JP2781646B2 - Scavenging method of pressure swing type oxygen production equipment - Google Patents

Scavenging method of pressure swing type oxygen production equipment

Info

Publication number
JP2781646B2
JP2781646B2 JP2190409A JP19040990A JP2781646B2 JP 2781646 B2 JP2781646 B2 JP 2781646B2 JP 2190409 A JP2190409 A JP 2190409A JP 19040990 A JP19040990 A JP 19040990A JP 2781646 B2 JP2781646 B2 JP 2781646B2
Authority
JP
Japan
Prior art keywords
tower
oxygen
nitrogen
gas
oxygen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2190409A
Other languages
Japanese (ja)
Other versions
JPH0478410A (en
Inventor
和男 中野
健一 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2190409A priority Critical patent/JP2781646B2/en
Publication of JPH0478410A publication Critical patent/JPH0478410A/en
Application granted granted Critical
Publication of JP2781646B2 publication Critical patent/JP2781646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気を原料とする圧力スイング式酸素製造
装置の掃気方法に関する。
Description: TECHNICAL FIELD The present invention relates to a scavenging method for a pressure swing type oxygen production apparatus using air as a raw material.

〔従来の技術〕[Conventional technology]

第3図に従来の4塔式の空気を原料とする圧力スイン
グ式酸素製造装置の系統図を示し説明する。
FIG. 3 shows a system diagram of a conventional four-column type pressure swing type oxygen production apparatus using air as a raw material, and will be described.

この圧力スイング式酸素製造装置では、並列に配置さ
れた吸着塔1〜4内に、それぞれ窒素吸着剤5〜8を充
填し、原空ブロワ10より加圧された空気を各吸着塔へ送
って窒素吸着剤により窒素を吸着し、吸着されない酸素
を製品として取り出し、その後真空ポンプ11により吸着
塔内を減圧して窒素吸着剤に吸着された窒素を脱着させ
て再生するものであり、4塔がシーケンシャルに作動し
て、連続して酸素の製造を行なうようになっている。
In this pressure swing type oxygen production apparatus, nitrogen adsorbents 5 to 8 are respectively filled in adsorption towers 1 to 4 arranged in parallel, and air pressurized from raw air blower 10 is sent to each adsorption tower. Nitrogen is adsorbed by the nitrogen adsorbent, oxygen not adsorbed is taken out as a product, and then the pressure inside the adsorption tower is reduced by the vacuum pump 11 to desorb the nitrogen adsorbed by the nitrogen adsorbent and regenerate. It operates sequentially and continuously produces oxygen.

前記圧力スイング式酸素製造装置の作動原理をA塔1
を主体にその1サイクルについて説明すると、第4図に
示す通り塔内均圧バルブ12開によるA塔1/B塔2の均圧
工程E1が完了後、窒素脱着バルブ13が開となり、A塔1
内は真空ポンプ11によって減圧(0.3ata)され、窒素ガ
スが窒素吸着剤から脱着され、同吸着剤が再生される
(窒素脱着工程D)。
The operation principle of the pressure swing type oxygen production apparatus is
As shown in FIG. 4, after the pressure equalizing step E1 of the A tower 1 / B tower 2 is completed by opening the pressure equalizing valve 12 in the tower as shown in FIG. 1
The inside is depressurized (0.3 ata ) by the vacuum pump 11, nitrogen gas is desorbed from the nitrogen adsorbent, and the adsorbent is regenerated (nitrogen desorption step D).

この窒素脱着完了後、加圧状態(1.3ata)のB塔2よ
り酸素富化ガスが塔間均圧バルブ12よりA塔に入り均圧
される(均圧工程E2)。均圧後のA塔1内圧力は約0.7
ataであり、自然吸気弁15を開くことにより大気に連な
るライン9より空気を吸収して、塔内圧力を大気圧まで
上げる(自然吸気工程NA)。
After the completion of the nitrogen desorption, the oxygen-enriched gas enters the tower A from the tower B 2 in a pressurized state (1.3 ata ) through the inter-column equalizing valve 12 and is equalized (equalizing step E 2 ). After equalization, the pressure in tower A1 is about 0.7
Ata , by opening the natural intake valve 15, air is absorbed from the line 9 connected to the atmosphere, and the pressure in the tower is raised to atmospheric pressure (natural intake process NA).

