JP4091769B2 - Square sealed battery - Google Patents

Square sealed battery Download PDF

Info

Publication number
JP4091769B2
JP4091769B2 JP2002014703A JP2002014703A JP4091769B2 JP 4091769 B2 JP4091769 B2 JP 4091769B2 JP 2002014703 A JP2002014703 A JP 2002014703A JP 2002014703 A JP2002014703 A JP 2002014703A JP 4091769 B2 JP4091769 B2 JP 4091769B2
Authority
JP
Japan
Prior art keywords
battery case
rectangular
partition wall
sides
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002014703A
Other languages
Japanese (ja)
Other versions
JP2003123731A (en
Inventor
弘海 加治屋
昭司 唐沢
正人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002014703A priority Critical patent/JP4091769B2/en
Priority to US10/486,126 priority patent/US7291423B2/en
Priority to KR1020047001780A priority patent/KR100662165B1/en
Priority to CNB028153502A priority patent/CN1254871C/en
Priority to EP02755836A priority patent/EP1422770B1/en
Priority to PCT/JP2002/007986 priority patent/WO2003015194A1/en
Publication of JP2003123731A publication Critical patent/JP2003123731A/en
Application granted granted Critical
Publication of JP4091769B2 publication Critical patent/JP4091769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は角形密閉式電池に関し、特に複数の単電池を接続してなる集合型二次電池の内部抵抗の低減を図った角形密閉式電池に関するものである。
【0002】
【従来の技術】
所要の電力容量が得られるように複数の単電池を接続して成る従来の集合型二次電池は、複数個の個別の直方体状の単電池を、その電槽の幅の広い長側面同士を互いに対向させて重ねるように配置し、両端の単電池の電槽の外側にエンドプレートを配置して拘束バンドにて結束することで一体的に連結し、また各単電池において極板の上端部から上方にリードを引き出して電槽の蓋に装着された端子に接続し、単電池間で端子同士を接続板で接続して構成されている。
【0003】
そのため、単電池間の接続経路が長くかつ接続箇所が多いために接続部品を含む構成部品による部品抵抗が大きく、この部品抵抗と、正極板と負極板及び電解液による電池反応における反応抵抗との比率が、40〜50%:60〜50%にも達し、大きな内部抵抗により電池の発熱が大きくなるため、高出力化の実現や寿命特性の向上に対して大きな障害になっていた。また、単電池間の接続構成が複雑で部品点数が多いためにコスト高になるという問題もあった。
【0004】
そこで、本出願人は、先に図16、図17に示すように、複数の単電池2を内蔵した角形密閉式電池1を提案している。3はその角形電槽で、幅の狭い短側面と幅の広い長側面とを有する直方体状の単電池2の電槽4をその短側面を隔壁5として共用して相互に一体的に連接してなる扁平な直方体状に形成され、各電槽4の上面開口は一体の蓋体6にて一体的に閉鎖されている。両端の電槽4の外側の短側面と各電槽4、4間の隔壁5の上部に接続穴7が形成されている。各電槽4内には、矩形状の正極板と負極板をセパレータを介して積層して構成された極板群8が電解液とともに収容され、単電池2が構成されている。極板群8の正極板と負極板は互いに反対側の側部に突出されて正極板と負極板のリード部9a、9bとされ、それらのリード部9a、9bの側端縁にはそれぞれ集電板10a、10bが溶接等にて接続されている。
【0005】
集電板10a、10bの上部には接続穴7内に嵌入する接続突部11が突設され、隣接する電槽4、4間で正極と負極の集電板10a、10bの接続突部11を互いに溶接して接続されている。また、両端の電槽4の外側の短側面の接続穴7に正極又は負極の接続端子12が装着され、その接続突部13と集電板10a又は10bの接続突部11とが互いに溶接にて接続されている。かくして、角形電槽3に内蔵された複数の単電池2が直列接続され、両端の接続端子12、12間に出力される。
【0006】
また、蓋体6には各電槽4、4の内圧を均等にする連通路14や、各電槽4の内部圧力が一定以上になったときに圧力を解放するための安全弁(図示せず)や、適当な単電池2の温度を検出する温度センサを装着するセンサ装着穴15などが設けられている。
【0007】
このような構成によると、極板群8における正極板及び負極板からそれぞれのリード部9a、9bまでの通電経路が短く、かつそのリード部9a、9b間が集電板10a、10を介して角形電槽3内部で接続されているので、上記従来の個別の単電池を接続したものに比べると、接続経路が短くかつ接続箇所が少ないために接続部品を含む構成部品による部品抵抗を小さくでき、その分内部抵抗を低減することができる。
【0008】
【発明が解決しようとする課題】
ところが、上記図16、図17に示すような構成では、正極板及び負極板からそれぞれのリード部9a、9b及び集電板10a、10bまでの通電経路は短いが、図18に矢印で示すように、集電板10a、10b同士はその上端部の接続突部11の先端間の1箇所で互いに溶接して接続されているので、接続経路が迂回し、そのため接続経路が長くなり、また1箇所で接続しているので内部抵抗が高くなるという問題がある。
【0009】
本発明は、上記従来の問題点に鑑み、単電池当たりの内部抵抗をさらに低減して高出力化を実現できる角形密閉式電池を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の角形密閉式電池は、複数の直方体状の電槽を隔壁を介して連接してなる角形電槽と、正極板と負極板をセパレータを介して積層するとともに正極板と負極板の一側部を互いに反対側に突出させてリード部とした極板群と、極板群の両側のリード部に接合した集電体とを備え、各電槽に集電体を接合した極板群を収容した角形密閉式電池において、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に連通するように形成した開口を通して導電性接続部材にて隔壁の両側に位置する集電体を接続したものであり、単電池間で隔壁を介して対向する集電体同士を角形電槽の側壁位置で導電性接続部材にて接続しているので、集電体の上端部間で接続している場合に対して通電経路が迂回せず、接続経路が短くなるため、単電池間の接続抵抗を小さくすることができ、その分単電池当たりの内部抵抗をさらに低減して高出力化を実現できる。
【0011】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ導電性接続板を弾性体層を介して角形電槽に密閉接合すると、角形電槽の隔壁や側壁と導電性接続板との間に弾性体層を介在させているので、電槽と導電性接続板の熱膨張差によってそれらの間に剥離隙間が発生するのを防止でき、単電池間での電解液の漏液に防止して液絡が生じる恐れも無くすことができる。
【0012】
また、弾性体層を、フッ素系ゴムにて構成すると、耐電解液性が高くかつ電池が温度上昇しても必要な耐熱性を有するため、長期にわたって安定した作用が得られ、長期使用に対して高い信頼性が得られる。
【0013】
また、導電性接続板の隔壁に対向する部分の外周に弾性体層を設けるとともにその外周に角形電槽と同系材質の樹脂層を設けると、角形電槽との間を樹脂成形するにせよ、熱溶着するにせよ、角形電槽側の樹脂と容易かつ確実に一体接合され、弾性体層と角形電槽の樹脂との間での電解液の漏液をさらに確実に防止できる。
【0014】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ角形電槽の構成材料と親和性を有する合成樹脂を導電性接続板に焼き付けて形成した樹脂層を介して角形電槽に密閉接合すると、角形電槽側の樹脂と導電性接続板が焼き付け形成した樹脂層を介して容易かつ確実に一体接合され、電解液の漏液をさらに確実に防止できる。
【0015】
また、その焼き付けて形成した樹脂層が角形電槽の射出成形温度より低い融点の合成樹脂から成ると、角形電槽とより確実に一体接合され、電解液の漏液をさらに確実に防止できる。
【0016】
また、導電性接続板を集電体に接続し、樹脂成形にて導電性接続板の周囲と角形電槽の隔壁及び側壁との間を密封接合するとともに開口を密閉し、あるいは導電性接続板を集電体に接続するとともに、樹脂層を角形電槽の隔壁及び側壁の開口縁部に密封接合し、角形電槽の側壁に形成した開口を閉鎖部材にて密閉するとともにこの閉鎖部材と樹脂層の外面とを密封接合することにより、上記構成を実現することができる。
【0017】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に貫通する貫通穴を形成し、隔壁の両側に位置する集電体に貫通穴を通して接続される接続部を両側に有する導電性接続体を設けるとともに貫通穴の周囲と導電性接続体の間にシール材を設け、導電性接続体を角形電槽の側壁に埋設すると、両側の電槽内に貫通穴が貫通し、その周囲と導電性接続体との間でシール材にてシールしているので、電解液の漏液に対する高いシール性が容易に得られる。
【0018】
また、角形電槽の両端壁及び隔壁の上部に形成された接続穴を介して角形電槽両端の接続端子と集電体及び集電体同士を接続すると、集電体同士をその上部で接続している従来の構成の角形密閉式電池の製造設備をそのまま利用しながら、上記構成の適用により接続抵抗を低減でき、また角形密閉式電池の外部との接続端子が角形電槽の両端壁の上部に配設されるので、他の角形密閉式電池との接続が容易でかつ水冷による冷却機構等を設ける場合の絶縁性の確保が容易である等の効果を奏する。
【0019】
【発明の実施の形態】
以下、本発明の角形密閉式電池の第1の実施形態について、図1〜図6を参照して説明する。なお、図16、図17を参照して説明した従来例と同一の構成要素については、同一の参照符号を付し、主として相違点を説明する。
【0020】
図1において、本実施形態の角形密閉式電池1における角形電槽3は、幅の狭い短側面と幅の広い長側面とを有する直方体状の複数の電槽4をその短側面を隔壁5として共用して相互に一体的に連接して構成されている。各電槽4にはその両側に集電体10が接合された極板群8が電解液とともに収容されて単電池2が構成されている。角形電槽3の両端壁及び隔壁5の上部には接続穴7(図16参照)が形成され、この接続穴7を通して両端の単電池2の集電体10に接続端子12が接続されるとともに、隣接する単電池2、2の集電体10、10同士が接続されている。図1において、16は蓋体6に設けられた安全弁である。
【0021】
極板群8は、複数枚の正極板と複数枚の負極板とを交互に配置するとともに、各正極板に横方向に開口部を有する袋状のセパレータを被せることにより正極板と負極板の間にセパレータを介装した状態で積層して構成され、正極板と負極板の一側部を互いに反対側に突出させて正極と負極のリード部9が設けられている。正極板は、Niの発泡メタルにリード部9を除いて水酸化ニッケルを充填して構成され、そのリード部9は発泡メタルを加圧して圧縮するとともにその一面にリード板を超音波溶接でシーム溶接して構成されている。また、負極板は、Niのパンチングメタルにリード部9を除いて水素吸蔵合金を含む負極構成物質を塗着して構成されている。この極板群8の両側のリード部9には集電体10が接合されている。
【0022】
