B2 JP 3010748 A JP3010748 A JP 3010748A JP 1074891 A JP1074891 A JP 1074891A JP 2890852 B2 JP2890852 B2 JP 2890852B2
Authority
JP
Japan
Prior art keywords
frame
electrode
plate
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3010748A
Other languages
Japanese (ja)
Other versions
JPH04245163A (en
Inventor
保雄 安藤
裕司 橋口
寛 細野
裕通 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP3010748A priority Critical patent/JP2890852B2/en
Publication of JPH04245163A publication Critical patent/JPH04245163A/en
Application granted granted Critical
Publication of JP2890852B2 publication Critical patent/JP2890852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、導電性部材の外周に
合成樹脂の絶縁枠体を形成した電極板、セパレータの外
周に合成樹脂の枠体を形成したセパレータ板などの電池
構成部材の枠体部材を相互に溶着一体化する積層電池の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery component frame such as an electrode plate having a synthetic resin insulating frame formed on the outer periphery of a conductive member and a separator plate having a synthetic resin frame formed on the outer periphery of a separator. The present invention relates to a method for manufacturing a laminated battery in which body members are welded and integrated with each other.

【0002】[0002]

【従来の技術】近時、電池電力貯蔵システムの開発が促
進されており、その一環として亜鉛−臭素電池,亜鉛−
塩素電池,レドックスフロー電池等が開発されている。
これらは、高い電圧を取り出すため、電気的直列積層構
成を採っている。亜鉛−臭素電池を例にとって、その構
成概略を説明する。
2. Description of the Related Art Recently, the development of battery power storage systems has been promoted.
Chlorine batteries and redox flow batteries have been developed.
These employ an electrical series lamination configuration in order to extract a high voltage. The outline of the configuration will be described by taking a zinc-bromine battery as an example.

【0003】この亜鉛−臭素電池は、主に図7の原理図
に示すように電解液循環形であって、電池本体と、電解
液貯蔵槽と、これらの間に電解液を循環させる配管系と
から構成されている。
[0003] This zinc-bromine battery is mainly of an electrolyte circulation type as shown in the principle diagram of FIG. 7, and comprises a battery main body, an electrolyte storage tank, and a piping system for circulating the electrolyte between these. It is composed of

【0004】即ち図7において、積層された電池の単セ
ルを、セパレータにより仕切って正極室と負極室を形成
し、正極室には正極側貯蔵槽から正極電解液をポンプに
よって循環し、負極室には負極側貯蔵槽から負極電解液
をポンプによって循環している。
That is, in FIG. 7, a single cell of a stacked battery is partitioned by a separator to form a positive electrode chamber and a negative electrode chamber, and a positive electrode electrolyte is circulated from a positive electrode side storage tank by a pump in the positive electrode chamber. A negative electrode electrolyte is circulated from the negative electrode side storage tank by a pump.

【0005】従来、電池本体は、図8に示すように電極
をバイポーラ形とし、これを積層して電気的に直列で構
成されている。
Conventionally, as shown in FIG. 8, a battery main body has bipolar electrodes, which are stacked and electrically connected in series.

【0006】図8において、6は絶縁性の枠体がセパレ
ータの外周に一体に形成されたセパレータ板、8は絶縁
枠体が導電性部材の外周に一体に形成されたバイポーラ
形の電極板である。
In FIG. 8, reference numeral 6 denotes a separator plate in which an insulating frame is integrally formed on the outer periphery of the separator, and 8 denotes a bipolar electrode plate in which the insulating frame is integrally formed on the outer periphery of the conductive member. is there.

【0007】この電極板8の間にセパレータ板6を挾ん
で両側にスペーサメッシュ7およびパッキン5を重ね
て、単セルを構成し、この単セルを複数、例えば、30
セル積層し、最後に両端に夫々、集電電極3,積層端板
2及び締付端板1を重ねて、ボルトおよびナットで締め
つけて一体に構成している。
The spacer mesh 7 and the packing 5 are superposed on both sides of the separator plate 6 with the separator plate 6 interposed between the electrode plates 8 to constitute a single cell.
The cells are stacked, and finally, the collecting electrode 3, the laminated end plate 2 and the tightening end plate 1 are stacked on both ends, respectively, and are integrally formed by tightening with bolts and nuts.

【0008】このように構成した電池本体内に、電解液
は電極板8,セパレータ板6の枠体およびパッキン5の
四隅角部に形成した正極マニホールド9と負極マニホー
ルド10、さらにチャンネル13,マイクロチャンネル
の電解液流路を介して流入流出する。
In the thus constructed battery body, the electrolytic solution is supplied to the positive electrode manifold 9 and the negative electrode manifold 10 formed at the four corners of the electrode plate 8, the frame of the separator plate 6 and the packing 5, the channel 13, the microchannel Inflow and outflow through the electrolyte passage.