その後、原空加圧弁17を開とし、原空ブロワ10より加
圧空気をA塔1内に送って加圧(1.3ata)する。同時に
製品酸素弁19を開とし、原空ブロワ10から空気をA塔1
内へ送り加圧空気中の窒素ガスを窒素吸着剤5に吸着
し、酸素ガスを製品酸素弁19を経て取出すことによって
酸素20を製造する(酸素製造工程A)。
Thereafter, the original air pressure valve 17 is opened, and pressurized air (1.3 ata ) is sent from the original air blower 10 into the A tower 1 by pressurized air. At the same time, the product oxygen valve 19 is opened, and air is blown from the original air blower 10 to the tower A 1
Then, nitrogen gas in the pressurized air is adsorbed by the nitrogen adsorbent 5 and oxygen gas is taken out through the product oxygen valve 19 to produce oxygen 20 (oxygen production step A).

B塔2〜D塔4もタイミングをずらして、A塔と同様
の作動をして、連続的に製品酸素を得ることができる。
The B tower 2 to the D tower 4 can also perform the same operation as the A tower by shifting the timing to continuously obtain product oxygen.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の従来の圧力スイング式酸素製造装置の運転制御
パターンによると、窒素吸着剤から脱着された窒素が吸
着塔内に残存した状態で製品酸素の製造が行なわれるこ
とゝなり、製品酸素の濃度は、93%が最大であり、また
その濃度の調整が困難であった。
According to the operation control pattern of the conventional pressure swing type oxygen production apparatus described above, production of product oxygen is performed in a state where nitrogen desorbed from the nitrogen adsorbent remains in the adsorption tower, and the concentration of product oxygen is , 93% was the maximum, and it was difficult to adjust the concentration.

本発明は、この従来の圧力スイング式酸素製造装置に
おける問題点を解決し、製品酸素の濃度を上げ、また製
品酸素量と濃度の関係を任意に変えることができる圧力
スイング酸素製造装置の掃気方法を提供しようとするも
のである。
The present invention solves the problems of the conventional pressure swing type oxygen production apparatus, increases the concentration of product oxygen, and arbitrarily changes the relationship between the product oxygen amount and the concentration. It is intended to provide.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の圧力スイング式酸素製造装置の掃気方法は、
加圧された空気中の窒素ガスを塔内に充填された窒素吸
着剤に吸着させて酸素ガスをうる酸素製造工程を塔内を
減圧して窒素吸着剤から吸着された窒素を脱着させる窒
素脱着工程と減圧された塔内へ自然吸気を行なう自然吸
気工程を順次行なう吸着塔を複数塔並列に配置し、各吸
着塔において前記工程が互いにずらせて行なわれる圧力
スイング式酸素製造装置において、酸素製造工程中の吸
着塔から窒素脱着工程完了目前の吸着塔へ酸素富化ガス
を供給して窒素ガスを掃気すると共に、酸素製造工程中
に吸着塔から自然吸気工程完了目前の吸着塔へ酸素富化
ガスを供給することを特徴とする。
Scavenging method of the pressure swing type oxygen production apparatus of the present invention,
Nitrogen desorption in which nitrogen gas in pressurized air is adsorbed to the nitrogen adsorbent filled in the tower to obtain oxygen gas In a pressure swing type oxygen production apparatus in which a plurality of adsorption towers for sequentially performing a process and a natural suction process for performing a natural suction process into a depressurized column are arranged in parallel with each other, and the above-described process is performed in each adsorption tower by shifting each other, Supply oxygen-enriched gas from the adsorption tower during the process to the adsorption tower just before the completion of the nitrogen desorption step to scavenge nitrogen gas, and enrich oxygen from the adsorption tower to the adsorption tower just before the completion of the natural suction step during the oxygen production process It is characterized by supplying gas.

〔作用〕[Action]

本発明では、加圧空気が供給され加圧状態で窒素ガス
を窒素吸着剤に吸着させる酸素製造工程中の吸着塔か
ら、塔内が減圧されて窒素吸着剤から窒素ガスを脱着す
る窒素脱着工程を完了目前の吸着塔へ酸素富化ガスを供
給して、窒素ガスを掃気する。また加圧状態の酸素製造
工程中の吸着塔から自然吸気工程中の吸着塔へ酸化富化
ガスが供給されて押し込まれる。
In the present invention, from the adsorption tower in the oxygen production step in which pressurized air is supplied and nitrogen gas is adsorbed to the nitrogen adsorbent in a pressurized state, the nitrogen desorption step of depressurizing the inside of the tower and desorbing nitrogen gas from the nitrogen adsorbent is performed. Is completed, oxygen-enriched gas is supplied to the adsorption tower, and nitrogen gas is scavenged. Further, the oxidation-enriched gas is supplied and pushed from the adsorption tower in the pressurized oxygen production step to the adsorption tower in the natural suction step.