角形電槽3の一方の側壁20には、図2〜図5に示すように、各隔壁5の配設位置に、1又は複数の開口21が両側の電槽4に臨むように形成されている。開口21の幅は、隔壁5の両側の集電体10の側縁間にわたる幅とされ、上下方向には適当な長さ寸法に設定されている。また、開口21の部分では隔壁5にも同じ上下長さ寸法で、適当な深さ寸法の切欠22が形成されている。
【0023】
開口21内には、導電性接続板23が収容配置され、その両側部がそれぞれ集電体10に溶接24にて接合され、一方の単電池2の集電体10からこの導電性接続板23を通って他方の単電池2の集電体10に通電されるように構成されている。導電性接続板23は鋼板にニッケルメッキを施したものが、耐電解液性を有しかつ安価に構成できて好適である。
【0024】
導電性接続板23は、図3に示すように、幅方向の両側部から上下方向にそれぞれ突出部23aを突出させて全体形状が略H形に形成され、かつ全体が開口21に丁度嵌合する大きさに形成されている。この導電性接続板23の幅方向の中央部の外周にはフッ素系ゴムやその他の耐熱・耐電解液性のゴム材料から成る環状の弾性体層25が焼き付け固着され、さらにその外周に角形電槽3と同系の合成樹脂から成る環状の樹脂層26が形成されている。この樹脂層26は射出成形にて形成され、その射出圧力によって弾性体層25は圧縮された状態となり、必要なシール圧が発生されている。
【0025】
また、導電性接続板23の上下方向中央部の両側に切欠27が形成され、その上下の計4箇所に溶接24を確実に行うため集電体10に圧接させる溶接突部28が突出形成されている。切欠27は、導電性接続板23の各溶接突部28位置に溶接電極を押し付けて溶接した時に、溶接電流が導電性接続板23の一方の溶接突部28から集電体10を通って他方の溶接突部28に確実に流れるように設けられている。なお、溶接突部28の形状は、図示例のような円形突部に限らず、断面山形の線状や円環状の突条などの任意の形状にでき、また溶接突部28の数も任意に選択できる。
【0026】
以上のように開口21に導電性接続板23を挿入配置し、導電性接続板23と両側の集電体10を溶接24にて接合した後、角形電槽3の側壁20に開口21を覆うように射出成形金型30を配設して加圧密接させ、開口21を密封閉鎖するとともに隔壁5の切欠22と樹脂層26の外周との間の隙間を充填するように密封樹脂部31が射出成形されている。なお、極板群8の開口21形成側の側面の開口21の近傍部分には遮熱シート29が配設されている。
【0027】
以上の構成においては、単電池2、2間で隔壁5を介して対向する集電体10、10同士を導電性接続板23にて接続しているので、集電体10の上端部間のみを接続突部11、11同士を接合して接続している場合に対して、集電体10の側部でも1又は複数箇所で導電性接続板23にて接続されているので、通電経路が迂回せず、接続経路が短くなるため、単電池2、2間の接続抵抗を小さくすることができ、その分単電池2当たりの内部抵抗をさらに低減して高出力化を実現できる。
【0028】
また、角形電槽3の側壁20や隔壁5と導電性接続板23との間に弾性体層25が介在されているので、角形電槽3と導電性接続板23の熱膨張差によってそれらの間に剥離隙間が発生するのを防止できる。したがって、単電池2、2間での電解液の漏液を防止して液絡が生じる恐れも無くすことができる。特に、弾性体層25をフッ素系ゴムにて構成すると、耐熱性及び耐電解液性が高く、電池が温度上昇しても必要な耐熱性を有するため、長期にわたって安定した作用が得られ、長期使用に対して高い信頼性が得られる。また、導電性接続板23の隔壁5に対向する部分の外周に弾性体層25を設けるとともにその外周に角形電槽3と同系材質の樹脂層26を設けているので、角形電槽3側の樹脂と容易かつ確実に一体接合され、弾性体層25と角形電槽3の樹脂との間での電解液の漏液をさらに確実に防止できる。
【0029】
また、本実施形態では、角形電槽3の両端壁及び隔壁5の上部に形成された接続穴7を介して角形電槽3の両端の接続端子12と集電体10及び各隔壁5両側の集電体10、10同士を接続しているので、従来の構成の角形密閉式電池1の製造設備をそのまま利用しながら、上記構成の適用により接続抵抗を低減でき、また角形密閉式電池1の外部との接続端子12が角形電槽3の両端壁の上部に配設されているので、他の角形密閉式電池1との接続が容易でかつ水冷による冷却機構等を設ける場合の絶縁性の確保が容易である等の効果を奏する。
【0030】
なお、図示例では導電性接続板23の外周の弾性体層25の外周に樹脂層26を設けた例を示したが、この樹脂層26は必ずしも設けなくてもよい。
【0031】
また、以上の説明では、角形電槽3の一方の側壁20にのみ開口21を形成して導電性接続板23にて単電池2、2間を接続する例を示したが、図6に示すように、角形電槽3の両方の側壁20に互いに対向するように開口21を形成し、隔壁5の両側の集電体10、10をその両側で導電性接続板23にて接続し、角形電槽3の両側から射出成形金型30を押し付けて射出成形にて密封樹脂部31を形成してもよい。こうすると、集電体10、10同士を両側で接続するので、より接続抵抗の低減化を図ることができるとともに、射出成形時に角形電槽3及び内部の集電体10及び極板群8に両側から均等に加圧力が作用するので、極板群8に対する片方からの荷重の作用やそれに伴う移動等により悪影響が生じるのを防止できる。
【0032】
次に、本発明の第2の実施形態の角形密閉式電池について、図7〜図9を参照して説明する。なお、以下の実施形態の説明においては、先行する実施形態と同一の構成要素については、同一の参照符号を付して説明を省略し、相違点のみを説明する。
【0033】
上記実施形態では、導電性接続板23を溶接した後、樹脂成形によって開口21を密封するようにした例を示したが、本実施形態では、導電性接続板23を集電体10、10に溶接接続するとともに、樹脂層26を角形電槽3の隔壁5及び開口21の開口縁部に密封接合し、さらに角形電槽3の側壁20に形成した開口21を閉鎖部材32にて密閉するとともにこの閉鎖部材32と樹脂層26の外面とを密封接合している。
【0034】
詳細に説明すると、開口21は矩形状で、導電性接続板23は両側に切欠27と溶接突部28が設けられた全体形状が開口21よりも小さい矩形状である。この導電性接続板23の幅方向中央部外周に弾性体層25が設けられ、その外周に樹脂層26が設けられている。隔壁5に形成された切欠22は外側に向けて広がる台形状で、かつ開口21の切欠22に対向する部分の縁部は、台形状の切欠22の斜面に連続する傾斜延長面33を形成するように三角形状に切欠かれている。樹脂層26は、その外形が切欠22の端面及び傾斜延長面33に沿うとともにその外側面が側壁20の外面と面一になるような台形状に成形されている。
【0035】
そして、樹脂層26の台形外面と切欠22の端面及び傾斜延長面33とが熱溶着ライン34にて密封状態で一体接合されている。また、閉鎖部材32を開口21及びその周囲を覆うように配置し、この閉鎖部材32と側壁20の外面及び樹脂層26の外側面とが熱溶着ライン35にて密封状態で一体接合されている。
【0036】
本実施形態においても、単電池2、2間で隔壁5を介して対向する集電体10、10同士を導電性接続板23にて接続しているので、単電池2、2間の接続抵抗が小さくなって単電池2当たりの内部抵抗をさらに低減して高出力化を実現できる。また、その導電性接続板23の隔壁5に対向する部分の外周に弾性体層25を設けるとともにその外周に角形電槽3と同系材質の樹脂層26を設けているので、角形電槽3側の樹脂と樹脂層26を熱溶着することにより、密封状態を確保しながら容易かつ確実に一体接合され、弾性体層25と角形電槽3の樹脂との間での電解液の漏液を確実に防止できる。
【0037】
次に、本発明の第3の実施形態の角形密閉式電池について、図10、図11を参照して説明する。
【0038】
上記実施形態では、導電性接続板23の幅方向の中央部の外周に弾性体層25を焼き付け固着し、その外周に角形電槽3と同系の合成樹脂から成る環状の樹脂層26を設けた例を示したが、本実施形態では、導電性接続板23の幅方向の中央部の外周に、角形電槽3の構成材料と親和性を有する合成樹脂を焼き付け形成した焼付樹脂層36を設けている。この焼付樹脂層36は角形電槽3を構成している合成樹脂の射出成形温度より低い融点の合成樹脂の粉体を導電性接続板23の該当範囲に添着した状態で加熱炉に投入して焼き付け固着して構成するのが好適である。例えば、角形電槽3がポリプロピレンやポリエチレンやそれらのアロイから成る場合、エポキシ樹脂の粉体を焼き付け塗工するのが好適である。
【0039】
このような焼付樹脂層36を設けた導電性接続板23を開口21に配置し、隔壁5の両側の集電体10と溶接24にて接合した後、開口21を覆うように射出成形金型30を配設し、開口21を密封閉鎖するとともに隔壁5の切欠22と焼付樹脂層36の外周との間の隙間を充填するように密封樹脂部31を射出成形することにより、角形電槽3と導電性接続板23の間が、導電性接続板23に一体的に密着された焼付樹脂層36とそれに一体的に密着して形成される密封樹脂部31を介して接合され、電槽4、4間を確実にシールするとともに開口21を完全に封止することができる。
【0040】
本実施形態によれば、角形電槽3側の樹脂と導電性接続板23が、焼付樹脂層36を介して容易かつ確実に一体的に密着された状態で接合されるので、電解液の漏液をさらに確実に防止できる。
【0041】
なお、図示例では、第1の実施形態と同様に射出成形にて形成した密封樹脂部31にて開口21を密封した例を示したが、第2の実施形態と同様に、焼付樹脂層36を角形電槽3の隔壁5に密封接合し、さらに開口21を閉鎖部材32にて密閉するとともにこの閉鎖部材32と焼付樹脂層36の外面とを密封接合するようにしてもよい。
【0042】
次に、本発明の第4の実施形態の角形密閉式電池について、図12〜図15を参照して説明する。
【0043】
上記各実施形態では、角形電槽3の側壁20に隔壁5の両側の電槽4に臨む矩形状の開口21を形成し、その開口21内に導電性接続板23を配置して集電体10に接合した後、密封樹脂部31や閉鎖部材32にて密封した例を示したが、本実施形態では、図12、図13に示すように、角形電槽3の側壁20の各隔壁5の配設位置に、両側の電槽4にわたる幅の凹部37を形成するとともに、その凹部37の底面から両側の電槽4内に貫通する貫通穴38を形成し、貫通穴38を通して隔壁5の両側に位置する集電体10に接続される接続部39を両側に有する導電性接続体40を凹部37内に配置し、接続部39と集電体10を溶接41にて接合している。導電性接続体40は鋼板にニッケルメッキを施したものが、耐電解液性を有しかつ安価に構成できて好適である。
【0044】
接続部39は丸軸状の突軸にて構成されてその外周にシール材としてのOリング42が装着され、接続部39を集電体10に接合した状態でOリング42が凹部37の底面と導電性接続体40の間で圧縮されて貫通穴38が密閉されている。凹部37内は導電性接続体40を埋設した状態で封止樹脂43が充填されている。
【0045】
以上の構成における接合工程を説明すると、図12、図13の図示例では、角形電槽3の両側の側壁20に凹部37及び貫通穴38を形成し、接続部39にOリング42を装着した導電性接続体40をそれぞれ凹部37に配置してその接続部39を貫通穴38に挿入し、次に図12に仮想線で示し、図13に実線で示すように、隔壁5両側の集電体10の内の一方の集電体10の両側に当接する接続部39、39の背部に溶接電極44を当接させて加圧し、その状態で抵抗溶接機45にて溶接電流を流すことによってこの集電体10の両側に導電性接続体40の接続部39を溶接41にて接合し、次に他方の集電体10の両側にも同様にして接続部39、39を溶接41にて接合することで、両側の集電体10をその両側部で導電性接続体40を介して接続する。その後、側壁20に射出金型(図示せず)を押し当てて封止樹脂43を射出成形することによって、接合が完了する。
【0046】
以上の説明では、角形電槽3の両側の側壁20に凹部37を形成して導電性接続体40を配設し、集電体10、10をその両側で接続しているが、図14、図15に示すように、集電体10、10をその一側でのみ接続してもよい。その場合、一方の側壁にのみ凹部37を形成し、その凹部37内の上部と下部にそれぞれ隔壁5の両側の電槽4内に貫通するように貫通穴38を形成し、隔壁5両側の貫通穴38に両側の接続部39が貫通してそれぞれ集電体10に当接する導電性接続体40を上下に一対配置し、隔壁5の一側の集電体10に当接している上部と下部の接続部39、39の背部に溶接電極44を押し当てて抵抗溶接機45にて溶接電流を流すことで一側の集電体10に上下の導電性接続体40を溶接41にて接続し、次に同様に隔壁5の他側の集電体10に当接している上部と下部の接続部39、39の背部に溶接電極44を押し当てて抵抗溶接機45にて溶接電流を流すことで他側の集電体10に上下の導電性接続体40を溶接41にて接続する。かくして、隔壁5両側の集電体10を上下一対の導電性接続体40を介して接続することができる。