【0009】電極板8の導電性部材はプラスチックにカ
ーボンなどの導電性物質を混練して形成したカーボンプ
ラスチック製薄板から形成され、セパレータ板6のセパ
レータ部分は微細多孔質膜より成り、電極板8およびセ
パレータ板6の枠体はポリエチレンなどのポリオレフィ
ン系樹脂から構成されている。
The conductive member of the electrode plate 8 is formed of a carbon plastic thin plate formed by kneading a conductive material such as carbon into plastic, and the separator portion of the separator plate 6 is formed of a fine porous film. The frame of the separator plate 6 is made of a polyolefin resin such as polyethylene.

【0010】[0010]

【発明が解決しようとする課題】上述のように従来の積
層電池は、積層電池の両端から締付けて各電極板および
セパレータ板の枠体等を圧接して、各単セルおよび電解
液流路を形成しているので、電池構成部材の各枠体が電
解液の作用等でクリープを生じ、あるいは、電池が置か
れた環境の変化による枠体の収縮膨張により力が弱ま
り、隣接する各枠体間に隙間が生じその隙間から液漏れ
を生ずるという問題がある。
As described above, in the conventional laminated battery, each electrode plate and the frame of the separator plate are pressed against each other by pressing from both ends of the laminated battery, and each unit cell and the electrolyte solution flow path are formed. Because of the formation, each frame body of the battery constituent member causes creep due to the action of the electrolytic solution, or the strength of the frame body shrinks and expands due to a change in the environment in which the battery is placed, so that the strength of each frame body is reduced, and There is a problem that a gap is formed between the gaps and liquid leaks from the gap.

【0011】そこで、隣接する電極板およびセパレータ
体の各枠体等同志を熱融着して一体化することが試みら
れた。この枠体同志を熱融着させるためには、各枠体に
溶着リブを立て、これを溶融して相互に圧接し溶着せし
めるので、圧接の際この溶融した溶着リブの樹脂が、枠
体の側面に沿ってマニホールドあるいはチャンネル内等
に入り、電解液流路を閉塞してしまい、電解液の流れを
妨げるという問題があった。
Therefore, attempts have been made to integrate the adjacent electrode plates and the respective frames of the separator body by heat fusion. In order to heat-weld the frames together, welding ribs are erected on each frame, which are melted and pressed and welded to each other. There is a problem that the electrolyte enters the manifold or the channel along the side surface and blocks the electrolytic solution flow path, thereby obstructing the flow of the electrolytic solution.

【0012】本発明は上述の点に鑑み、電極板およびセ
パレータ板の枠部分を熱融着しても、チャネル等の電解
液流路をばりが塞ぐことのないように、良好に積層一体
化できる積層電池の製造方法を新たに提供することを目
的とする。
[0012] In view of the above, the present invention provides a good lamination and integration so that even if the frame portions of the electrode plate and the separator plate are heat-sealed, the burrs do not block the electrolytic solution flow path such as the channel. It is an object of the present invention to provide a new method of manufacturing a laminated battery that can be used.

【0013】[0013]

【課題を解決するための手段】本発明の積層電池の製造
方法は、電極板を、矩形平板状の電極と、該電極の外周
縁部に一体に形成された合成樹脂の絶縁枠体と、前記電
極の外周縁部に沿って、前記絶縁枠体上に形成された高
さf、横幅bの溶着リブとで形成し、前記セパレータ板
を、矩形平板状のセパレータと、該セパレータの外周縁
部に一体に形成された合成樹脂の枠体と、該枠体の対向
する一方の両辺に各々設けた一対の電解液流路と、該電
解液流路内の前記枠体上に形成されたポストと、前記電
解液流路の外側でかつ前記セパレータの外周縁部に沿っ
て、前記枠体上に形成された高さd、横幅bの溶着リブ
と、前記枠体の溶着リブの両側に接して、前記枠体に形
成された深さe、溝幅aの逃げ溝とで形成し、前記電極
板およびセパレータ板の溶着リブの高さf及びd、横幅
b、さらに逃げ溝の深さe、溝幅aの寸法を下式を満足
する関係に形成し、 5/7≦b(f+d) ≦ 3(2ae)/2、 a ≧ 2b/3、 前記電極板の間に、前記セパレータ板を挾んで該電極板
を複数積層し且つ、相対向する各電極板およびセパレー
タ板の溶着リブを加熱溶融すると共に、圧着一体化し
て、前記電極と絶縁枠体と枠体とで囲まれ、且つ前記セ
パレータで二つに区分された部分に電池反応室を形成
し、該電池反応室内に、電解液を前記枠体に形成した電
解液流路を介して、循環して成る。
According to a method of manufacturing a laminated battery of the present invention, an electrode plate is formed of a rectangular flat electrode, a synthetic resin insulating frame integrally formed on an outer peripheral portion of the electrode, and Along the outer peripheral edge of the electrode, formed by welding ribs of height f and width b formed on the insulating frame, the separator plate is formed of a rectangular plate-shaped separator, and an outer peripheral edge of the separator. A synthetic resin frame formed integrally with the portion, a pair of electrolyte solution flow paths provided on one of two opposite sides of the frame body, and a frame formed on the frame body in the electrolyte solution flow channel. Posts, outside the electrolyte flow path and along the outer peripheral edge of the separator, a height d formed on the frame, a welding rib having a width b, and on both sides of the welding rib of the frame. And a relief groove having a depth e and a groove width a formed in the frame body. The height f and d of the welding rib of the plate, the width b, the depth e of the escape groove, and the dimension of the groove width a are formed so as to satisfy the following expression: 5/7 ≦ b (f + d) ≦ 3 (2ae ) / 2, a ≧ 2b / 3, a plurality of the electrode plates are laminated with the separator plate interposed between the electrode plates, and the welding ribs of each of the opposing electrode plates and the separator plate are heated and melted, and are integrally pressed. And a battery reaction chamber is formed in a portion surrounded by the electrodes, the insulating frame and the frame, and divided into two parts by the separator, and an electrolytic solution is formed in the frame in the battery reaction chamber. And circulated through the electrolyte flow path.

【0014】[0014]

【作用】相対向する各電極板およびセパレータ板の溶着
リブを加熱溶融すると、溶融した溶着リブより生ずるば
りは全て逃げ溝内に入る。このとき相互に溶着する溶着
リブの断面積b(f+d)は、両側の逃げ溝の断面積の
和(2ae)の1.5倍を超えることのないように設定
しているので、溶着リブにより生ずるばりが逃げ溝から
溢れ出てチャンネル等の電解液流路を閉塞するようなこ
とはなく、各枠体同志が一体化される。
When the welding ribs of the electrode plate and the separator plate facing each other are heated and melted, all the burrs generated by the fused welding ribs enter the escape groove. At this time, the cross-sectional area b (f + d) of the welding ribs mutually welded is set so as not to exceed 1.5 times the sum (2ae) of the cross-sectional areas of the clearance grooves on both sides. The generated burrs do not overflow from the escape grooves to block the electrolyte flow paths such as channels, and the frames are integrated.

【0015】また溶着リブが加熱されると、セパレータ
板の電解液流路と該セパレータ板に重ね合わせられる電
極板のリブが交差する位置の枠体も加熱され柔らかくな
る。このため加圧される際電極板の枠体がたわんで変形
しようとするが、電解液流路内に形成したポストが電極
板の枠体を支える。これによって電極板の枠体がたわん
で変形することはなく、電極板の枠体が前記電解液流路
を閉塞することはない。従って必要な電解液の流量は確
保され、流量が少なくなることによりガスが発生して電
池を破壊してしまう事態は避けられる。
When the welding rib is heated, the frame at the position where the electrolytic solution flow path of the separator plate and the rib of the electrode plate superimposed on the separator plate intersect is also heated and softened. For this reason, when pressed, the frame of the electrode plate bends and tends to deform, but the post formed in the electrolyte channel supports the frame of the electrode plate. Thus, the frame of the electrode plate does not bend and deform, and the frame of the electrode plate does not block the electrolytic solution flow path. Therefore, a required flow rate of the electrolyte is ensured, and a situation in which a gas is generated due to a decrease in the flow rate and the battery is broken can be avoided.

【0016】また溶着リブの断面積b(f+d)を5/
7より大きく設定し、しかも逃げ溝の溝幅aを溶着リブ
の横幅bの2/3倍以上に設定しているので、溶着リブ
の樹脂が逃げ溝内を埋めずに逃げ溝内に空間が生じる恐
れは全くない。
The cross-sectional area b (f + d) of the welding rib is 5 /
7, and the groove width a of the clearance groove is set to be not less than 2/3 times the lateral width b of the welding rib, so that the resin of the welding rib does not fill the clearance groove and the space in the clearance groove is formed. There is no danger.

【0017】なお、上述の作用は、本発明を亜鉛−臭素
電池に適用した場合ばかりでなく、亜鉛−塩素電池,レ
ドックスフロー電池等の積層電池に適用した場合にも同
様の作用を奏する。
Note that the above-described operation can be achieved not only when the present invention is applied to a zinc-bromine battery, but also when it is applied to a stacked battery such as a zinc-chlorine battery and a redox flow battery.

【0018】[0018]

【実施例】以下、本発明の積層電池の製造方法の一実施
例を図1〜図6によって説明する。なお、この図1〜図
6において前述した図8に対応する部分には同一符号を
附すこととし、その詳細な説明を省略する。尚図3では
図8におけるパッキン5を図示省略している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for manufacturing a laminated battery according to the present invention will be described below with reference to FIGS. In FIGS. 1 to 6, parts corresponding to those in FIG. 8 described above are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 3, the packing 5 in FIG. 8 is not shown.

【0019】図4は図3の要部分解斜視図におけるA−
A断面を示す要部縦断面図である。図4において、8b
は、電極板8の電極8aの外周に設けた、熱板溶着法で
積層一体化前の枠体、12はセパレータ板6のセパレー
タ6aの外周に設けた、熱板溶着法で積層一体化前の枠
体である。
FIG. 4 is an exploded perspective view of the main part of FIG.
It is a principal part longitudinal cross-sectional view which shows A cross section. In FIG. 4, 8b
Is a frame provided on the outer periphery of the electrode 8a of the electrode plate 8 before lamination and integration by the hot plate welding method, and 12 is provided on the outer periphery of the separator 6a of the separator plate 6 before the lamination and integration by the hot plate welding method. Frame.

【0020】この電極板8の枠体8bには、その両面部
に表裏対称状に断面矩形状の溶着リブ14を2本並列に
突設する。そして、各溶着リブ14の高さをfとし、そ
の横幅をbとする。
On the frame 8b of the electrode plate 8, two welding ribs 14 having a rectangular cross section are symmetrically formed on both sides thereof in parallel. The height of each welding rib 14 is f, and the width thereof is b.

【0021】また、セパレータ板6の枠体12は、電極
板8の枠体8bよりも肉厚に形成したもので、ほぼ中央
に電解液の流路となる断面矩形状の溝から構成されたチ
ャンネル13が形成されている。セパレータ板6の枠体
12の表裏には、チャネル13を挾んで両側に、電極板
8の枠体8bに重ね合わせたとき、その溶着リブ14と
対応する位置に溶着リブ15を突設する。また、溶着リ
ブ15の両横側部には、熱板溶着時に生ずるばりを逃が
し溜めるための断面矩形状の逃げ溝16を穿設する。
The frame 12 of the separator plate 6 is formed to be thicker than the frame 8b of the electrode plate 8, and is formed at substantially the center thereof with a groove having a rectangular cross section serving as a flow path for the electrolyte. A channel 13 is formed. On the front and back of the frame 12 of the separator plate 6, welding ribs 15 are provided on both sides of the channel 13 at positions corresponding to the welding ribs 14 when the frame is overlapped with the frame 8b of the electrode plate 8. Further, on both lateral sides of the welding rib 15, a relief groove 16 having a rectangular cross section is formed for releasing and accumulating a flash generated at the time of hot plate welding.

【0022】前記溶着リブ15の枠体12の表面からの
高さをdとし、その横幅をbとする。また、逃げ溝16
の枠体12の表面からの深さをeとし、その溝幅をaと
する。そして、チャンネル13の横幅をGとし、その両
側部からそれぞれ距離cだけ隔てて逃げ溝16が位置す
るように構成する。これとともに各部寸法が下式を満足
するように構成する。
The height of the welding rib 15 from the surface of the frame 12 is d, and its width is b. Also, the escape groove 16
The depth from the surface of the frame 12 is e, and the groove width is a. The width of the channel 13 is defined as G, and the escape groove 16 is located at a distance c from each side of the channel 13. At the same time, the dimensions of each part are configured to satisfy the following formula.

【0023】 b(f+d) ≦ 3(2ae)/2……………(1) a ≧ 2b/3 ……………(2) b ≧ 0.8mm ……………(3) 上述のように構成した電極板8の枠体8bとセパレータ
板6の枠体12とを、熱板溶着法で積層一体化する。ま
ず、図4に鎖線で示すように熱板ヒータ型17によっ
て、各溶着リブ14,15の先端部を溶融する。
B (f + d) ≦ 3 (2ae) / 2 (1) a ≧ 2b / 3 (2) b ≧ 0.8 mm (3) The frame 8b of the electrode plate 8 and the frame 12 of the separator plate 6 configured as described above are laminated and integrated by a hot plate welding method. First, as shown by a dashed line in FIG. 4, the distal ends of the welding ribs 14 and 15 are melted by a hot plate heater mold 17.

【0024】次に、図5に示す如く圧着して溶着する。
この溶着の際、各溶着リブ14,15のばりが逃げ溝1
6に入り込んで、これを満足し、チャンネル13内に入
り込まないようになって溶着する。
Next, as shown in FIG. 5, welding is performed by pressing.
At the time of this welding, the burrs of the welding ribs 14 and 15 form the escape grooves 1.
6 satisfies the above condition and does not enter the channel 13 and is welded.

【0025】ここで上記のような熱板溶着法で積層一体
化する過程において、図3のB−B断面を観察した結
果、図6のように電解液流路に閉塞が生じることを経験
した。即ち図6の(A)に示す流路の上側の溶着リブ1
4を加熱すると、その周囲も加熱され柔らかくなる。そ
の後圧着一体化すると図6の(B)に示すように枠体8
bにたわみが生じ、枠体8bの図示下側の電解液流路
(チャンネル13)が閉塞される。このため流れが止ま
ってしまい電池内に適量の電解液を供給することができ
なくなる。
Here, in the process of laminating and integrating by the hot plate welding method as described above, as a result of observing the BB section of FIG. 3, it was found that the electrolytic solution flow path was blocked as shown in FIG. . That is, the welding rib 1 on the upper side of the flow path shown in FIG.
When 4 is heated, its surroundings are also heated and become soft. After that, when they are integrated by crimping, as shown in FIG.
b is bent, and the electrolyte flow path (channel 13) on the lower side of the frame 8b in the figure is closed. For this reason, the flow stops, and it becomes impossible to supply an appropriate amount of the electrolytic solution into the battery.

【0026】そこで図1(図4と同一部分は同一符号を
付している)に示すようにチャンネル13内の枠体12
上に、チャンネル13の有効高さと同一の高さのポスト
18を突設する。このようにポスト18を突設すること
により、図3のB−B断面は図2のように示され、溶着
リブ14,15の溶着後加圧一体化する際、枠体8bは
チャンネル内に設けたポスト18によって支えられ、電
解液の流れが妨げられることはない。
Therefore, as shown in FIG. 1 (the same parts as in FIG.
A post 18 having the same height as the effective height of the channel 13 is provided on the top. By protruding the post 18 in this way, the BB cross section of FIG. 3 is shown as in FIG. 2, and when the welding ribs 14 and 15 are integrated by pressure after welding, the frame 8b is placed in the channel. It is supported by the provided post 18 and the flow of the electrolyte is not obstructed.

【0027】尚前記ポスト18は枠体12の成形時に同
時に成形するものであり、ポスト18の高さは状況に応
じてチャンネル13の有効高さ以下でも良く、またポス
ト18の幅は電解液の流れを妨げない程度の幅に設定す
る。
The post 18 is formed at the same time as the frame 12 is formed. The height of the post 18 may be less than the effective height of the channel 13 depending on the situation. Set the width so as not to obstruct the flow.

【0028】前述した(1),(2)及び(3)式を満
足しない寸法構成による場合には、各溶着リブ14,1
5のばりが、チャンネル13内に流れ込み、これを閉塞
するようになる。
If the dimensional configuration does not satisfy the above-mentioned expressions (1), (2) and (3), each of the welding ribs 14 and 1
The burrs flow into the channel 13 and block it.

【0029】例えば、本実施例の構成として、上述の
(1),(2)及び(3)式を満足する数値として、a
=3mm,b=1.5mm,d=1.0mm,e=0.5
mm,f=1.0mmとし、cをできるだけ小さな値と
なるように設定したものを10組用意し、熱板溶着して
テストした結果、10組中9組が良好に溶着され、チャ
ンネル13をばりが塞ぐようなことはなかった。
For example, as a configuration of the present embodiment, a numerical value satisfying the above equations (1), (2) and (3) is expressed by a
= 3 mm, b = 1.5 mm, d = 1.0 mm, e = 0.5
mm, f = 1.0 mm, and c were set to be as small as possible. Ten sets were prepared, and hot plate welding was performed. As a result, nine out of ten sets were successfully welded, and the channel 13 was formed. The burrs did not block.

【0030】しかし、本実施例と比較のため、a=1.
5mm,e=0.3mm、他を本実施例と同じ寸法であ
るb=1.5mm,d=1.0mm,f=1.0mmとして
10組用意し、熱板溶着してテストした結果、10組中
9組までがチャンネル13内にばりが入ってこれを閉塞
してしまっていた。
However, for comparison with this embodiment, a = 1.
As a result of preparing a set of 5 mm, e = 0.3 mm and b = 1.5 mm, d = 1.0 mm, and f = 1.0 mm, which are the same dimensions as those of the present embodiment, and preparing a test by welding with a hot plate, Up to 9 out of 10 sets had burrs in the channel 13 and blocked it.

【0031】ただ、上述のような逃げ溝16の形状で
も、この逃げ溝16とチャンネル13との間の距離cを
極めて大きくすると、チャンネル13へのばりの侵入を
防止できるが、これでは、枠体8b,12をそれだけ大
きくせねばならず、電池本体が大型化するので、実現で
きない。
However, even if the clearance groove 16 has the above-described shape, if the distance c between the clearance groove 16 and the channel 13 is extremely large, it is possible to prevent the burrs from entering the channel 13. The size of the bodies 8b and 12 must be increased accordingly, and the size of the battery body is increased, which cannot be realized.

【0032】次に、 溶着リブの断面積 ; b(f+d) 逃げ溝の断面積 ; 2ae の比を変化させたものを各々10組用意し、熱板溶着し
てテストし、チャンネルなどをばりが塞ぐことのない良
好な結果を得たものの数を表1に示す。
Next, 10 sets of the cross-sectional area of the welding rib; b (f + d) the cross-sectional area of the escape groove; Table 1 shows the number of samples that obtained good results without blocking.

【0033】[0033]

【表1】 [Table 1]

【0034】なお、断面積の比が1.6以上になると、
逃げ溝の断面積が大きく成り過ぎて枠体部分に凹部が生
じてしまった。
When the cross-sectional area ratio becomes 1.6 or more,
The cross-sectional area of the escape groove became too large, and a recess was formed in the frame portion.

【0035】また、逃げ溝の溝幅aは、溶着リブの横幅
bの2/3以上であればよい。溝幅aが、溶着リブの横幅b
の2/3より小さくなると、溶着リブの樹脂が逃げ溝内を
埋めずに、逃げ溝内に空間が生じてしまい、溶着が不十
分となる。
The groove width a of the clearance groove may be at least 2/3 of the width b of the welding rib. The groove width a is the width b of the welding rib.
If it is smaller than 2/3, the resin of the welding rib does not fill the clearance groove, and a space is created in the clearance groove, and the welding becomes insufficient.

【0036】尚、前記実施例では本発明を亜鉛−臭素電
池に適用した場合について述べたが、これに限らず亜鉛
−塩素電池,レドックスフロー電池等の積層電池に適用
したり、熱板溶着を適用する他の化学セルに応用するこ
とができ、これらの場合も前記同様の作用、効果を奏す
る。
In the above embodiment, the case where the present invention is applied to a zinc-bromine battery is described. However, the present invention is not limited to this, and the present invention may be applied to a stacked battery such as a zinc-chlorine battery, a redox flow battery, or hot plate welding. The present invention can be applied to other chemical cells to which the present invention is applied, and in these cases, the same operation and effect as described above can be obtained.

【0037】[0037]

【発明の効果】以上詳述したように本発明の積層電池の
製造方法によれば、電極板およびセパレータ板などの電
池構成部材の相溶着する一方の枠体の結合部分に高さが
f、横幅bの断面矩形の溶着リブを設け、他方の枠体の
結合部分には高さがdで、横幅がbの断面矩形状の溶着
リブを設けるとともに、チャンネル等の電解液流路の枠
体上にポストを設け、前記溶着リブの両横側部に深さe
で溝幅aの断面矩形状の逃げ溝を設け、相溶着する溶着
リブの断面積b(f+d)が、逃げ溝の断面積の和(2
ae)の1.5倍以下となるように、また、逃げ溝の横
幅aが、溶着リブの横幅bの2/3以上となるように設
定し、熱板ヒータ型によって相対向する溶着リブを加熱
溶融し、結合すべき枠体同志を圧着するようにしたの
で、次のような優れた効果が得られる。
As described above in detail, according to the method of manufacturing a laminated battery of the present invention, the height f is set at the joint portion of one of the frame members to which the battery members such as the electrode plate and the separator plate are welded. A welding rib having a rectangular cross section having a width b is provided, and a welding rib having a height d and a rectangular cross section having a width b is provided at a joint portion of the other frame body, and a frame body for an electrolyte flow path such as a channel is provided. An upper post is provided, and a depth e is provided on both lateral sides of the welding rib.
A relief groove having a rectangular cross section with a groove width a is provided.
ae) is set to be 1.5 times or less, and the width a of the clearance groove is set to be not less than two-thirds of the width b of the welding rib. Since the frames are heated and melted and the frames to be bonded are pressed together, the following excellent effects can be obtained.

【0038】(1)前記枠体どうしの圧着により生ずる
ばりを、全て逃げ溝内に納めることができ、チャンネル
等の電解液流路にばりが入り込まない良好な溶着を行う
ことができる。
(1) All the burrs generated by the press-fitting of the frames can be accommodated in the escape groove, and good welding can be performed without the burrs entering the electrolytic solution flow path such as a channel.

【0039】(2)熱溶着時の熱によって電極板側の枠
体が柔らかくなっても、圧着時に前記枠体はポストによ
って支えられるので、枠体が変形することはない。この
ため枠体が電解液流路を閉塞して電解液の流れを止めて
しまうことは避けられる。これによって流量が悪くなる
ことによりガスが発生し電池を破壊してしまうことはな
い。従って安定した性能の積層電池を製造することがで
き、寿命も延びる。
(2) Even if the frame on the electrode plate side is softened by the heat at the time of heat welding, the frame is not deformed because the frame is supported by the post at the time of pressure bonding. For this reason, it is possible to prevent the frame from blocking the electrolyte flow path and stopping the flow of the electrolyte. As a result, there is no possibility that gas is generated due to the deterioration of the flow rate and the battery is destroyed. Therefore, a laminated battery having stable performance can be manufactured, and the life is prolonged.

【0040】(3)上述の手段によれば、溶着リブの溶
融結合部が浮き上がることもなく全体に亘って確実に溶
着できるので、積層電池の良好な液漏れ防止シールを長
期に亘って維持できる。
(3) According to the above-described means, since the fusion bonding portion of the welding rib can be securely welded over the whole without floating, a good liquid leakage prevention seal of the laminated battery can be maintained for a long time. .

【0041】(4)上述のような手段で一体化して電池
本体を造るので、ボルト,ナット等の締結部材を使って
電池本体の両端部から締め付けて一体化するための締付
端板が不要となる。このため電池本体の重量を軽減でき
るという効果がある。
(4) Since the battery main body is manufactured integrally by the above-described means, a fastening end plate for tightening and integrating the battery main body from both ends using a fastening member such as a bolt or a nut is unnecessary. Becomes This has the effect of reducing the weight of the battery body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層電池の製造方法の一実施例を説明
するための枠体要部の縦断面図。
FIG. 1 is a longitudinal sectional view of a main part of a frame for explaining one embodiment of a method for manufacturing a laminated battery of the present invention.

【図2】図3の要部分解斜視図のB−B断面を示す説明
図。
FIG. 2 is an explanatory view showing a cross-section taken along line BB of an essential part exploded perspective view of FIG.

【図3】本発明の積層電池の製造方法の一実施例を説明
するための要部分解斜視図。
FIG. 3 is an exploded perspective view of a main part for describing one embodiment of a method for manufacturing a laminated battery of the present invention.

【図4】本発明の積層電池の製造方法の一実施例を示
し、完成前の枠体要部の縦断面図。
FIG. 4 is a longitudinal sectional view of a main part of a frame before completion, showing one embodiment of the method of manufacturing a laminated battery according to the present invention.

【図5】本発明の積層電池の製造方法の一実施例を説明
するための枠体の溶着状態を示す要部の縦断面図。
FIG. 5 is a longitudinal sectional view of a main part showing a welded state of a frame for explaining one embodiment of a method of manufacturing a laminated battery of the present invention.

【図6】完成前の枠体を用いた場合の、図3のB−B断
面を示す説明図。
FIG. 6 is an explanatory view showing a cross section taken along line BB of FIG. 3 when a frame before completion is used.

【図7】亜鉛−臭素電池の原理図。FIG. 7 is a principle diagram of a zinc-bromine battery.

【図8】従来の積層電池の一つである亜鉛−臭素電池の
電池本体を例示する要部分解斜視図。
FIG. 8 is an exploded perspective view showing a main part of a battery body of a zinc-bromine battery, which is one of conventional stacked batteries.

【符号の説明】[Explanation of symbols]

3…集電電極 6…セパレータ板 6a…セパレータ 8…電極板 8a…電極 8b,12…枠体 9…正極マニホールド 10…負極マニホールド 13…チャンネル 14,15…溶着リブ 16…逃げ溝 17…熱板ヒータ型 18…ポスト DESCRIPTION OF SYMBOLS 3 ... Current collecting electrode 6 ... Separator plate 6a ... Separator 8 ... Electrode plate 8a ... Electrode 8b, 12 ... Frame 9 ... Positive electrode manifold 10 ... Negative electrode manifold 13 ... Channel 14, 15 ... Welding rib 16 ... Escape groove 17 ... Hot plate Heater type 18 ... post

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 裕通 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (56)参考文献 特開 昭62−12075(JP,A) 特開 昭62−195849(JP,A) 実公 昭47−26185(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) H01M 2/02,8/18,12/08 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiromichi Ito 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-62-12075 (JP, A) JP-A-62- 195849 (JP, A) Jiko 47-26185 (JP, Y1) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 2 / 02,8 / 18,12 / 08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平板状の電極板とセパレータ板とを交互
に積層し、一体化して成る積層電池の製造方法におい
て、前記電極板を、矩形平板状の電極と、該電極の外周
縁部に一体に形成された合成樹脂の絶縁枠体と、前記電
極の外周縁部に沿って、前記絶縁枠体上に形成された高
さf、横幅bの溶着リブとで形成し、前記セパレータ板
を、矩形平板状のセパレータと、該セパレータの外周縁
部に一体に形成された合成樹脂の枠体と、該枠体の対向
する一方の両辺に各々設けた一対の電解液流路と、該電
解液流路内の前記枠体上に形成されたポストと、前記電
解液流路の外側でかつ前記セパレータの外周縁部に沿っ
て、前記枠体上に形成された高さd、横幅bの溶着リブ
と、前記枠体の溶着リブの両側に接して、前記枠体に形
成された深さe、溝幅aの逃げ溝とで形成し、前記電極
板およびセパレータ板の溶着リブの高さf及びd、横幅
b、さらに逃げ溝の深さe、溝幅aの寸法を下式を満足
する関係に形成し、 5/7≦b(f+d) ≦ 3(2ae)/2、 a ≧ 2b/3、 前記電極板の間に、前記セパレータ板を挾んで該電極板
を複数積層し且つ、相対向する各電極板およびセパレー
タ板の溶着リブを加熱溶融すると共に、圧着一体化し
て、前記電極と絶縁枠体と枠体とで囲まれ、且つ前記セ
パレータで二つに区分された部分に電池反応室を形成
し、該電池反応室内に、電解液を前記枠体に形成した電
解液流路を介して、循環して成る積層電池の製造方法。
1. A method for manufacturing a laminated battery in which a plate-like electrode plate and a separator plate are alternately laminated and integrated, wherein the electrode plate is provided on a rectangular plate-like electrode and an outer peripheral portion of the electrode. An insulating frame made of synthetic resin integrally formed, and a welding rib having a height f and a width b formed on the insulating frame along the outer peripheral portion of the electrode, and the separator plate is formed. A rectangular plate-like separator, a synthetic resin frame integrally formed on the outer peripheral edge of the separator, a pair of electrolyte solution flow paths provided on one of two opposite sides of the frame, A post formed on the frame in the liquid flow path, and a height d and a width b formed on the frame outside the electrolyte flow path and along the outer peripheral edge of the separator. A depth e and a groove width formed in the frame body in contact with both sides of the welding rib and the welding ribs of the frame body; a, and the dimensions of the heights f and d of the welding ribs of the electrode plate and the separator plate, the width b, the depth e of the clearance groove, and the groove width a satisfy the following expression. 5/7 ≦ b (f + d) ≦ 3 (2ae) / 2, a ≧ 2b / 3, a plurality of the electrode plates being laminated with the separator plate interposed between the electrode plates, and each of the electrode plates facing each other While heating and melting the welding ribs of the separator plate and pressing and integrating, a battery reaction chamber is formed in a portion surrounded by the electrode, the insulating frame and the frame, and divided into two parts by the separator, A method for manufacturing a laminated battery, wherein an electrolyte is circulated in the battery reaction chamber through an electrolyte passage formed in the frame.
JP3010748A 1991-01-31 1991-01-31 Manufacturing method of laminated battery Expired - Lifetime JP2890852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010748A JP2890852B2 (en) 1991-01-31 1991-01-31 Manufacturing method of laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010748A JP2890852B2 (en) 1991-01-31 1991-01-31 Manufacturing method of laminated battery

Publications (2)

Publication Number Publication Date
JPH04245163A JPH04245163A (en) 1992-09-01
JP2890852B2 true JP2890852B2 (en) 1999-05-17

Family

ID=11758935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010748A Expired - Lifetime JP2890852B2 (en) 1991-01-31 1991-01-31 Manufacturing method of laminated battery

Country Status (1)

Country Link
JP (1) JP2890852B2 (en)

Also Published As

Publication number Publication date
JPH04245163A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US4505992A (en) Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
JP4475277B2 (en) Fuel cell module
US4732637A (en) Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
JP6715278B2 (en) Fuel cell stack
JP6817361B2 (en) Dummy cell manufacturing method and dummy cell manufacturing equipment
JP6817357B2 (en) Manufacturing method of fuel cell stack and dummy cell
JPH07235314A (en) Cell for solid high polymer fuel cell and its manufacture
KR101115382B1 (en) High Power Secondary Battery of Series Connection Structure
US5225292A (en) Internally folded expanded metal electrode for battery construction
JP7038692B2 (en) Separator for fuel cell and power generation cell
JP2890852B2 (en) Manufacturing method of laminated battery
JP2022022802A (en) Method of manufacturing fuel cell stack
WO2020129022A2 (en) Redox flow battery comprising stack of flow frames and redox flow frame thereof
JP2890853B2 (en) Manufacturing method of laminated battery
JP6715277B2 (en) Fuel cell stack and dummy cell for fuel cell stack
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JP2782867B2 (en) Manufacturing method of laminated battery
US11094946B2 (en) Fuel cell stack and method of manufacturing fuel cell stack
JP6633114B2 (en) Method of manufacturing fuel cell stack and dummy cell
JPH05135807A (en) Manufacture of stacked battery
JPS5975579A (en) Laminated lead storage battery
JP6694913B2 (en) Fuel cell stack and dummy cell manufacturing method
JP6722718B2 (en) Fuel cell stack and dummy cell manufacturing method
JP7152963B2 (en) Storage module and manufacturing method thereof
CN116169315A (en) Polar plate structure, single battery and fuel cell