これによって、次いで酸素製造工程を行なう吸着塔内
には、残存する窒素が少なくなると共に同吸着塔内の酸
素濃度が上り、吸着塔による製造酸素の濃度が上ると同
時にこれが安定される。
As a result, the amount of nitrogen remaining in the adsorption tower where the oxygen production process is performed next decreases, and the oxygen concentration in the adsorption tower increases, so that the concentration of oxygen produced by the adsorption tower increases and the oxygen concentration is stabilized.

また、前記の酸素富化ガスを供給する時間を調整する
ことによって、製品酸素量と濃度の関係を任意に変える
ことが可能である。
The relationship between the product oxygen amount and the concentration can be arbitrarily changed by adjusting the time for supplying the oxygen-enriched gas.

〔実施例〕〔Example〕

本発明の一実施例を、第1図及び第2図によって説明
する。
One embodiment of the present invention will be described with reference to FIGS.

本実施例は、第3図に示される従来の4塔式の圧力ス
イング式酸素製造装置の掃気方法を次のように改良した
ものである。
In this embodiment, the scavenging method of the conventional four-tower pressure swing type oxygen production apparatus shown in FIG. 3 is improved as follows.

即ち、A塔1とB塔2間の上部に塔間均圧バルブ12を
バイパスする小容量の掃気1弁50を設け、C塔3とD塔
4間の上部に塔間均圧バルブ12をバイパスする小容量の
掃気I弁51を設ける。また、A塔1上部に小容量の掃気
II弁52、B塔上部に掃気II弁53、C塔上部に掃気II弁5
4、D塔上部に掃気II弁55をそれぞれ設け、これら掃気
弁52〜55を互いに連通させている。
That is, a small-capacity scavenging 1 valve 50 that bypasses the inter-column equalizing valve 12 is provided at the upper part between the A tower 1 and the B tower 2, and the inter-column equalizing valve 12 is provided at the upper part between the C tower 3 and the D tower 4. A small-capacity scavenging I-valve 51 is provided to bypass. In addition, a small amount of scavenging gas is
II valve 52, scavenging II valve 53 above B tower, scavenging II valve 5 above C tower
4. A scavenging II valve 55 is provided at the upper part of the D tower, and these scavenging valves 52 to 55 are communicated with each other.

第4図は、本実施例のタイムチャートを示しておりA
塔1を主体に説明すると、減圧状態にあるA塔1の窒素
吸着剤5からの窒素脱着工程Dの完了目前(10〜20)秒
前)より掃気I弁50が開となり、酸素製造工程A中にあ
る加圧状態のB塔2から酸素富化ガスがA塔1内へ供給
され、窒素ガスは開かれている窒素脱着バルブ13を経て
パージされる。このA塔1とB塔2の状態を、第2図に
おいて、それぞれ符号S2,S1で示す。
FIG. 4 shows a time chart of the present embodiment.
Explaining mainly about the tower 1, the scavenging I valve 50 is opened immediately before the completion of the nitrogen desorbing step D from the nitrogen adsorbent 5 of the tower A 1 under reduced pressure (10 to 20 seconds), and the oxygen production step A is started. An oxygen-enriched gas is supplied from a pressurized B tower 2 therein to an A tower 1, and nitrogen gas is purged through an open nitrogen desorption valve 13. The states of the tower A 1 and the tower B 2 are indicated by symbols S 2 and S 1 in FIG.

また、A塔1の自然吸気工程NA終了目前(3〜7秒)
より、掃気II弁52,55が開となり、酸素製造工程A中に
ある加圧状態のD塔4から酸素富化ガスが供給されてA
塔1内酸素ガス濃度を高める。このA塔1とD塔4の状
態を、第2図においてそれぞれ符号T2,T1で示す。
In addition, just before the end of the natural suction process NA of the tower A (3-7 seconds)
As a result, the scavenging II valves 52 and 55 are opened, and the oxygen-enriched gas is supplied from the pressurized D tower 4 during the oxygen production step A, and
The oxygen gas concentration in the tower 1 is increased. The states of the tower A 1 and the tower D 4 are indicated by reference numerals T 2 and T 1 in FIG.

