JPH05135807A - Manufacture of stacked battery - Google Patents

Manufacture of stacked battery

Info

Publication number
JPH05135807A
JPH05135807A JP3297516A JP29751691A JPH05135807A JP H05135807 A JPH05135807 A JP H05135807A JP 3297516 A JP3297516 A JP 3297516A JP 29751691 A JP29751691 A JP 29751691A JP H05135807 A JPH05135807 A JP H05135807A
Authority
JP
Japan
Prior art keywords
frame
separator
welding
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3297516A
Other languages
Japanese (ja)
Inventor
Hiromichi Ito
裕通 伊藤
Yasuo Ando
保雄 安藤
Yuji Hashiguchi
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3297516A priority Critical patent/JPH05135807A/en
Publication of JPH05135807A publication Critical patent/JPH05135807A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the size and the weight of a battery by reducing a space required for welding while securing the required welding strength when a battery is manufactured by thermowelding the frame parts of an electrode plate and a separator plate. CONSTITUTION:The sectional forms of welding ribs 17 and 18 formed on a middle electrode frame 8b and a separator frame 12 are made triangular, and the total sectional area of the ribs is made small, and the total sectional area of the rib release grooves is thereby made small, and the welding ribs 17 and 18 are thermowelded and united with each other under pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、導電性部材の外周に
合成樹脂の絶縁枠体を形成した電極板、セパレータの外
周に合成樹脂の枠体を形成したセパレータ板などの電池
構成部材の枠体部材を相互に溶着一体化する積層電池の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery component frame such as an electrode plate having a synthetic resin insulating frame formed on the outer periphery of a conductive member and a separator plate having a synthetic resin frame formed on the outer periphery of a separator. The present invention relates to a method for manufacturing a laminated battery in which body members are welded and integrated with each other.

【0002】[0002]

【従来の技術】近時、電池電力貯蔵システムの開発が促
進されており、その一環として亜鉛臭素電池,亜鉛塩素
電池,レドックスフロー電池等が開発されている。これ
らは、高い電圧を取り出すため、電気的直列積層構成を
採っている。亜鉛臭素電池を例にとって、その構成概略
を説明する。亜鉛臭素電池の本体は、図2に示すように
電極をバイポーラ形とし、これを積層して電気的に直列
で構成されている。図2において、6は絶縁性の枠体が
セパレータの外周に一体に形成されたセパレータ板、8
は絶縁枠体が導電性部材の外周に一体に形成されたバイ
ポーラ形の電極板である。この電極板8の間にセパレー
タ板6を挾んで両側にスペーサメッシュ7およびパッキ
ン5を重ねて、単セルを構成し、この単セルを複数、例
えば、30セル積層し、最後に両端に夫々、集電電極
3,積層端板2及び締付端板1を重ねて、ボルトおよび
ナットで締めつけて一体に構成している。
2. Description of the Related Art Recently, development of a battery power storage system has been promoted, and zinc bromine battery, zinc chlorine battery, redox flow battery, etc. have been developed as part of the development. These take an electrical series laminated structure in order to extract a high voltage. A zinc bromine battery will be taken as an example to describe the outline of the configuration. As shown in FIG. 2, the main body of the zinc-bromine battery has bipolar electrodes, which are stacked and electrically connected in series. In FIG. 2, 6 is a separator plate in which an insulating frame is integrally formed on the outer periphery of the separator, and 8
Is a bipolar type electrode plate in which an insulating frame is integrally formed on the outer periphery of a conductive member. The separator plate 6 is sandwiched between the electrode plates 8 and the spacer mesh 7 and the packing 5 are stacked on both sides to form a single cell. The current collecting electrode 3, the laminated end plate 2 and the tightening end plate 1 are overlapped with each other and fastened with bolts and nuts to be integrated.

【0003】このように構成した電池本体内に、電解液
は電極板8,セパレータ板6の枠体およびパッキン5の
四隅角部に形成した正極マニホールド9と負極マニホー
ルド10、さらにチャンネル13,マイクロチャンネル
の電解液流路を介して流入流出する。
In the battery body thus constructed, the electrolytic solution contains an electrode plate 8, a frame of the separator plate 6 and a positive electrode manifold 9 and a negative electrode manifold 10 formed at four corners of the packing 5, a channel 13, a micro channel. Inflow and outflow through the electrolyte flow path.