【0047】
なお、溶接電極44には、導電性接続体40を吸着保持する吸引通路44aを有するものを用いると作業性が良くなる。また、図示例では上下の導電性接続体40が完全に別体のものを示したが、電流の通り難い細幅部を介して一体的に連結して一体化した単一の導電性接続体を用いることもできる。また、接続部39として丸軸状の突軸からなるものを例示したが、断面矩形状の部材を折り曲げ形成して構成しても良い。しかし、その場合信頼性の高いシールを得るのが困難である。
【0048】
本実施形態によれば、隔壁5両側の電槽4、4内に貫通するように貫通穴38を形成し、その周囲と導電性接続体40との間にOリング42などのシール材を介装してシールしているので、電解液の漏液に対して高いシール性を容易に得ることができる。
【0049】
以上の各実施形態の説明では、導電性接続板23や導電性接続体40に溶接電極を当て、導電性接続板23や導電性接続体40と集電体10との間に溶接電流を流して抵抗溶接した例を示したが、電子ビームやレーザビームを照射して局部を加熱溶融させて溶接しても良い。しかし、抵抗溶接の方が周囲に対する熱影響が小さくて済むので好ましい。また、導電性接続板23や導電性接続体40や集電体10の接続部にロウ材を設けておいてロウ付けするようにしてもよく、また導電性接着材等で接着接合するようにしてもよい。
【0050】
【発明の効果】
本発明の角形密閉式電池によれば、以上の説明から明らかなように、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に連通するように形成した開口を通して導電性接続部材にて隔壁の両側に位置する集電体を接続したので、単電池間で隔壁を介して対向する集電体同士を角形電槽の側壁位置で導電性接続部材にて接続でき、接続経路が短くなるため、単電池間の接続抵抗を小さくすることができ、その分単電池当たりの内部抵抗をさらに低減して高出力化を実現できる。
【0051】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ導電性接続板を弾性体層を介して角形電槽に密閉接合すると、角形電槽の隔壁や側壁と導電性接続板との間に弾性体層を介在させているので、電槽と導電性接続板の熱膨張差によってそれらの間に剥離隙間が発生するのを防止でき、単電池間での電解液の漏液を防止して液絡が生じる恐れも無くすことができる。
【0052】
また、弾性体層を、フッ素系ゴムにて構成すると、耐電解液性が高くかつ電池が温度上昇しても必要な耐熱性を有するため、長期にわたって安定した作用が得られ、長期使用に対して高い信頼性が得られる。
【0053】
また、導電性接続板の隔壁に対向する部分の外周に弾性体層を設けるとともにその外周に角形電槽と同系材質の樹脂層を設けると、角形電槽側の樹脂と容易かつ確実に一体接合され、弾性体層と角形電槽の樹脂との間での電解液の漏液をさらに確実に防止できる。
【0054】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ角形電槽の構成材料と親和性を有する合成樹脂を導電性接続板に焼き付けて形成した樹脂層を介して角形電槽に密閉接合すると、角形電槽側の樹脂と導電性接続板が焼き付け形成した樹脂層を介して容易かつ確実に一体接合され、電解液の漏液を確実に防止できる。
【0055】
また、その焼き付け形成する樹脂層を角形電槽の射出成形温度より低い融点の合成樹脂にて構成すると、より確実に一体接合され、電解液の漏液をさらに確実に防止できる。
【0056】
また、導電性接続板を集電体に接続し、樹脂成形にて導電性接続板の周囲と角形電槽の隔壁及び側壁との間を密封接合するとともに開口を密閉すると、樹脂成形にて上記構成を実現してその効果を奏することができる。
【0057】
また、導電性接続板を集電体に接続するとともに、樹脂層を角形電槽の隔壁及び側壁の開口縁部に密封接合し、角形電槽の側壁に形成した開口を閉鎖部材にて密閉するとともにこの閉鎖部材と樹脂層の外面とを密封接合すると、樹脂同士の熱溶着や接着等にて接合することで上記構成を実現してその効果を奏することができる。
【0058】
また、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に貫通する貫通穴を形成し、隔壁の両側に位置する集電体に貫通穴を通して接続される接続部を両側に有する導電性接続体を設けるとともに貫通穴の周囲と導電性接続体の間にシール材を設け、導電性接続体を角形電槽の側壁に埋設すると、両側の電槽内に貫通穴が貫通し、その周囲と導電性接続体との間でシール材にてシールしているので、電解液の漏液に対する高いシール性が容易に得られる。
【0059】
また、角形電槽の両端壁及び隔壁の上部に形成された接続穴を介して角形電槽両端の接続端子と集電体及び集電体同士を接続すると、集電体同士をその上部で接続している従来の構成の角形密閉式電池の製造設備をそのまま利用しながら、上記構成の適用により接続抵抗を低減でき、また角形密閉式電池の外部との接続端子が角形電槽の両端壁の上部に配設されるので、他の角形密閉式電池との接続が容易でかつ水冷による冷却機構等を設ける場合の絶縁性の確保が容易である等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の角形密閉式電池の第1の実施形態をその角形電槽の一部を破断して示した全体斜視図である。
【図2】同実施形態における要部の横断平面図である。
【図3】同実施形態における導電性接続板の斜視図である。
【図4】図2のA−A矢視断面図である。
【図5】図4のB−B矢視図である。
【図6】同実施形態の変形例における要部の横断平面図である。
【図7】本発明の角形密閉式電池の第2の実施形態における要部の横断平面図である。
【図8】図7のC−C矢視断面図である。
【図9】図8のD−D矢視図である。
【図10】本発明の角形密閉式電池の第3の実施形態における要部の横断平面図である。
【図11】同実施形態における導電性接続板の斜視図である。
【図12】本発明の角形密閉式電池の第4の実施形態における要部の横断平面図である。
【図13】同実施形態の要部の拡大横断平面図である。
【図14】同実施形態の変形例における要部の横断平面図である。
【図15】同変形例における導電性接続部材と集電体の接合工程を示す、図14のE−E矢視縦断側面図である。
【図16】従来例の角形密閉式電池の部分縦断正面図である。
【図17】同従来例における電槽の一部を破断して示した斜視図である。
【図18】同従来例における通電経路の説明図である。
【符号の説明】
1 角形密閉式電池
3 角形電槽
4 電槽
5 隔壁
8 極板群
9(9a、9b) リード部
10 集電体
12 接続端子
20 側壁
21 開口
23 導電性接続板
25 弾性体層
26 樹脂層
31 密封樹脂部
32 閉鎖部材
34 熱溶着ライン
35 熱溶着ライン
36 焼付樹脂層
38 貫通穴
39 接続部
40 導電性接続体
42 Oリング(シール材)
43 封止樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rectangular sealed battery, and more particularly to a rectangular sealed battery in which the internal resistance of an assembled secondary battery formed by connecting a plurality of single cells is reduced.
[0002]
[Prior art]
A conventional collective secondary battery in which a plurality of unit cells are connected so as to obtain a required power capacity is obtained by connecting a plurality of individual rectangular parallelepiped unit cells to a wide long side of the battery case. They are arranged so as to face each other, and are connected together by arranging end plates outside the battery case of the unit cells at both ends and binding them with a restraining band, and in each unit cell, the upper end of the electrode plate The lead is drawn upward from the terminal and connected to a terminal mounted on the lid of the battery case, and the terminals are connected to each other by a connecting plate between the single cells.
[0003]
Therefore, since the connection path between the single cells is long and there are many connection parts, the component resistance due to the component parts including the connection parts is large. The ratio reached 40 to 50%: 60 to 50%, and the heat generation of the battery increased due to the large internal resistance, which was a major obstacle to realizing high output and improving life characteristics. In addition, there is a problem in that the connection configuration between single cells is complicated and the number of parts is large, resulting in an increase in cost.
[0004]
Therefore, the present applicant has previously proposed a rectangular sealed battery 1 incorporating a plurality of single cells 2 as shown in FIGS. 3 is a rectangular battery case, and the battery case 4 of the rectangular parallelepiped unit cell 2 having a narrow short side face and a wide long side face is commonly connected to each other by sharing the short side face as a partition wall 5. The upper surface opening of each battery case 4 is integrally closed by an integral lid body 6. A connection hole 7 is formed in the short side surface outside the battery case 4 at both ends and the upper part of the partition wall 5 between the battery cases 4 and 4. In each battery case 4, an electrode plate group 8 formed by laminating a rectangular positive electrode plate and a negative electrode plate via a separator is accommodated together with an electrolytic solution, and a single battery 2 is configured. The positive electrode plate and the negative electrode plate of the electrode plate group 8 are projected to the opposite side portions to form lead portions 9a and 9b of the positive electrode plate and the negative electrode plate, and are gathered at the side edges of the lead portions 9a and 9b, respectively. The electric plates 10a and 10b are connected by welding or the like.
[0005]
A connection protrusion 11 that fits into the connection hole 7 protrudes from the upper part of the current collector plates 10 a and 10 b, and the connection protrusion 11 of the positive and negative current collector plates 10 a and 10 b between the adjacent battery cases 4 and 4. Are connected to each other by welding. Moreover, the positive or negative connection terminal 12 is mounted in the connection hole 7 on the short side surface outside the battery case 4 at both ends, and the connection protrusion 13 and the connection protrusion 11 of the current collector plate 10a or 10b are welded to each other. Connected. Thus, the plurality of single cells 2 built in the rectangular battery case 3 are connected in series and output between the connection terminals 12 and 12 at both ends.
[0006]
Further, the lid 6 has a communication passage 14 that equalizes the internal pressure of each battery case 4, 4 and a safety valve (not shown) for releasing the pressure when the internal pressure of each battery case 4 exceeds a certain level. ), A sensor mounting hole 15 for mounting a temperature sensor for detecting the temperature of an appropriate unit cell 2 and the like.
[0007]
According to such a configuration, the energization path from the positive electrode plate and the negative electrode plate to the respective lead portions 9a and 9b in the electrode plate group 8 is short, and between the lead portions 9a and 9b via the current collecting plates 10a and 10 Since it is connected inside the rectangular battery case 3, the resistance of the component parts including the connection parts can be reduced because the connection path is short and the number of connection points is short compared to the conventional individual cell connected. Therefore, the internal resistance can be reduced accordingly.
[0008]
[Problems to be solved by the invention]
However, in the configuration shown in FIGS. 16 and 17, the energization paths from the positive electrode plate and the negative electrode plate to the lead portions 9a and 9b and the current collector plates 10a and 10b are short, but as shown by arrows in FIG. In addition, since the current collector plates 10a and 10b are connected to each other at one point between the tips of the connection protrusions 11 at the upper end thereof, the connection path is detoured, so that the connection path becomes longer and 1 There is a problem that the internal resistance becomes high because the connection is made at a point.
[0009]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a rectangular sealed battery that can further reduce the internal resistance per unit cell and realize high output.
[0010]
[Means for Solving the Problems]
The rectangular sealed battery of the present invention includes a rectangular battery case in which a plurality of rectangular battery cases are connected via a partition wall, a positive electrode plate and a negative electrode plate stacked via a separator, and a positive electrode plate and a negative electrode plate. An electrode plate group comprising electrode plates having lead portions protruding from opposite sides and current collectors joined to the lead portions on both sides of the electrode plate group, and current collectors joined to each battery case In a rectangular sealed battery containing a battery, a conductive connecting member is disposed on both sides of the partition wall through an opening formed so as to communicate with the inside of the battery case on both sides of the partition wall on at least one side wall of the rectangular battery case. The current collectors are connected, and the current collectors facing each other through the partition walls between the single cells are connected by the conductive connection member at the side wall position of the rectangular battery case, so between the upper ends of the current collectors Since the energization path is not detoured and the connection path is shortened compared to Of it is possible to reduce the connection resistance can be realized further reduced to high output internal resistance per correspondingly single cell.
[0011]
In addition, an opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to the current collectors located on both sides of the partition wall And when the conductive connecting plate is hermetically joined to the rectangular battery case through the elastic layer, the elastic layer is interposed between the partition wall or the side wall of the rectangular battery case and the conductive connecting plate. It is possible to prevent a separation gap between them due to the difference in thermal expansion between the conductive connecting plate and the conductive connecting plate, and to prevent leakage of the electrolyte between the single cells, thereby eliminating the possibility of a liquid junction.
[0012]
In addition, if the elastic layer is made of fluorine-based rubber, it has high electrolyte resistance and the necessary heat resistance even when the battery temperature rises. High reliability.
[0013]
In addition, if an elastic body layer is provided on the outer periphery of the portion facing the partition wall of the conductive connection plate and a resin layer of a similar material to the rectangular battery case is provided on the outer periphery, the resin is molded between the rectangular battery case, Even if heat welding is performed, it is easily and reliably integrally joined with the resin on the rectangular battery case side, and leakage of the electrolyte solution between the elastic body layer and the resin in the rectangular battery case can be further reliably prevented.
[0014]
In addition, an opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to the current collectors located on both sides of the partition wall In addition, when the synthetic resin having affinity with the constituent material of the rectangular battery case is baked on the conductive connection plate and sealed and bonded to the rectangular battery case, the resin on the square battery case and the conductive connection plate are obtained. Can be easily and reliably integrally joined through the resin layer formed by baking, and the leakage of the electrolyte can be further reliably prevented.
[0015]
Further, when the resin layer formed by baking is made of a synthetic resin having a melting point lower than the injection molding temperature of the rectangular battery case, the resin layer is more reliably integrally joined to the rectangular battery case, and the leakage of the electrolyte can be further reliably prevented.
[0016]
In addition, the conductive connecting plate is connected to the current collector, and the periphery of the conductive connecting plate and the partition wall and the side wall of the rectangular battery case are sealed and joined by resin molding and the opening is sealed, or the conductive connecting plate Is connected to the current collector, and the resin layer is hermetically bonded to the partition wall and the opening edge of the side wall of the rectangular battery case, and the opening formed on the side wall of the square battery case is sealed with a closing member and the closing member and the resin are sealed. The above-described configuration can be realized by hermetically joining the outer surface of the layer.
[0017]
Also, through holes penetrating into the battery case on both sides are formed at each partition wall installation position on at least one side wall of the rectangular battery case, and connecting portions connected to the current collectors located on both sides of the partition wall through the through holes are provided on both sides. If the conductive connector is embedded in the side wall of the rectangular battery case, the through hole penetrates into the battery case on both sides. And since it seals with the sealing material between the circumference | surroundings and the electroconductive connection body, the high sealing performance with respect to the electrolyte leakage is easily obtained.
[0018]
In addition, when the connection terminals, current collectors and current collectors at both ends of the square battery case are connected via the connection holes formed at both ends of the square battery case and the upper part of the partition wall, the current collectors are connected at the upper part. The connection resistance can be reduced by applying the above configuration while using the manufacturing facilities of the rectangular sealed battery with the conventional configuration as it is, and the connection terminals with the outside of the rectangular sealed battery are connected to both end walls of the rectangular battery case. Since it is disposed at the top, it is easy to connect to other rectangular sealed batteries, and it is easy to ensure insulation when providing a cooling mechanism or the like by water cooling.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a square sealed battery of the present invention will be described with reference to FIGS. In addition, about the component same as the prior art example demonstrated with reference to FIG. 16, FIG. 17, the same referential mark is attached | subjected and a difference is mainly demonstrated.
[0020]
In FIG. 1, a rectangular battery case 3 in the rectangular sealed battery 1 of the present embodiment includes a plurality of rectangular parallelepiped battery cases 4 having a narrow short side surface and a wide long side surface. They are shared and integrally connected to each other. In each battery case 4, an electrode plate group 8 having current collectors 10 bonded to both sides thereof is accommodated together with an electrolytic solution to constitute a unit cell 2. Connection holes 7 (see FIG. 16) are formed in the both end walls of the rectangular battery case 3 and the upper part of the partition wall 5, and the connection terminals 12 are connected to the current collectors 10 of the unit cells 2 at both ends through the connection holes 7. The current collectors 10 and 10 of the adjacent unit cells 2 and 2 are connected to each other. In FIG. 1, 16 is a safety valve provided on the lid 6.
[0021]
The electrode group 8 includes a plurality of positive plates and a plurality of negative plates arranged alternately, and each positive plate is covered with a bag-like separator having an opening in the lateral direction, thereby forming a gap between the positive plate and the negative plate. A positive electrode plate and a negative electrode lead portion 9 are provided by laminating one side of the positive electrode plate and the negative electrode plate opposite to each other. The positive electrode plate is configured by filling nickel foam metal with nickel hydroxide except for the lead portion 9, and the lead portion 9 pressurizes and compresses the foam metal and seams the lead plate on one surface thereof by ultrasonic welding. It is constructed by welding. The negative electrode plate is configured by applying a negative electrode constituent material containing a hydrogen storage alloy to Ni punching metal except for the lead portion 9. Current collectors 10 are joined to the lead portions 9 on both sides of the electrode plate group 8.
[0022]
As shown in FIG. 2 to FIG. 5, one or a plurality of openings 21 are formed on one side wall 20 of the rectangular battery case 3 so as to face the battery case 4 on both sides. Yes. The width of the opening 21 is a width extending between the side edges of the current collector 10 on both sides of the partition wall 5 and is set to an appropriate length dimension in the vertical direction. Further, in the opening 21, the partition wall 5 is also formed with a notch 22 having the same vertical length and an appropriate depth.
[0023]
A conductive connecting plate 23 is accommodated in the opening 21, and both side portions thereof are joined to the current collector 10 by welding 24, and the conductive connecting plate 23 is connected from the current collector 10 of one unit cell 2. The current collector 10 of the other unit cell 2 is energized through. As the conductive connecting plate 23, a steel plate that is nickel-plated is suitable because it has resistance to electrolyte and can be constructed at low cost.
[0024]
As shown in FIG. 3, the conductive connecting plate 23 is formed in a substantially H shape by projecting the projecting portions 23 a in the vertical direction from both sides in the width direction, and the whole is just fitted into the opening 21. It is formed in the size to be. An annular elastic layer 25 made of a fluorine-based rubber or other heat-resistant / electrolyte-resistant rubber material is baked and fixed to the outer periphery of the central portion in the width direction of the conductive connecting plate 23. Further, a rectangular electric material is attached to the outer periphery thereof. An annular resin layer 26 made of a synthetic resin similar to the tank 3 is formed. The resin layer 26 is formed by injection molding. The elastic body layer 25 is compressed by the injection pressure, and a necessary sealing pressure is generated.
[0025]
In addition, notches 27 are formed on both sides of the central portion of the conductive connecting plate 23 in the vertical direction, and welding protrusions 28 are formed so as to be pressed against the current collector 10 in order to ensure welding 24 at a total of four locations above and below the cutout 27. ing. When the notch 27 is welded by pressing the welding electrode to the position of each welding projection 28 of the conductive connection plate 23, the welding current passes from the one welding projection 28 of the conductive connection plate 23 through the current collector 10 to the other. It is provided so as to flow reliably to the welding projection 28. In addition, the shape of the welding protrusion 28 is not limited to the circular protrusion as shown in the illustrated example, but can be any shape such as a linear cross section or an annular protrusion, and the number of the welding protrusions 28 is also arbitrary. Can be selected.
[0026]
As described above, the conductive connection plate 23 is inserted and disposed in the opening 21, and the conductive connection plate 23 and the current collectors 10 on both sides are joined by welding 24, and then the opening 21 is covered on the side wall 20 of the rectangular battery case 3. In this way, the injection mold 30 is disposed and press-contacted, the opening 21 is hermetically closed, and the sealing resin portion 31 is sealed so as to fill a gap between the notch 22 of the partition wall 5 and the outer periphery of the resin layer 26. It is injection molded. A heat shield sheet 29 is disposed in the vicinity of the opening 21 on the side surface of the electrode group 8 on the side where the opening 21 is formed.
[0027]
In the above configuration, the current collectors 10 and 10 facing each other between the single cells 2 and 2 via the partition wall 5 are connected to each other by the conductive connection plate 23, so that only between the upper ends of the current collectors 10. Are connected by the conductive connection plate 23 at one or a plurality of locations on the side of the current collector 10. Since the connection path is shortened without detouring, the connection resistance between the single cells 2 and 2 can be reduced, and the internal resistance per single cell 2 can be further reduced, and higher output can be realized.
[0028]
In addition, since the elastic body layer 25 is interposed between the side wall 20 or the partition wall 5 of the rectangular battery case 3 and the conductive connection plate 23, the thermal expansion difference between the rectangular battery case 3 and the conductive connection plate 23 causes the difference in thermal expansion between them. It is possible to prevent the separation gap from occurring between them. Therefore, it is possible to prevent the leakage of the electrolyte solution between the single cells 2 and 2 and eliminate the possibility of a liquid junction. In particular, when the elastic body layer 25 is made of a fluorinated rubber, the heat resistance and the electrolytic solution resistance are high, and the necessary heat resistance is obtained even when the battery temperature rises. High reliability is obtained for use. In addition, the elastic body layer 25 is provided on the outer periphery of the portion of the conductive connecting plate 23 facing the partition wall 5 and the resin layer 26 of the same material as the rectangular battery case 3 is provided on the outer periphery. The resin is easily and reliably integrally joined, and the leakage of the electrolyte solution between the elastic body layer 25 and the resin of the rectangular battery case 3 can be further reliably prevented.
[0029]
Further, in the present embodiment, the connection terminals 12 and the current collectors 10 at both ends of the square battery case 3 and the both sides of each partition wall 5 are connected to both end walls of the square battery case 3 and the connection holes 7 formed in the upper part of the partition wall 5. Since the current collectors 10 and 10 are connected to each other, the connection resistance can be reduced by applying the above configuration while using the manufacturing facility of the rectangular sealed battery 1 having the conventional configuration as it is. Since the connection terminal 12 to the outside is disposed on the upper part of both end walls of the rectangular battery case 3, it is easy to connect to other rectangular sealed battery 1 and has an insulating property when a cooling mechanism or the like by water cooling is provided. There are effects such as easy securing.
[0030]
In the illustrated example, the resin layer 26 is provided on the outer periphery of the elastic body layer 25 on the outer periphery of the conductive connection plate 23. However, the resin layer 26 is not necessarily provided.
[0031]
Moreover, in the above description, although the example which formed the opening 21 only in one side wall 20 of the square battery case 3 and connected between the single cells 2 and 2 with the electroconductive connection board 23 was shown, it shows in FIG. In this way, openings 21 are formed on both side walls 20 of the rectangular battery case 3 so as to face each other, and the current collectors 10 and 10 on both sides of the partition wall 5 are connected by conductive connecting plates 23 on both sides thereof. The sealing resin part 31 may be formed by pressing the injection mold 30 from both sides of the battery case 3 and performing injection molding. In this way, since the current collectors 10 and 10 are connected to each other on the both sides, the connection resistance can be further reduced, and at the time of injection molding, the rectangular battery case 3 and the internal current collector 10 and the electrode plate group 8 can be connected. Since the applied pressure is applied equally from both sides, it is possible to prevent adverse effects from being caused by the action of the load from one side on the electrode plate group 8 and the movement accompanying it.
[0032]
Next, a rectangular sealed battery according to a second embodiment of the present invention will be described with reference to FIGS. In the following description of the embodiment, the same components as those in the preceding embodiment are denoted by the same reference numerals, description thereof will be omitted, and only differences will be described.
[0033]
In the above embodiment, the conductive connection plate 23 is welded and then the opening 21 is sealed by resin molding. However, in this embodiment, the conductive connection plate 23 is attached to the current collectors 10 and 10. In addition to welding connection, the resin layer 26 is hermetically joined to the partition wall 5 and the opening edge of the opening 21 of the rectangular battery case 3, and the opening 21 formed on the side wall 20 of the rectangular battery case 3 is sealed with a closing member 32. The closing member 32 and the outer surface of the resin layer 26 are hermetically joined.
[0034]
More specifically, the opening 21 has a rectangular shape, and the conductive connecting plate 23 has a rectangular shape in which the entire shape provided with the notches 27 and the welding protrusions 28 on both sides is smaller than the opening 21. An elastic body layer 25 is provided on the outer periphery of the central portion of the conductive connecting plate 23 in the width direction, and a resin layer 26 is provided on the outer periphery thereof. The notch 22 formed in the partition wall 5 has a trapezoidal shape that spreads outward, and the edge of the portion of the opening 21 that faces the notch 22 forms an inclined extended surface 33 that continues to the slope of the trapezoidal notch 22. It is cut out like a triangle. The resin layer 26 is formed in a trapezoidal shape such that its outer shape is along the end surface of the notch 22 and the inclined extended surface 33 and its outer surface is flush with the outer surface of the side wall 20.
[0035]
The trapezoid outer surface of the resin layer 26, the end surface of the notch 22, and the inclined extended surface 33 are integrally joined in a sealed state at a heat welding line 34. Further, the closing member 32 is disposed so as to cover the opening 21 and the periphery thereof, and the closing member 32 and the outer surface of the side wall 20 and the outer surface of the resin layer 26 are integrally joined in a sealed state at the heat welding line 35. .
[0036]
Also in this embodiment, since the collectors 10 and 10 facing each other via the partition wall 5 between the single cells 2 and 2 are connected by the conductive connection plate 23, the connection resistance between the single cells 2 and 2. As a result, the internal resistance per unit cell 2 can be further reduced to achieve higher output. Moreover, since the elastic body layer 25 is provided on the outer periphery of the portion of the conductive connection plate 23 facing the partition wall 5 and the resin layer 26 of the same material as the rectangular battery case 3 is provided on the outer periphery, the rectangular battery case 3 side By thermally welding the resin layer 26 and the resin layer 26, the resin layer 26 is easily and reliably integrally joined while ensuring a sealed state, and the leakage of the electrolyte solution between the elastic body layer 25 and the resin of the rectangular battery case 3 is ensured. Can be prevented.
[0037]
Next, a rectangular sealed battery according to a third embodiment of the present invention will be described with reference to FIGS.
[0038]
In the above embodiment, the elastic body layer 25 is baked and fixed to the outer periphery of the central portion in the width direction of the conductive connecting plate 23, and the annular resin layer 26 made of a synthetic resin similar to the rectangular battery case 3 is provided on the outer periphery. Although an example is shown, in this embodiment, a baked resin layer 36 is provided on the outer periphery of the central portion in the width direction of the conductive connecting plate 23 by baking a synthetic resin having affinity with the constituent material of the rectangular battery case 3. ing. This baked resin layer 36 is charged into a heating furnace with a synthetic resin powder having a melting point lower than the injection molding temperature of the synthetic resin constituting the rectangular battery case 3 attached to the corresponding range of the conductive connecting plate 23. It is preferable to configure by baking and fixing. For example, when the rectangular battery case 3 is made of polypropylene, polyethylene, or an alloy thereof, it is preferable to bake and apply an epoxy resin powder.
[0039]
The conductive connecting plate 23 provided with such a baked resin layer 36 is disposed in the opening 21, joined to the current collector 10 on both sides of the partition wall 5 by welding 24, and then injection-molded so as to cover the opening 21. 30, the opening 21 is hermetically closed, and the sealing resin portion 31 is injection-molded so as to fill a gap between the notch 22 of the partition wall 5 and the outer periphery of the baking resin layer 36, whereby the rectangular battery case 3. And the conductive connecting plate 23 are bonded to each other through a baking resin layer 36 that is integrally adhered to the conductive connecting plate 23 and a sealing resin portion 31 that is integrally adhered thereto. 4 can be securely sealed and the opening 21 can be completely sealed.
[0040]
According to the present embodiment, since the resin on the side of the rectangular battery case 3 and the conductive connection plate 23 are joined together in an easily and surely integrated manner via the baking resin layer 36, leakage of the electrolyte The liquid can be prevented more reliably.
[0041]
In the illustrated example, the opening 21 is sealed with the sealing resin portion 31 formed by injection molding as in the first embodiment. However, as in the second embodiment, the baking resin layer 36 is illustrated. May be hermetically joined to the partition wall 5 of the rectangular battery case 3, and the opening 21 may be sealed with a closing member 32, and the closing member 32 and the outer surface of the baked resin layer 36 may be hermetically joined.
[0042]
Next, a rectangular sealed battery according to a fourth embodiment of the present invention will be described with reference to FIGS.
[0043]
In each of the above embodiments, the rectangular opening 21 facing the battery case 4 on both sides of the partition wall 5 is formed in the side wall 20 of the rectangular battery case 3, and the conductive connecting plate 23 is disposed in the opening 21 to collect the current collector. In this embodiment, as shown in FIGS. 12 and 13, each partition wall 5 on the side wall 20 of the rectangular battery case 3 is shown. Is formed at the position where the concave portion 37 having the width across the battery case 4 on both sides is formed, and a through hole 38 penetrating from the bottom surface of the concave portion 37 into the battery case 4 on both sides is formed. Conductive connectors 40 having connecting portions 39 connected to the current collectors 10 located on both sides are disposed in the recess 37, and the connecting portions 39 and the current collector 10 are joined by welding 41. As the conductive connecting member 40, a steel plate that is nickel-plated is suitable because it has resistance to an electrolytic solution and can be constructed at low cost.
[0044]
The connecting portion 39 is constituted by a round shaft-like protruding shaft, and an O-ring 42 as a sealing material is attached to the outer periphery thereof. The through hole 38 is sealed by being compressed between the conductive connecting member 40 and the conductive hole 40. The recess 37 is filled with a sealing resin 43 in a state where the conductive connection body 40 is embedded.
[0045]
Explaining the joining process in the above configuration, in the illustrated example of FIGS. 12 and 13, the concave portion 37 and the through hole 38 are formed in the side wall 20 on both sides of the rectangular battery case 3, and the O-ring 42 is attached to the connecting portion 39. The conductive connecting members 40 are respectively disposed in the recesses 37 and the connecting portions 39 are inserted into the through holes 38. Next, as shown by phantom lines in FIG. 12 and solid lines in FIG. By pressing the welding electrode 44 against the back of the connecting portions 39, 39 that are in contact with both sides of one of the current collectors 10 in the body 10, and flowing a welding current in the resistance welding machine 45 in that state. The connection portions 39 of the conductive connection body 40 are joined to both sides of the current collector 10 by welding 41, and the connection portions 39 and 39 are similarly connected to both sides of the other current collector 10 by welding 41. By joining, the current collector 10 on both sides is connected to the conductive connector 4 on both sides. Connected via a. Thereafter, an injection mold (not shown) is pressed against the side wall 20 to injection-mold the sealing resin 43, thereby completing the joining.
[0046]
In the above description, the recesses 37 are formed in the side walls 20 on both sides of the rectangular battery case 3 to dispose the conductive connection body 40, and the current collectors 10 and 10 are connected on both sides. As shown in FIG. 15, the current collectors 10 and 10 may be connected only on one side thereof. In that case, the concave portion 37 is formed only on one side wall, and through holes 38 are formed in the upper portion and the lower portion of the concave portion 37 so as to penetrate into the battery case 4 on both sides of the partition wall 5, respectively. A pair of conductive connecting members 40 that pass through the holes 38 through the connecting portions 39 on both sides and abut against the current collector 10 are arranged vertically, and an upper portion and a lower portion that are in contact with the current collector 10 on one side of the partition wall 5. The upper and lower conductive connectors 40 are connected to the current collector 10 on one side by welding 41 by pressing the welding electrode 44 against the back of the connecting portions 39, 39 and flowing a welding current with a resistance welding machine 45. Next, similarly, the welding electrode 44 is pressed against the back portions of the upper and lower connecting portions 39, 39 that are in contact with the current collector 10 on the other side of the partition wall 5, and a welding current is passed through the resistance welding machine 45. Then, the upper and lower conductive connectors 40 are connected to the current collector 10 on the other side by welding 41. Thus, the current collectors 10 on both sides of the partition wall 5 can be connected via the pair of upper and lower conductive connectors 40.
[0047]
In addition, workability | operativity will improve if the thing which has the suction channel | path 44a which adsorbs and hold | maintains the electroconductive connection body 40 is used for the welding electrode 44. FIG. In the illustrated example, the upper and lower conductive connecting members 40 are completely separate, but a single conductive connecting member integrated and integrated through a narrow portion that is difficult to pass current. Can also be used. In addition, although the connecting portion 39 is exemplified by a round shaft-like protruding shaft, a member having a rectangular cross section may be formed by bending. In that case, however, it is difficult to obtain a reliable seal.
[0048]
According to this embodiment, the through hole 38 is formed so as to penetrate into the battery case 4, 4 on both sides of the partition wall 5, and a sealing material such as an O-ring 42 is interposed between the periphery and the conductive connector 40. Therefore, high sealing performance can be easily obtained against leakage of the electrolyte.
[0049]
In the description of each of the above embodiments, a welding electrode is applied to the conductive connection plate 23 or the conductive connection body 40, and a welding current is passed between the conductive connection plate 23 or the conductive connection body 40 and the current collector 10. Although an example of resistance welding is shown, the local portion may be heated and melted by irradiation with an electron beam or a laser beam for welding. However, resistance welding is preferable because the thermal influence on the surroundings is small. In addition, a brazing material may be provided and brazed to the connecting portions of the conductive connecting plate 23, the conductive connecting body 40, and the current collector 10, or may be adhesively bonded with a conductive adhesive or the like. May be.
[0050]
【The invention's effect】
According to the rectangular sealed battery of the present invention, as is apparent from the above description, the conductivity is made through the openings formed so as to communicate with the inside of the battery case on both sides at each partitioning position of at least one side wall of the square battery case. Since the current collectors located on both sides of the partition are connected by the connecting member, the current collectors facing each other through the partition between the single cells can be connected by the conductive connection member at the side wall position of the rectangular battery case. Since the path is shortened, the connection resistance between the single cells can be reduced, and the internal resistance per single cell can be further reduced, and higher output can be realized.
[0051]
In addition, an opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to the current collectors located on both sides of the partition wall And when the conductive connecting plate is hermetically joined to the rectangular battery case through the elastic layer, the elastic layer is interposed between the partition wall or the side wall of the rectangular battery case and the conductive connecting plate. It is possible to prevent a separation gap from being generated between them due to a difference in thermal expansion between the conductive connecting plate and the conductive connecting plate, and to prevent leakage of the electrolyte between the single cells, thereby eliminating the possibility of a liquid junction.
[0052]
In addition, if the elastic layer is made of fluorine-based rubber, it has high electrolyte resistance and the necessary heat resistance even when the battery temperature rises. High reliability.
[0053]
In addition, if an elastic body layer is provided on the outer periphery of the part of the conductive connecting plate facing the partition wall and a resin layer of the same material as the rectangular battery case is provided on the outer periphery, it can be easily and reliably integrally joined to the resin on the square battery case side. In addition, leakage of the electrolyte solution between the elastic layer and the resin of the rectangular battery case can be further reliably prevented.
[0054]
In addition, an opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to the current collectors located on both sides of the partition wall In addition, when the synthetic resin having affinity with the constituent material of the rectangular battery case is baked on the conductive connection plate and sealed and bonded to the rectangular battery case, the resin on the square battery case and the conductive connection plate are obtained. Can be easily and reliably integrally joined through the baked resin layer, and leakage of the electrolyte can be reliably prevented.
[0055]
Further, if the resin layer to be baked and formed is made of a synthetic resin having a melting point lower than the injection molding temperature of the rectangular battery case, it can be more reliably integrally joined and the leakage of the electrolyte can be prevented more reliably.
[0056]
Further, the conductive connecting plate is connected to the current collector, and the periphery of the conductive connecting plate and the partition wall and the side wall of the rectangular battery case are sealed and joined by resin molding, and the opening is sealed. The configuration can be realized and the effect can be achieved.
[0057]
In addition, the conductive connecting plate is connected to the current collector, and the resin layer is hermetically bonded to the partition wall and the opening edge of the side wall of the rectangular battery case, and the opening formed on the side wall of the rectangular battery case is sealed with a closing member. At the same time, when the closing member and the outer surface of the resin layer are hermetically bonded, the above-described configuration can be realized by bonding the resins by heat welding or adhesion, and the effects thereof can be achieved.
[0058]
Also, through holes penetrating into the battery case on both sides are formed at each partition wall installation position on at least one side wall of the rectangular battery case, and connecting portions connected to the current collectors located on both sides of the partition wall through the through holes are provided on both sides. If the conductive connector is embedded in the side wall of the rectangular battery case, the through hole penetrates into the battery case on both sides. And since it seals with the sealing material between the circumference | surroundings and the electroconductive connection body, the high sealing performance with respect to the electrolyte leakage is easily obtained.
[0059]
In addition, when the connection terminals, current collectors, and current collectors at both ends of the square battery case are connected through the connection holes formed at both ends of the square battery case and the partition walls, the current collectors are connected at the top. The connection resistance can be reduced by applying the above configuration while using the manufacturing facilities of the rectangular sealed battery with the conventional configuration as it is, and the connection terminals with the outside of the rectangular sealed battery are connected to both end walls of the rectangular battery case. Since it is disposed at the top, it is easy to connect to other rectangular sealed batteries, and it is easy to ensure insulation when providing a cooling mechanism or the like by water cooling.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a rectangular sealed battery according to a first embodiment of the present invention with a part of the rectangular battery case broken.
FIG. 2 is a transverse plan view of a main part in the same embodiment.
FIG. 3 is a perspective view of a conductive connection plate in the same embodiment.
4 is a cross-sectional view taken along arrow AA in FIG. 2;
5 is a BB arrow view of FIG. 4;
FIG. 6 is a cross-sectional plan view of a main part in a modification of the embodiment.
FIG. 7 is a cross-sectional plan view of an essential part in a second embodiment of the rectangular sealed battery of the present invention.
8 is a cross-sectional view taken along the line CC in FIG.
FIG. 9 is a view taken along the line DD in FIG.
FIG. 10 is a cross-sectional plan view of an essential part in a third embodiment of a rectangular sealed battery of the present invention.
FIG. 11 is a perspective view of a conductive connection plate in the same embodiment.
FIG. 12 is a cross-sectional plan view of an essential part in a fourth embodiment of a rectangular sealed battery of the present invention.
FIG. 13 is an enlarged cross-sectional plan view of the main part of the same embodiment.
FIG. 14 is a cross-sectional plan view of the main part in a modification of the embodiment.
15 is a vertical side view taken along the line E-E in FIG. 14 showing a bonding step between the conductive connection member and the current collector in the same modification.
FIG. 16 is a partial longitudinal sectional front view of a conventional rectangular sealed battery.
FIG. 17 is a perspective view showing a part of the battery case in the conventional example in a cutaway manner.
FIG. 18 is an explanatory diagram of an energization path in the conventional example.
[Explanation of symbols]
1 Square sealed battery
3 Square battery case
4 battery case
5 Bulkhead
8 plate group
9 (9a, 9b) Lead part
10 Current collector
12 Connection terminals
20 side walls
21 opening
23 Conductive connection board
25 Elastic layer
26 Resin layer
31 Sealing resin part
32 Closing member
34 Heat welding line
35 Heat welding line
36 Baking resin layer
38 Through hole
39 Connection
40 Conductive connector
42 O-ring (seal material)
43 Sealing resin

Claims (10)

複数の直方体状の電槽を隔壁を介して連接してなる角形電槽と、正極板と負極板をセパレータを介して積層するとともに正極板と負極板の一側部を互いに反対側に突出させてリード部とした極板群と、極板群の両側のリード部に接合した集電体とを備え、各電槽に集電体を接合した極板群を収容した角形密閉式電池において、角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に連通するように形成した開口を通して導電性接続部材にて隔壁の両側に位置する集電体を接続したことを特徴とする角形密閉式電池。A rectangular battery case in which a plurality of rectangular battery cases are connected via a partition wall, a positive electrode plate and a negative electrode plate are stacked via a separator, and one side of the positive electrode plate and the negative electrode plate is protruded to the opposite sides. In the rectangular sealed battery containing the electrode plate group that is connected to the lead parts on both sides of the electrode plate group, and the electrode plate group in which the current collector is bonded to each battery case, A current collector located on both sides of the partition wall is connected to each partition wall installation position on at least one side wall of the rectangular battery case through a conductive connection member through an opening formed so as to communicate with the inside of the battery case on both sides. A square sealed battery. 角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ導電性接続板を弾性体層を介して角形電槽に密閉接合したことを特徴とする請求項1記載の角形密閉式電池。An opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to current collectors located on both sides of the partition wall, 2. The rectangular sealed battery according to claim 1, wherein the conductive connecting plate is hermetically bonded to the rectangular battery case through an elastic layer. 弾性体層は、フッ素系ゴムから成ることを特徴とする請求項2記載の角形密閉式電池。3. The square sealed battery according to claim 2, wherein the elastic layer is made of fluorine rubber. 導電性接続板の隔壁に対向する部分の外周に弾性体層を設けるとともにその外周に角形電槽と同系材質の樹脂層を設けたことを特徴とする請求項2又は3記載の角形密閉式電池。4. The rectangular sealed battery according to claim 2, wherein an elastic body layer is provided on an outer periphery of a portion of the conductive connecting plate facing the partition wall, and a resin layer of a similar material to the rectangular battery case is provided on the outer periphery thereof. . 角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽に臨むように開口を設け、開口内に配設した導電性接続板を隔壁の両側に位置する集電体に接続し、かつ角形電槽の構成材料と親和性を有する合成樹脂を導電性接続板に焼き付けて形成した樹脂層を介して角形電槽に密閉接合したことを特徴とする請求項1記載の角形密閉式電池。An opening is provided at each partition wall installation position on at least one side wall of the rectangular battery case so as to face the battery tanks on both sides, and the conductive connection plates disposed in the opening are connected to current collectors located on both sides of the partition wall, 2. The rectangular sealed battery according to claim 1, wherein the rectangular sealed battery is hermetically bonded to the rectangular battery case through a resin layer formed by baking a synthetic resin having an affinity for the constituent material of the rectangular battery case on the conductive connecting plate. . 樹脂層は角形電槽の射出成形温度より低い融点の合成樹脂から成ることを特徴とする請求項5記載の角形密閉式電池。6. The square sealed battery according to claim 5, wherein the resin layer is made of a synthetic resin having a melting point lower than the injection molding temperature of the rectangular battery case. 導電性接続板を集電体に接続し、樹脂成形にて導電性接続板の周囲と角形電槽の隔壁及び側壁との間を密封接合するとともに開口を密閉したことを特徴とする請求項2、4、5又は6記載の角形密閉式電池。3. The conductive connecting plate is connected to a current collector, and the periphery of the conductive connecting plate and the partition wall and the side wall of the rectangular battery case are hermetically bonded by resin molding and the opening is sealed. The square sealed battery according to 4, 5, or 6. 導電性接続板を集電体に接続するとともに、樹脂層を角形電槽の隔壁及び側壁の開口縁部に密封接合し、角形電槽の側壁に形成した開口を閉鎖部材にて密閉するとともにこの閉鎖部材と樹脂層の外面とを密封接合したことを特徴とする請求項4、5又は6記載の角形密閉式電池。The conductive connecting plate is connected to the current collector, the resin layer is hermetically bonded to the partition wall and the opening edge of the side wall of the rectangular battery case, and the opening formed on the side wall of the square battery case is sealed with a closing member. 7. The square sealed battery according to claim 4, 5 or 6, wherein the closing member and the outer surface of the resin layer are hermetically joined. 角形電槽の少なくとも一側壁の各隔壁配設位置に両側の電槽内に貫通する貫通穴を形成し、隔壁の両側に位置する集電体に貫通穴を通して接続される接続部を両側に有する導電性接続体を設けるとともに貫通穴の周囲と導電性接続体の間にシール材を設け、導電性接続体を角形電槽の側壁に埋設したことを特徴とする請求項1記載の角形密閉式電池。A through-hole that penetrates into the battery case on both sides is formed at each partitioning position of at least one side wall of the rectangular battery case, and a connecting portion that is connected to the current collector located on both sides of the partition wall through the through-hole is provided on both sides. 2. The square sealed type according to claim 1, wherein a conductive connection body is provided, a sealing material is provided between the periphery of the through hole and the conductive connection body, and the conductive connection body is embedded in a side wall of the rectangular battery case. battery. 角形電槽の両端壁及び隔壁の上部に形成された接続穴を介して角形電槽両端の接続端子と集電体及び集電体同士を接続したことを特徴とする請求項1〜9の何れかに記載の角形密閉式電池。The current collector and the current collectors are connected to each other through the connection terminals formed at both ends of the square battery case and through the connection holes formed at both ends of the square battery case and the upper part of the partition wall. A square sealed battery according to claim 1.
JP2002014703A 2001-08-06 2002-01-23 Square sealed battery Expired - Lifetime JP4091769B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002014703A JP4091769B2 (en) 2001-08-06 2002-01-23 Square sealed battery
US10/486,126 US7291423B2 (en) 2001-08-06 2002-08-05 Prismatic sealed battery
KR1020047001780A KR100662165B1 (en) 2001-08-06 2002-08-05 Angular enclosed battery
CNB028153502A CN1254871C (en) 2001-08-06 2002-08-05 Angular enclosed battery
EP02755836A EP1422770B1 (en) 2001-08-06 2002-08-05 Prismatic sealed battery
PCT/JP2002/007986 WO2003015194A1 (en) 2001-08-06 2002-08-05 Angular enclosed battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001237755 2001-08-06
JP2001-237755 2001-08-06
JP2002014703A JP4091769B2 (en) 2001-08-06 2002-01-23 Square sealed battery

Publications (2)

Publication Number Publication Date
JP2003123731A JP2003123731A (en) 2003-04-25
JP4091769B2 true JP4091769B2 (en) 2008-05-28

Family

ID=26620009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014703A Expired - Lifetime JP4091769B2 (en) 2001-08-06 2002-01-23 Square sealed battery

Country Status (1)

Country Link
JP (1) JP4091769B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706251B2 (en) * 2004-12-21 2011-06-22 ソニー株式会社 battery
JP2009110751A (en) * 2007-10-29 2009-05-21 Panasonic Corp Secondary battery
US9514895B2 (en) 2010-12-20 2016-12-06 Gs Yuasa International Ltd. Electric storage device having current collector and vehicle having the electric storage device
JP7231457B2 (en) * 2019-03-28 2023-03-01 プライムアースEvエナジー株式会社 Battery case and method for manufacturing battery case
JP7227184B2 (en) * 2020-05-29 2023-02-21 プライムアースEvエナジー株式会社 Secondary battery, manufacturing method of secondary battery, mold

Also Published As

Publication number Publication date
JP2003123731A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
US6939642B2 (en) Prismatic battery module and method for manufacturing the same
JP4224186B2 (en) Collective secondary battery
JP4559566B2 (en) Square sealed battery
US7914923B2 (en) Cell, connected-cell body, and battery module using the same
US20110195286A1 (en) Secondary Cell
JP4199460B2 (en) Square sealed battery
US7291423B2 (en) Prismatic sealed battery
JP2001093503A (en) Secondary battery
US6833010B2 (en) Prismatic battery module and method for manufacturing the same
JP2005203371A (en) Secondary battery
JP4291987B2 (en) Sealed secondary battery and battery module
JP4154136B2 (en) Square sealed battery
US20080038632A1 (en) Sealed Battery And Method Of Manufacturing The Sealed Battery
JP3850732B2 (en) Square sealed battery and assembled battery
JP4197411B2 (en) Square sealed battery
KR20180008288A (en) End cell heater for fuel cell
JP5691778B2 (en) Nonaqueous electrolyte secondary battery
JP4091769B2 (en) Square sealed battery
JP2010238653A (en) Rectangular sealed battery
JP4284926B2 (en) Collective secondary battery
JP5123752B2 (en) Square sealed battery
JP2020087587A (en) Power storage module and manufacturing method of power storage module
JP4146644B2 (en) Square sealed battery
JP4175605B2 (en) Square sealed battery
CN113939943A (en) Square secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Ref document number: 4091769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term