一方、加圧状態にあるA塔1の酸素製造工程Aの完了
目前(10〜20秒)より、減圧下の窒素脱着工程Dにある
B塔2へ酸素富化ガスを与えて窒素ガスを掃気し(第2
図においてA塔,B塔の状況をそれぞれ符号S1,S2で示
す)、また、A塔1の酸素製造工程Aの完了目前(3〜
7秒)より自然吸気工程完了目前のC塔3へ酸素富化ガ
スを供給してC塔内酸素富化ガス濃度を高める(第2図
においてA塔,C塔の状態をそれぞれ符号T1,T2で示
す。) 以上がA塔1の1サイクルの作動であり、この1サイ
クルは通常180秒間である。
On the other hand, immediately before the completion of the oxygen production step A of the tower A 1 in a pressurized state (10 to 20 seconds), the oxygen-enriched gas is supplied to the tower B 2 in the nitrogen desorption step D under reduced pressure to purge the nitrogen gas. (2nd
In the figure, the states of the tower A and the tower B are indicated by symbols S 1 and S 2 , respectively.
7 seconds), the oxygen-enriched gas is supplied to the C tower 3 immediately before the completion of the natural aspiration process to increase the oxygen-enriched gas concentration in the C tower (in FIG. 2, the states of the A tower and the C tower are denoted by T 1 , respectively). indicated by T 2.) the above is an operation of one cycle of the a column 1, one cycle is usually 180 sec.

前記の掃気I弁50,51及び掃気II弁52〜55はシーケン
サで自動的に作動するように構成され、B塔2,C塔3,D塔
4においても、第2図に示すタイムチャートに従ってタ
イミングをずらして、A塔と同様の作動をする。
The scavenging I valves 50 and 51 and the scavenging II valves 52 to 55 are configured to be automatically operated by a sequencer, and the B tower 2, the C tower 3 and the D tower 4 are also operated according to the time chart shown in FIG. The operation is the same as that of Tower A with the timing shifted.

従って、各塔1〜4においては、酸素製造工程Aの完
了目前において供給される酸素ガスによって窒素ガスが
掃気(パージ)され、また、自然吸気工程終了直前に酸
素が供給されて各塔内の酸素濃度が高められる。これに
よって、各塔による製造酸素20の酸素濃度を上げること
ができる(従来の方法では最大93%であったがこれを最
大95.5%まで上げることができる)と同時に、これを安
定させることができる。
Therefore, in each of the towers 1 to 4, the nitrogen gas is scavenged (purged) by the oxygen gas supplied immediately before the completion of the oxygen production step A, and oxygen is supplied immediately before the end of the natural aspiration step, and Oxygen concentration is increased. This makes it possible to increase the oxygen concentration of the produced oxygen 20 in each column (up to 93% in the conventional method, but it can be increased to 95.5%), and at the same time, to stabilize it .

また、前記の酸素富化ガスの供給される時間を調整す
ることによって、製品酸素量と濃度の関係を任意に変え
ることができる。
The relationship between the product oxygen amount and the concentration can be arbitrarily changed by adjusting the time during which the oxygen-enriched gas is supplied.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、各吸着塔におい
て、窒素脱着工程終了直前に酸素富化ガスが供給されて
塔内の窒素ガスの掃気が行なわれ、これに続く自然吸気
工程終了直前に酸素富化ガスが供給されて、酸素製造工
程に移る前において各吸着塔内の残存窒素が少なくな
り、吸着塔内の酸素濃度が上がり、これが安定する。こ
れによって、製品酸素の濃度を上げ、かつ安定した酸素
の製造を行なうことができる。
As described above, in the present invention, in each adsorption tower, the oxygen-enriched gas is supplied immediately before the end of the nitrogen desorption step, and the nitrogen gas in the tower is scavenged. Before the enrichment gas is supplied and before proceeding to the oxygen production step, the residual nitrogen in each adsorption tower is reduced, and the oxygen concentration in the adsorption tower is increased, and this is stabilized. Thereby, the concentration of product oxygen can be increased and stable production of oxygen can be performed.