【0004】電極板8の導電性部材はプラスチックにカ
ーボンなどの導電性物質を混練して形成したカーボンプ
ラスチック製薄板から形成され、セパレータ板6のセパ
レータ部分は微細多孔質膜より成り、電極板8およびセ
パレータ板6の枠体はポリエチレンなどのポリオレフィ
ン系樹脂から構成されている。
The conductive member of the electrode plate 8 is formed of a carbon plastic thin plate formed by kneading a conductive substance such as carbon into plastic, and the separator portion of the separator plate 6 is made of a fine porous film. The frame body of the separator plate 6 is made of polyolefin resin such as polyethylene.

【0005】上述のように従来の積層電池は、積層電池
の両端から締付けて各電極板およびセパレータ板の枠体
等を圧接して、各単セルおよび電解液流路を形成してい
るので、各セルに電解液を供給する際積層合わせ面から
電解液が漏れる(シール不良)問題点がある。それを防
止するため次のようなシール方法が採用されてきた。
As described above, the conventional laminated battery is tightened from both ends of the laminated battery to press the electrodes of the electrode plates and the frame of the separator plate into contact with each other to form each unit cell and the electrolyte flow path. When the electrolytic solution is supplied to each cell, there is a problem that the electrolytic solution leaks from the laminated surface (sealing failure). To prevent this, the following sealing method has been adopted.

【0006】溶着法……熱板溶着、振動溶着。 圧着法(ボルト締め)……バネ、皿バネ、パッキン、シ
ール剤。 溶着法はフレームとフレームを物理的に溶かして着ける
方法で、圧着法は機械的に外部から力を加えることによ
って漏れを防ぐ方法である。
Welding method: hot plate welding, vibration welding. Crimping method (bolt tightening) …… Spring, disc spring, packing, sealant. The welding method is a method in which the frame and the frame are physically melted and attached, and the crimping method is a method in which leakage is prevented by mechanically applying a force from the outside.

【0007】圧着法は簡単ではあるが、樹脂、ゴムのク
リープにより長期間(1年以上)の信頼性に劣る。一方
溶着法はそういう意味での信頼性はフレームの樹脂と樹
脂が完全に溶けあった場合は非常に高い。その中でも熱
板溶着は多数積層する場合振動溶着に比べ溶着性能が勝
る。振動溶着は多数積層した時振動が伝搬しにくくなる
ことが原因である。
Although the crimping method is simple, it is inferior in reliability for a long time (one year or more) due to creep of resin and rubber. On the other hand, the welding method is very reliable in that sense when the resin of the frame and the resin are completely melted. Among them, when a large number of hot plate welds are laminated, the welding performance is superior to that of vibration welding. Vibration welding is caused by the difficulty of propagating vibration when a large number of layers are stacked.

【0008】[0008]

【発明が解決しようとする課題】熱板溶着の要素は図3
に示されるように溶着リブ14,15とリブ逃げ溝16
から構成される。基本的にセパレータフレーム12と中
間電極フレーム8bのリブ14,15が熱板(図示省
略)によって溶かされその状態で圧着し、溶けた樹脂ど
うしが絡み合ってリブ逃げ溝16に入り込む。図3にお
いて13は電解液流路のチャンネルである。
The element of hot plate welding is shown in FIG.
As shown in FIG. 1, the welding ribs 14 and 15 and the rib clearance groove 16
Composed of. Basically, the ribs 14 and 15 of the separator frame 12 and the intermediate electrode frame 8b are melted by a hot plate (not shown) and pressed in that state, and the melted resins are entangled and enter the rib escape groove 16. In FIG. 3, reference numeral 13 is a channel of the electrolytic solution flow path.

【0009】図3に示されるようにリブ逃げ溝16の断
面積(斜線部)がリブ14,15の断面積に比べて小さ
い場合は樹脂が入り込む場所が無くなり、フレーム8
b,12間に隙間が開く。つまり所定の厚みに電池が納
まらなくなる。尚両方のリブ14,15を合わせた断面
積は300×10-2mm2、溝16の断面積は合わせて
100×10-2mm2である。
As shown in FIG. 3, when the cross-sectional area (hatched portion) of the rib clearance groove 16 is smaller than the cross-sectional area of the ribs 14 and 15, there is no place for resin to enter, and the frame 8
A gap opens between b and 12. That is, the battery cannot fit in the predetermined thickness. The total cross-sectional area of both ribs 14 and 15 is 300 × 10 -2 mm 2 , and the total cross-sectional area of the groove 16 is 100 × 10 -2 mm 2 .

【0010】一方図4の斜線部に示されるように溝断面
積が十分に大きい場合は溶着した時に出るバリは全て溝
16に収められフレーム間ギャップ0で電池を構成する
ことができる。尚図4におけるリブ断面積は240×1
-2mm2、溝断面積は250×10-2mm2である。し
かし図3のようにチャンネル13と溶着リブ14の間の
距離が短い場合は図4のように溝幅を十分にとることが
できない。即ち仮に図3の破線部変更後に示す数値のよ
うにリブ断面積合計を240×10-2mm2に下げ、溝
断面積合計を280×10-2mm2に広げたとすると、
チャンネル13とリブ逃げ溝16の間の距離が0.5m
mとなってしまい、金型加工上、フレーム成形上不可能
となる。
On the other hand, as shown by the hatched portion in FIG. 4, when the groove cross-sectional area is sufficiently large, all burrs produced during welding are contained in the groove 16 and the battery can be constructed with a zero interframe gap. The rib cross-sectional area in FIG. 4 is 240 × 1.
0 -2 mm 2, groove cross-sectional area is 250 × 10 -2 mm 2. However, when the distance between the channel 13 and the welding rib 14 is short as shown in FIG. 3, the groove width cannot be sufficiently set as shown in FIG. That is, assuming that the total rib cross-sectional area is reduced to 240 × 10 -2 mm 2 and the total groove cross-sectional area is widened to 280 × 10 -2 mm 2 as shown by the numerical values after changing the broken line portion in FIG.
The distance between the channel 13 and the rib clearance groove 16 is 0.5m
Therefore, it becomes impossible in terms of mold processing and frame molding.

【0011】本発明は上記の点に鑑みてなされたもので
その目的は、溶着リブの断面積および溝断面積を大幅に
削減しても所要の溶着力を確保することができ、これに
よって電池の大きさ、重さを小さくすることができる積
層電池の製造方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to ensure a required welding force even if the cross-sectional areas of the welding ribs and the groove cross-sectional areas are significantly reduced. An object of the present invention is to provide a method for manufacturing a laminated battery, which can reduce the size and weight of the battery.

【0012】[0012]

【課題を解決するための手段】本発明は、平板状の電極
板とセパレータ板とを交互に積層し、一体化して成る積
層電池の製造方法において、前記電極板を、矩形平板状
の電極と、該電極の外周縁部に一体に形成された合成樹
脂の絶縁枠体と、前記電極の外周縁部に沿って前記絶縁
枠体上に形成され、三角形又は台形の断面形状を有する
溶着リブとで形成し、前記セパレータ板を、矩形平板状
のセパレータと、該セパレータの外周縁部に一体に形成
された合成樹脂の枠体と、該枠体の対向する一方の両辺
に各々設けた一対の電解液流路と、前記電解液流路の外
側でかつ前記セパレータの外周縁部に沿って、前記枠体
上に形成された三角形又は台形の断面形状を有する溶着
リブと、前記枠体の溶着リブの両側に接して、前記枠体
に形成された逃げ溝とで形成し、前記電極板の間に、前
記セパレータ板を挾んで該電極板を複数積層し且つ、相
対向する各電極板およびセパレータ板の溶着リブを加熱
溶融すると共に、圧着一体化して、前記電極と絶縁枠体
と枠体とで囲まれ、且つ前記セパレータで二つに区分さ
れた部分に電池反応室を形成し、該電池反応室内に、電
解液を前記枠体に形成した電解液流路を介して、循環し
たことを特徴としている。
DISCLOSURE OF THE INVENTION The present invention is a method for manufacturing a laminated battery in which flat plate-like electrode plates and separator plates are alternately laminated and integrated, wherein the electrode plates are rectangular flat plate-like electrodes. An insulating frame made of synthetic resin integrally formed on the outer peripheral edge of the electrode, and a welding rib formed on the insulating frame along the outer peripheral edge of the electrode and having a triangular or trapezoidal sectional shape. The separator plate is a rectangular flat plate-shaped separator, a synthetic resin frame integrally formed on the outer peripheral edge of the separator, and a pair of pairs provided on both opposite sides of the frame. An electrolytic solution flow path, a welding rib having a triangular or trapezoidal cross-sectional shape formed on the frame body outside the electrolytic solution flow path and along the outer peripheral edge portion of the separator, and welding of the frame body The relief formed on the frame by contacting both sides of the rib And a plurality of electrode plates are sandwiched between the electrode plates by sandwiching the electrode plates, and the electrode plates facing each other and the welding ribs of the separator plates are heated and melted, and the electrodes are pressure-bonded together to form the electrode. And an insulating frame body and a frame body, and a battery reaction chamber is formed in a portion divided into two parts by the separator, and an electrolytic solution flow path in which an electrolytic solution is formed in the frame body in the battery reaction chamber It is characterized by being circulated through.

【0013】[0013]

【作用】相対向する各電極板およびセパレータ板の溶着
リブを加熱溶融すると、溶融した溶着リブより生ずるバ
リは全て逃げ溝内に入る。このとき相互に溶着する溶着
リブの断面積は、三角形又は台形であるため、従来のも
のより非常に小さくなり、両側の逃げ溝の断面積を小さ
く形成することができる。このため電解液流路と溶着リ
ブの距離が短い場合でも十分に逃げ溝スペースを確保す
ることができ、溶着リブにより生ずるバリが逃げ溝から
溢れ出て電解液流路を閉塞するようなことはなく、各枠
体同志が一体化される。このように逃げ溝の断面積を小
さくできるので電池の大きさ、重さを小さくすることが
できる。
When the welding ribs of the electrode plate and the separator plate facing each other are heated and melted, all burrs generated by the melted welding ribs enter the escape groove. At this time, since the cross-sectional areas of the welding ribs that are welded to each other are triangular or trapezoidal, the cross-sectional areas of the relief grooves on both sides can be made smaller than in the conventional ones. Therefore, even if the distance between the electrolytic solution flow path and the welding rib is short, a sufficient clearance groove space can be secured, and burrs caused by the welding rib do not overflow from the clearance groove and block the electrolytic solution flow path. Instead, each frame body is integrated. Since the cross-sectional area of the escape groove can be reduced in this way, the size and weight of the battery can be reduced.

【0014】なお、上述の作用は、本発明を亜鉛臭素電
池に適用した場合ばかりでなく、亜鉛塩素電池,レドッ
クスフロー電池等の積層電池に適用した場合にも同様の
作用を奏する。
It should be noted that the above-mentioned effects are obtained not only when the present invention is applied to a zinc-bromine battery, but also when it is applied to a laminated battery such as a zinc-chlorine battery and a redox flow battery.

【0015】[0015]

【実施例】以下、図面を参照しながら本発明の積層電池
の製造方法の一実施例を説明する。図1において図3、
図4と同一部分は同一符号をもって示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a laminated battery of the present invention will be described below with reference to the drawings. In FIG. 1, FIG.
The same parts as those in FIG. 4 are indicated by the same reference numerals.

【0016】図1においてセパレータフレーム12と中
間電極フレーム8bには、三角形の断面形状を有した溶
着リブ17、18が各々設けられている。このように溶
着リブ17、18の断面形状を三角形にすることでリブ
断面積は大幅に削減され、リブ逃げ溝16の断面積を小
さく形成することができる。このため図示のようにチャ
ンネル13とリブ17、18の間の距離が短い場合でも
何等問題なく作製することができる。またリブ17、1
8の断面形状を三角形にしてもリブ幅での溶着力は確保
されるので、溶着力は従来の長方形断面のリブの場合と
全く変わらない。また溶着リブ17、18により生ずる
バリが逃げ溝16から溢れ出てチャンネル13を閉塞す
ることはなくセパレータフレーム12と中間電極フレー
ム8bは一体化される。前記リブ17、18の断面積合
計は150×10-2mm2、リブ逃げ溝16の断面積合
計は210×10-2mm2である。前記リブ17、18
の断面形状は三角形に限らず金型加工上の制約により台
形に形成しても良い。
In FIG. 1, the separator frame 12 and the intermediate electrode frame 8b are provided with welding ribs 17 and 18 each having a triangular sectional shape. By thus forming the welding ribs 17 and 18 in a triangular cross-sectional shape, the rib cross-sectional area is significantly reduced, and the rib relief groove 16 can be formed to have a small cross-sectional area. Therefore, as shown in the drawing, even if the distance between the channel 13 and the ribs 17 and 18 is short, it can be produced without any problem. Also ribs 17, 1
Even if the cross-sectional shape of 8 is triangular, the welding force is ensured in the rib width, and therefore the welding force is completely the same as that of the conventional rib having a rectangular cross section. Further, burrs generated by the welding ribs 17 and 18 do not overflow the escape groove 16 and block the channel 13, and the separator frame 12 and the intermediate electrode frame 8b are integrated. The total cross-sectional area of the ribs 17 and 18 is 150 × 10 -2 mm 2 , and the total cross-sectional area of the rib clearance groove 16 is 210 × 10 -2 mm 2 . The ribs 17, 18
The sectional shape of is not limited to a triangular shape, but may be formed in a trapezoidal shape due to restrictions on the die processing.

【0017】尚、前記実施例では本発明を亜鉛臭素電池
に適用した場合について述べたが、これに限らず亜鉛塩
素電池,レドックスフロー電池等の積層電池に適用した
り、熱板溶着を適用する他の化学セルに応用することが
でき、これらの場合も前記同様の作用、効果を奏する。
In the above embodiments, the case where the present invention is applied to a zinc bromine battery is described, but the present invention is not limited to this, and it is applied to a laminated battery such as a zinc chlorine battery and a redox flow battery, or hot plate welding is applied. It can be applied to other chemical cells, and in these cases, the same action and effect as described above can be obtained.

【0018】[0018]

【発明の効果】以上のように本発明の積層電池の製造方
法によれば、電極板およびセパレータ板に形成される溶
着リブの断面形状を三角形又は台形にしたので、所要の
溶着力を確保しながら熱板溶着に必要な枠体内のスペー
ス(リブ逃げ溝)を大幅に削減することができ、これに
よって電池の大きさ、重さを小さくすることができる。
As described above, according to the method for manufacturing a laminated battery of the present invention, the cross-sectional shape of the welding ribs formed on the electrode plate and the separator plate is triangular or trapezoidal, so that the required welding force is secured. However, the space (rib clearance groove) in the frame required for hot plate welding can be significantly reduced, and the size and weight of the battery can be reduced accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層電池の製造方法の一実施例を説明
するための枠体要部断面を示す構成図。
FIG. 1 is a configuration diagram showing a cross section of a main part of a frame for explaining an embodiment of a method for manufacturing a laminated battery of the present invention.

【図2】従来の亜鉛臭素電池の電池本体を示す要部分解
斜視図。
FIG. 2 is an exploded perspective view of essential parts showing a battery body of a conventional zinc bromine battery.

【図3】従来の積層電池の製造方法の一実施例を説明す
るための枠体要部断面を示す構成図。
FIG. 3 is a configuration diagram showing a cross section of a main part of a frame body for explaining an example of a conventional method for manufacturing a laminated battery.

【図4】従来の積層電池の製造方法の他の実施例を説明
するための枠体要部断面を示す構成図。
FIG. 4 is a configuration diagram showing a cross section of a main part of a frame body for explaining another embodiment of the conventional method for manufacturing a laminated battery.

【符号の説明】[Explanation of symbols]

3…集電電極、6…セパレータ板、8…電極板、8b…
中間電極フレーム、9…正極マニホールド、10…負極
マニホールド、12…セパレータフレーム、13…チャ
ンネル、14,15,17,18…溶着リブ、16…リ
ブ逃げ溝。
3 ... collection electrode, 6 ... separator plate, 8 ... electrode plate, 8b ...
Intermediate electrode frame, 9 ... Positive electrode manifold, 10 ... Negative electrode manifold, 12 ... Separator frame, 13 ... Channel, 14, 15, 17, 18 ... Welding rib, 16 ... Rib relief groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平板状の電極板とセパレータ板とを交互
に積層し、一体化して成る積層電池の製造方法におい
て、 前記電極板を、矩形平板状の電極と、該電極の外周縁部
に一体に形成された合成樹脂の絶縁枠体と、前記電極の
外周縁部に沿って前記絶縁枠体上に形成され、三角形又
は台形の断面形状を有する溶着リブとで形成し、 前記セパレータ板を、矩形平板状のセパレータと、該セ
パレータの外周縁部に一体に形成された合成樹脂の枠体
と、該枠体の対向する一方の両辺に各々設けた一対の電
解液流路と、前記電解液流路の外側でかつ前記セパレー
タの外周縁部に沿って、前記枠体上に形成された三角形
又は台形の断面形状を有する溶着リブと、前記枠体の溶
着リブの両側に接して、前記枠体に形成された逃げ溝と
で形成し、 前記電極板の間に、前記セパレータ板を挾んで該電極板
を複数積層し且つ、相対向する各電極板およびセパレー
タ板の溶着リブを加熱溶融すると共に、圧着一体化し
て、前記電極と絶縁枠体と枠体とで囲まれ、且つ前記セ
パレータで二つに区分された部分に電池反応室を形成
し、 該電池反応室内に、電解液を前記枠体に形成した電解液
流路を介して、循環して成る積層電池の製造方法。
1. A method of manufacturing a laminated battery, wherein flat plate-shaped electrode plates and separator plates are alternately laminated and integrated, wherein the electrode plates are rectangular flat plate-shaped electrodes and an outer peripheral edge portion of the electrodes. An insulating frame made of synthetic resin integrally formed, and formed on the insulating frame along the outer peripheral edge of the electrode, and formed by welding ribs having a triangular or trapezoidal cross-sectional shape, the separator plate A rectangular flat plate-shaped separator, a synthetic resin frame integrally formed on the outer peripheral edge of the separator, a pair of electrolytic solution flow passages respectively provided on both opposite sides of the frame, and the electrolysis Outside the liquid flow path and along the outer peripheral edge of the separator, a welding rib having a triangular or trapezoidal cross-sectional shape formed on the frame body, and in contact with both sides of the welding rib of the frame body, And an escape groove formed in the frame, the electrode plate While sandwiching the separator plates, a plurality of the electrode plates are laminated, and the welding ribs of the electrode plates and the separator plates facing each other are heated and melted, and are pressure-bonded together to form the electrodes, the insulating frame and the frame. A battery reaction chamber is formed in a portion surrounded by the body and divided into two parts by the separator, and an electrolytic solution is circulated in the battery reaction chamber through an electrolytic solution flow path formed in the frame. A method of manufacturing a laminated battery comprising the following.
JP3297516A 1991-11-14 1991-11-14 Manufacture of stacked battery Pending JPH05135807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3297516A JPH05135807A (en) 1991-11-14 1991-11-14 Manufacture of stacked battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3297516A JPH05135807A (en) 1991-11-14 1991-11-14 Manufacture of stacked battery

Publications (1)

Publication Number Publication Date
JPH05135807A true JPH05135807A (en) 1993-06-01

Family

ID=17847534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3297516A Pending JPH05135807A (en) 1991-11-14 1991-11-14 Manufacture of stacked battery

Country Status (1)

Country Link
JP (1) JPH05135807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100755A (en) * 1997-06-25 2000-08-08 Futaba Denshi Kogyo Kabushiki Kaisha Phase decision circuit
JP2017528867A (en) * 2014-07-29 2017-09-28 ロッテ ケミカル コーポレーション Stack welding equipment for redox flow batteries
CN114361506A (en) * 2021-12-31 2022-04-15 西子清洁能源装备制造股份有限公司 Technological method for sealing flow battery assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100755A (en) * 1997-06-25 2000-08-08 Futaba Denshi Kogyo Kabushiki Kaisha Phase decision circuit
JP2017528867A (en) * 2014-07-29 2017-09-28 ロッテ ケミカル コーポレーション Stack welding equipment for redox flow batteries
CN114361506A (en) * 2021-12-31 2022-04-15 西子清洁能源装备制造股份有限公司 Technological method for sealing flow battery assembly

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
CN110224154B (en) Frame-equipped membrane electrode assembly, method for producing same, and fuel cell
CN110416589B (en) Fuel cell stack, dummy cell for fuel cell stack, and method for manufacturing dummy cell
JP6715278B2 (en) Fuel cell stack
JP4481423B2 (en) Polymer electrolyte fuel cell stack
EP1372203A1 (en) Membrane electrode assembly for an electrochemical fuel cell
JP6594809B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6817361B2 (en) Dummy cell manufacturing method and dummy cell manufacturing equipment
CN111668526A (en) Fuel cell stack and method for manufacturing dummy single cell
JPH05135807A (en) Manufacture of stacked battery
JP6715277B2 (en) Fuel cell stack and dummy cell for fuel cell stack
JP4935611B2 (en) Manufacturing method of fuel cell and separator
US11094946B2 (en) Fuel cell stack and method of manufacturing fuel cell stack
JP6633114B2 (en) Method of manufacturing fuel cell stack and dummy cell
JP2001155973A (en) Electric double-layer capacitor
JP2569361Y2 (en) Fuel cell separator
JP6694913B2 (en) Fuel cell stack and dummy cell manufacturing method
JP2636137B2 (en) Electric double layer capacitor
JP2890853B2 (en) Manufacturing method of laminated battery
JP2782867B2 (en) Manufacturing method of laminated battery
JP7337730B2 (en) Fuel cell stack and separator
JP2890852B2 (en) Manufacturing method of laminated battery
JP6722718B2 (en) Fuel cell stack and dummy cell manufacturing method
JP2964659B2 (en) Method of manufacturing current collecting electrode for laminated battery
WO2023085068A1 (en) Bipolar storage battery