また、各吸着塔の前記酸素供給の時間を調整すること
によって、製品酸素量と濃度の関係を任意に変えること
ができる。
Further, the relationship between the product oxygen amount and the concentration can be arbitrarily changed by adjusting the oxygen supply time of each adsorption tower.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の系統図、第2図は同実施例
のタイムチャート図、第3図は従来の圧力スイング式酸
素製造装置の系統図、第4図は同従来の圧力スイング式
酸素製造装置のタイムチャート図である。 1〜4……吸収塔,5〜8……窒素吸着剤, 10……原空ブロワ,11……真空ポンプ, 12……塔間均圧バルブ, 13,14……窒素脱着バルブ, 15,16……自然吸気弁, 17,18……原空加圧弁,19……製品酸素弁, 20……製品酸素,50,51……掃気I弁, 52〜55……掃気II弁。
FIG. 1 is a system diagram of one embodiment of the present invention, FIG. 2 is a time chart of the embodiment, FIG. 3 is a system diagram of a conventional pressure swing type oxygen production apparatus, and FIG. It is a time chart figure of a swing type oxygen production device. 1-4: Absorption tower, 5-8: Nitrogen adsorbent, 10: Empty blower, 11: Vacuum pump, 12: Equalization valve between towers, 13,14: Nitrogen desorption valve, 15, 16 ... Natural intake valve, 17, 18 ... Original air pressure valve, 19 ... Product oxygen valve, 20 ... Product oxygen, 50, 51 ... Scavenging I valve, 52-55 ... Scavenging II valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加圧された空気中の窒素ガスを塔内に充填
された窒素吸着剤に吸着させて酸素ガスをうる酸素製造
工程を塔内を減圧して窒素吸着剤から吸着された窒素を
脱着させる窒素脱着工程と減圧された塔内へ自然吸気を
行なう自然吸気工程を順次行なう吸着塔を複数塔並列に
配置し、各吸着塔において前記工程が互いにずらせて行
なわれる圧力スイング式酸素製造装置において、酸素製
造工程中の吸着塔から窒素脱着工程完了目前の吸着塔へ
酸素富化ガスを供給して窒素ガスを掃気すると共に、酸
素製造工程中に吸着塔から自然吸気工程完了目前の吸着
塔へ酸素富化ガスを供給することを特徴とする圧力スイ
ング式酸素製造装置の掃気方法。
1. An oxygen production process in which nitrogen gas in pressurized air is adsorbed to a nitrogen adsorbent filled in a tower to obtain oxygen gas. A pressure swing type oxygen production system in which a plurality of adsorption towers sequentially performing a nitrogen desorption step of desorbing nitrogen and a natural suction step of performing natural suction into a depressurized tower are arranged in parallel, and the above steps are performed in each adsorption tower while being shifted from each other In the system, the oxygen-enriched gas is supplied from the adsorption tower during the oxygen production step to the adsorption tower immediately before the completion of the nitrogen desorption step, and the nitrogen gas is scavenged. A scavenging method for a pressure swing type oxygen production apparatus, characterized by supplying an oxygen-enriched gas to a column.
JP2190409A 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment Expired - Fee Related JP2781646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190409A JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190409A JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Publications (2)

Publication Number Publication Date
JPH0478410A JPH0478410A (en) 1992-03-12
JP2781646B2 true JP2781646B2 (en) 1998-07-30

Family

ID=16257664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190409A Expired - Fee Related JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Country Status (1)

Country Link
JP (1) JP2781646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739662B2 (en) * 2003-09-09 2011-08-03 帝人株式会社 Oxygen concentrator
US7445660B2 (en) * 2005-04-27 2008-11-04 Carleton Life Support Systems, Inc. Method for operating gas generators in tandem

Also Published As

Publication number Publication date
JPH0478410A (en) 1992-03-12

Similar Documents

Publication Publication Date Title
EP0758625B1 (en) Method of recovering oxygen-rich gas
CA1062629A (en) Fractionation of air by adsorption
CA2162346C (en) Pressure swing adsorption process
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPS60246206A (en) Preparation of oxygen with high concentration
GB2342871A (en) Single bed pressure swing adsorption.
JP3076912B2 (en) Method and apparatus for separating mixed gas
JP2781646B2 (en) Scavenging method of pressure swing type oxygen production equipment
CA2400354A1 (en) Method of recovering enriched gaseous oxygen
JPH0977502A (en) Oxygen enricher
JP3287607B2 (en) Method for producing an oxygen-enriched product stream
JPH10194708A (en) Oxygen enricher
JPH0352615A (en) Gas separation
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
US11638896B2 (en) Method to separate a gas mixture on a large scale using reversible blowers
JPH0994424A (en) Gaseous mixture separator
JPS60193520A (en) Turn down controlling method by pressure fluctuation adsorption method
JPH05192527A (en) Pressure swing adsorption type gas separating method
JPH1157375A (en) Separation of gas
JP3630564B2 (en) Concentrated nitrogen production method
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPS63107805A (en) Process for producing nitrogen by pressure-swing adsorption process
JPS60180903A (en) Production of oxygen enriched gas having high concentration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees