JPH0478410A - Method for scavenging pressure-swing oxygen producer - Google Patents

Method for scavenging pressure-swing oxygen producer

Info

Publication number
JPH0478410A
JPH0478410A JP2190409A JP19040990A JPH0478410A JP H0478410 A JPH0478410 A JP H0478410A JP 2190409 A JP2190409 A JP 2190409A JP 19040990 A JP19040990 A JP 19040990A JP H0478410 A JPH0478410 A JP H0478410A
Authority
JP
Japan
Prior art keywords
oxygen
tower
nitrogen
adsorption tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2190409A
Other languages
Japanese (ja)
Other versions
JP2781646B2 (en
Inventor
Kazuo Nakano
和男 中野
Kenichi Maehara
前原 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2190409A priority Critical patent/JP2781646B2/en
Publication of JPH0478410A publication Critical patent/JPH0478410A/en
Application granted granted Critical
Publication of JP2781646B2 publication Critical patent/JP2781646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To increase the oxygen concn. in the product by supplying an oxygen- enriched gas to an adsorption tower immediately before the nitrogen desorption stage is finished from an adsorption tower in the oxygen production stage to purge gaseous nitrogen and supplying an oxygen-enriched gas to an adsorption tower immediately before the natural air suction stage is finished. CONSTITUTION:The gaseous nitrogen in compressed air is adsorbed by nitrogen adsorbents 5-8 packed in towers 1-4 to obtain gaseous oxygen in the oxygen production stage. The tower is depressurized to desorb the adsorbed nitrogen from the adsorbent in the nitrogen desorption stage. Air is naturally sucked into the depressurized tower in the natural air suction stage. The stages are successively carried out by the plural towers arranged in parallel, and the stages are shifted from one another. An oxygen-enriched gas is supplied to the tower immediately before the nitrogen desorption stage is finished from the tower in the oxygen production stage to purge gaseous nitrogen, and an oxygen- enriched gas is supplied to the tower immediately before the natural air suction stage is finished from the tower in the oxygen production stage. Consequently, the oxygen content in the product is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気を原料とする圧力スイング式酸素製造装
置の掃気方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a scavenging method for a pressure swing type oxygen production apparatus using air as a raw material.

〔従来の技術] 第3図に従来の4塔式の空気を原料とする圧力を スイング式酸素製造装置系統回を示し説明する。1=こ
の圧力スイング式酸素製造装置では、並列に配Iされた
吸着塔1〜4内に、それぞれ窒素吸着剤5〜8を充填し
、原字ブロワ10より加圧された空気を各吸着塔へ送っ
て窒素役着割により窒素を吸着し、吸着されない酸素を
製品として取り出し、その後真空ポンプ11により吸着
塔内を減圧して窒素吸着剤に吸着された窒素を脱着させ
て再生するものであり、4塔がシーケンシャルに作動し
て、連続して酸素の製造を行なうようになっている。
[Prior Art] FIG. 3 shows a conventional four-column type pressure swing type oxygen production system using air as a raw material and will be described. 1 = In this pressure swing type oxygen production apparatus, adsorption towers 1 to 4 arranged in parallel are filled with nitrogen adsorbents 5 to 8, respectively, and pressurized air is supplied from the original blower 10 to each adsorption tower. The nitrogen is adsorbed by the nitrogen adsorbent, and the unadsorbed oxygen is taken out as a product.Then, the vacuum pump 11 is used to reduce the pressure in the adsorption tower, and the nitrogen adsorbed by the nitrogen adsorbent is desorbed and regenerated. , four towers operate sequentially to continuously produce oxygen.

前記圧力スイング式酸素製造装置の作動原理をA塔1を
主体にその1サイクルについて説明すると、第4回に示
す通り塔間均圧バルブ12関によるA塔1/B塔2の均
圧工程E1が完了後、窒素脱着バルブ13が開となり、
A塔1内は真空ポンプ11によって減圧(0,3””)
され、窒素ガスが窒素曙着荊から脱着され、同吸着剤が
再生される(窒素脱着工程D)。
The operating principle of the pressure swing type oxygen production apparatus will be explained in terms of one cycle, focusing mainly on the A column 1.As shown in the fourth section, the pressure equalization process E1 of the A column 1/B column 2 by the inter-column pressure equalization valve 12 is explained. After completion, the nitrogen desorption valve 13 is opened,
The pressure inside the A tower 1 is reduced (0.3"") by the vacuum pump 11.
Then, nitrogen gas is desorbed from the nitrogen adsorbent and the adsorbent is regenerated (nitrogen desorption step D).

この窒素脱着完了後、加圧状L!(1,3”’)のB塔
2より酸素富化ガスが塔間均圧バルブI2よりA塔に入
り均圧される(均圧工程E、)。均圧後のA塔1内圧力
は約0.71’であり、自然吸気弁15を開くことによ
り人気に連なるライン9より空気を吸収して、塔内圧力
を大気圧まで上げる(自然吸気工程NA) その後、原字加圧弁17を開とし、原字ブロワ10より
加圧空気をA塔1内へ送って加圧(1,3”″)する。
After this nitrogen desorption is completed, pressurized L! Oxygen-enriched gas from B column 2 (1,3''') enters A column through inter-column pressure equalization valve I2 and is pressure-equalized (pressure equalization step E).The pressure inside A column 1 after pressure equalization is By opening the natural intake valve 15, air is absorbed from the line 9 connected to the cylinder, and the pressure inside the column is raised to atmospheric pressure (natural intake process NA).Then, the original pressurizing valve 17 is opened. The original blower 10 sends pressurized air into the A column 1 and pressurizes it (1.3"").

同時に製品酸素弁19を開とし、原字ブロワ10がら空
気をA塔1内へ送り加圧空気中の窒素ガスを窒素吸着剤
5に吸着し、酸素ガスを製品酸素弁19を経て取出すこ
とによって酸素20を製造する(酸!製造工程A)。
At the same time, the product oxygen valve 19 is opened, air is sent from the original blower 10 into the A tower 1, nitrogen gas in the pressurized air is adsorbed on the nitrogen adsorbent 5, and oxygen gas is taken out via the product oxygen valve 19. Produce oxygen 20 (acid! production process A).

B塔2〜D塔4もタイミングをずらして、A塔と同様の
作動をして、連続的に製品酸素を得ることができる。
The B towers 2 to D towers 4 also operate in the same manner as the A tower with different timings, so that product oxygen can be obtained continuously.

〔発明が解決しようとする課題〕 前記の従来の圧力スイング式酸素製造装置の運転制御パ
ターンによると、窒素吸着剤から脱着された窒素が1着
塔内に残存した状態で製品酸素の製造が行なわれること
\なり、製品酸素の濃度は、93%が最大であり、また
その濃度の調整が困難であった。
[Problem to be Solved by the Invention] According to the operation control pattern of the conventional pressure swing type oxygen production apparatus described above, product oxygen is produced with nitrogen desorbed from the nitrogen adsorbent remaining in the first column. Therefore, the maximum concentration of product oxygen was 93%, and it was difficult to adjust the concentration.

本発明は、この従来の圧力スイング式酸素製造装置にお
ける問題点を解決し、製品酸素の濃度をトげ、また製品
酸素量と濃度の関係を任意に変えることができる圧力ス
イング酸素製造装置の掃気方法を皆供しようとするもの
である。
The present invention solves the problems in the conventional pressure swing type oxygen production equipment, increases the concentration of product oxygen, and allows the scavenging of the pressure swing oxygen production equipment to arbitrarily change the relationship between the amount of product oxygen and the concentration. The aim is to provide all methods.

〔課題を解決するための手段] 本発明の圧力スイング式酸素製造装置の掃気方法は、加
圧された空気中の窒素ガスを塔内に充填された窒素吸着
剤に吸着させて酸素ガスをうる酸素製造工程と塔内を減
圧して窒素吸着剤から吸着された窒素を脱着させる窒素
脱着工程と減圧された塔内へ自然唆気を行なう自然吸気
工程を順次行なう吸着塔を複数塔並列に配置し、各吸着
塔において前記工程が互いにずらせて行なわれる圧力ス
イング式酸素製造装置において、酸素製造工程中の吸着
塔から窒素脱着工程完了目前の吸着塔へ酸素富化ガスを
供給して窒素ガスを掃気すると共に、酸素製造工程中の
吸着塔から自然吸気工程完了目前の吸着塔へ酸素富化ガ
スを供給することを特徴とする。
[Means for Solving the Problems] The scavenging method for the pressure swing type oxygen production apparatus of the present invention is to obtain oxygen gas by adsorbing nitrogen gas in pressurized air onto a nitrogen adsorbent filled in a column. Multiple adsorption towers are arranged in parallel to sequentially perform the oxygen production process, the nitrogen desorption process where the pressure inside the tower is reduced to desorb the nitrogen adsorbed from the nitrogen adsorbent, and the natural intake process where natural air is introduced into the reduced pressure inside the tower. In a pressure swing type oxygen production apparatus in which the above steps are carried out in each adsorption tower at a different time from each other, oxygen-enriched gas is supplied from the adsorption tower during the oxygen production process to the adsorption tower that is about to complete the nitrogen desorption process to produce nitrogen gas. It is characterized by scavenging and supplying oxygen-enriched gas from the adsorption tower during the oxygen production process to the adsorption tower that is about to complete the natural intake process.

〔作用〕[Effect]

本発明では、加圧空気が供給され加圧状態で窒素ガスを
窒素吸着剤に吸着させる酸素製造工程中の吸着塔から、
塔内が減圧されて窒素吸着剤から窒素ガスを脱着する窒
素脱着工程を完了目前の吸着塔へ酸素富化ガスを供給し
て、窒素ガスを掃気する。また加圧状態の酸素製造工程
中の吸着塔から自然吸気工程中の吸着塔へ酸素富化ガス
が供給されて押し込まれる。
In the present invention, pressurized air is supplied from an adsorption tower during the oxygen production process in which nitrogen gas is adsorbed on a nitrogen adsorbent under pressure.
Oxygen-enriched gas is supplied to the adsorption tower, which is about to complete the nitrogen desorption step in which the pressure inside the tower is reduced and nitrogen gas is desorbed from the nitrogen adsorbent, to scavenge the nitrogen gas. In addition, oxygen-enriched gas is supplied from an adsorption tower in a pressurized oxygen production process to an adsorption tower in a natural aspiration process and forced into the adsorption tower.

これによって、次いで酸素製造工程を行なう吸着塔内に
は、残存する窒素が少なくなると共に同吸着塔内の酸素
濃度が上り、吸着塔による製造酸素の濃度が上ると同時
にこれが安定される。
As a result, the amount of nitrogen remaining in the adsorption tower in which the next oxygen production step is performed decreases, and the oxygen concentration within the adsorption tower increases, and the concentration of oxygen produced by the adsorption tower increases and is stabilized at the same time.

また、前記の酸素富化ガスを供給する時間を調整するこ
とによって、製品酸素量と濃度の関係を任意に変えるこ
とが可能である。
Further, by adjusting the time for supplying the oxygen-enriched gas, the relationship between the amount of oxygen product and the concentration can be arbitrarily changed.

〔実施例〕〔Example〕

本発明の一実施例を、第1図及び第2[1121によっ
て説明する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2 [1121].

本実施例は、第3図に示される従来の4塔式の圧力スイ
ング式酸素製造装置の掃気方法を次のように改良したも
のである。
In this embodiment, the scavenging method of the conventional four-column pressure swing type oxygen production apparatus shown in FIG. 3 is improved as follows.

即ち、A塔1とB塔2間の上部に塔間均圧バルブ12を
バイパスする小容量の掃気I弁50を設け、C塔3とD
塔4間の上部に塔間均圧バルブ12をバイパスする小容
置の掃気1弁51を設ける。また、A塔1上部に小容量
の掃気■弁52、B塔上部に掃気■弁53、C塔ト部に
掃気■弁54、D塔上部に掃気■弁55をそれぞれ設け
、これら掃気弁52〜55を互いに連通させている。
That is, a small-capacity scavenging I valve 50 that bypasses the inter-column pressure equalization valve 12 is installed in the upper part between the A column 1 and the B column 2, and
A small scavenging valve 51 that bypasses the inter-column pressure equalization valve 12 is provided in the upper part between the columns 4. In addition, a small capacity scavenging valve 52 is provided at the top of the A tower 1, a scavenging valve 53 at the top of the B tower, a scavenging valve 54 at the top of the C tower, and a scavenging valve 55 at the top of the D tower. ~55 are communicated with each other.

第4図は、本実施例のタイムチャートを示しておりA塔
1を主体に説明すると、減圧状態にあるA塔1の窒素吸
着1115からの窒素脱着工程りの完了目前(10〜2
0)秒前)より掃気■弁50が開となり、酸素製造工程
A中にある加圧状態のB塔2から酸素富化ガスがA塔1
内へ供給され、窒素ガスは開かれている窒素脱着バルブ
13を経てパージされる。このA塔1とB塔2の状態を
、第2図において、それぞれ符号S、、S、で示す。
FIG. 4 shows a time chart of this example, and to explain mainly the A column 1, the nitrogen desorption process from the nitrogen adsorption 1115 in the A column 1, which is in a reduced pressure state, is about to be completed (10 to 2
0) seconds ago), the scavenging valve 50 is opened, and the oxygen-enriched gas is transferred from the pressurized B tower 2 to the A tower 1 during the oxygen production process A.
The nitrogen gas is purged through the nitrogen desorption valve 13 which is opened. The states of tower A 1 and tower B 2 are indicated by symbols S, , S, respectively in FIG.

また、A塔1の自然吸気工程NA終r目前(3〜7秒)
より、掃気■弁52.55が開となり、酸素製造工程A
中にある加圧状態のB塔4から酸素富化ガスが供給され
てA塔1内酸素ガス濃度を高める。このA塔1とB塔4
の状態を、第2図においてそれぞれ符号T2.TIで示
す。
Also, just before the end of the natural intake process NA of A tower 1 (3 to 7 seconds)
As a result, the scavenging valves 52 and 55 are opened, and the oxygen production process A begins.
Oxygen-enriched gas is supplied from the pressurized B column 4 located therein to increase the oxygen gas concentration in the A column 1. This A tower 1 and B tower 4
In FIG. 2, the states of T2. and T2. Indicated by TI.

一方、加圧状態にあるA塔1の酸素製造工程Aの完了目
前(10〜20秒)より、減圧下の窒素脱着工程l)に
あるB塔2へ酸素富化ガスを与えて窒素ガスを掃気しく
第2閏においてA塔、B塔の状況をそれぞれ符号S、、
S、で示す)、また、A塔1の酸素製造工程Aの完了目
前(3〜7秒)より自然吸気工程完了目前のC塔3へ酸
素富化ガスを供給してC塔内酸素富化ガス濃度を高める
(第2図においてA塔、C塔の状態をそれぞれ符号T、
、T。
On the other hand, from about 10 to 20 seconds before the completion of the oxygen production process A in the pressurized column A 1, oxygen-enriched gas is supplied to the B column 2, which is in the nitrogen desorption process l) under reduced pressure, to produce nitrogen gas. During scavenging, the status of Tower A and Tower B at the second leap are marked S, respectively.
In addition, oxygen enrichment gas is supplied to the C tower 3, which is about to complete the natural intake process, from just before the completion of the oxygen production process A in the A tower 1 (3 to 7 seconds) to enrich the oxygen in the C tower. Increase the gas concentration (in Figure 2, the states of tower A and tower C are indicated by symbols T and T, respectively.
,T.

で示す#) 以上がA塔1の1サイクルの作動であり、この−ケンサ
で自動的に作動するように構成され、B塔2. C塔3
. B塔4においても、第2図に示すタイムチャートに
従ってタイミングをずらして、A塔と同様の作動をする
The above is one cycle of operation of the A column 1, which is configured to operate automatically with this controller, and the B column 2. C tower 3
.. Tower B 4 also operates in the same way as tower A, with the timing shifted according to the time chart shown in FIG.

従って、各塔1〜4においては、酸素製造工程Aの完了
目前において供給される酸素ガスによって窒素ガスが掃
気(パージ)され、また、自然吸気工程終了直前に酸素
が供給さn、て各塔内の酸素濃度が高められる。これに
よって、各塔による製造酸素20の酸素濃度を上げるこ
とができる(従来の方法では最大93%であったがこれ
を最大95.5%まで上げることができる)と同時に、
これを安定させることができる。
Therefore, in each column 1 to 4, nitrogen gas is scavenged (purged) by the oxygen gas supplied just before the completion of the oxygen production process A, and oxygen is supplied to each column just before the end of the natural aspiration process. The oxygen concentration within the body is increased. This makes it possible to increase the oxygen concentration of the oxygen 20 produced by each column (up to 95.5%, which was up to 93% in the conventional method), and at the same time,
This can be stabilized.

また、前記の酸素富化ガスの供給される時間を調整する
ことによって、製品酸素量と濃度の関係を任意に変える
ことができる。
Furthermore, by adjusting the time during which the oxygen-enriched gas is supplied, the relationship between the amount of product oxygen and the concentration can be arbitrarily changed.

〔発明の効果] 以ト説明したように、本発明では、各吸着塔において、
窒素脱着工程終了直前に酸素富化ガスが供給されて塔内
の窒素ガスの掃気が行なわれ、これに続く自然吸気工程
終了直前に酸素富化ガスが供給されて、酸素製造工程に
移る前において各吸着塔内の残存窒素が少なくなり、吸
着塔内の酸素濃度が上がり、これが安定する。これによ
って、製品酸素の濃度を上げ、かつ安定した酸素の製造
を行なうことができる。
[Effect of the invention] As explained above, in the present invention, in each adsorption tower,
Immediately before the end of the nitrogen desorption process, oxygen-enriched gas is supplied to scavenge the nitrogen gas in the tower, and immediately before the end of the natural aspiration process, oxygen-enriched gas is supplied and before moving on to the oxygen production process. The residual nitrogen in each adsorption tower decreases, and the oxygen concentration within the adsorption tower increases and becomes stable. Thereby, the concentration of product oxygen can be increased and oxygen can be produced stably.

また、各喋着塔の前記酸素供給の時間を調整することに
よって、製品酸素量と濃度の関係を任意に変えることが
できる。
In addition, by adjusting the time for supplying oxygen to each quenching tower, the relationship between the amount of product oxygen and the concentration can be arbitrarily changed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は同実施例
のタイムチャート図、第3図は従来の圧力スイング式酸
素製造装置の系統図、第4図は同従来の圧力スイング式
酸素製造装置のタイムチャート図である。 1〜4・・・咬収塔、   5〜8・・・窒素吸着側。 10・・・原字ブロワ、    11・・・真空ポンプ
912・・・塔間均圧バルブ 13、14・・・窒素脱着バルブ。 15、16・・・自然1気弁 17、18・・・原字加圧弁、19・・・製品酸素弁2
0・・・製品酸素、    50.51・・・掃気I弁
52〜55・・・掃気■弁。 代 理 人  弁理士 板間 暁 外2名
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a time chart diagram of the same embodiment, Fig. 3 is a system diagram of a conventional pressure swing type oxygen production device, and Fig. 4 is a system diagram of the conventional pressure swing type oxygen production device. It is a time chart figure of a swing type oxygen production device. 1-4...Bite tower, 5-8...Nitrogen adsorption side. DESCRIPTION OF SYMBOLS 10... Original character blower, 11... Vacuum pump 912... Inter-column pressure equalization valve 13, 14... Nitrogen desorption valve. 15, 16...Natural 1st valve 17, 18...Original pressure valve, 19...Product oxygen valve 2
0... Product oxygen, 50.51... Scavenging I valve 52-55... Scavenging ■ valve. Representatives: Patent attorney Akira Itama and two others

Claims (1)

【特許請求の範囲】[Claims] 加圧された空気中の窒素ガスを塔内に充填された窒素吸
着剤に吸着させて酸素ガスをうる酸素製造工程と塔内を
減圧して窒素吸着剤から吸着された窒素を脱着させる窒
素脱着工程と減圧された塔内へ自然吸気を行なう自然吸
気工程を順次行なう吸着塔を複数塔並列に配置し、各吸
着塔において前記工程が互いにずらせて行なわれる圧力
スイング式酸素製造装置において、酸素製造工程中の吸
着塔から窒素脱着工程完了目前の吸着塔へ酸素富化ガス
を供給して窒素ガスを掃気すると共に、酸素製造工程中
の吸着塔から自然吸気工程完了目前の吸着塔へ酸素富化
ガスを供給することを特徴とする圧力スイング式酸素製
造装置の掃気方法。
Oxygen production process in which nitrogen gas in pressurized air is adsorbed onto a nitrogen adsorbent packed in a tower to obtain oxygen gas; and nitrogen desorption, in which nitrogen gas adsorbed from the nitrogen adsorbent is desorbed by reducing the pressure inside the tower. In a pressure swing type oxygen production apparatus, a plurality of adsorption towers are arranged in parallel, and the steps are carried out staggered from each other in each adsorption tower. Oxygen-enriched gas is supplied from the adsorption tower in the process to the adsorption tower that is about to complete the nitrogen desorption process to scavenge nitrogen gas, and oxygen enriched from the adsorption tower that is in the oxygen production process to the adsorption tower that is about to complete the natural aspiration process. A scavenging method for a pressure swing type oxygen production device characterized by supplying gas.
JP2190409A 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment Expired - Fee Related JP2781646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190409A JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190409A JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Publications (2)

Publication Number Publication Date
JPH0478410A true JPH0478410A (en) 1992-03-12
JP2781646B2 JP2781646B2 (en) 1998-07-30

Family

ID=16257664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190409A Expired - Fee Related JP2781646B2 (en) 1990-07-20 1990-07-20 Scavenging method of pressure swing type oxygen production equipment

Country Status (1)

Country Link
JP (1) JP2781646B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081258A (en) * 2003-09-09 2005-03-31 Teijin Ltd Oxygen enricher
JP2008539072A (en) * 2005-04-27 2008-11-13 カールトン・ライフ・サポート・システムズ・インコーポレイテッド How to operate a gas generator in tandem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081258A (en) * 2003-09-09 2005-03-31 Teijin Ltd Oxygen enricher
JP2008539072A (en) * 2005-04-27 2008-11-13 カールトン・ライフ・サポート・システムズ・インコーポレイテッド How to operate a gas generator in tandem

Also Published As

Publication number Publication date
JP2781646B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
AU691985B2 (en) Pressure swing adsorption process
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
CA2189232C (en) Method of recovering oxygen-rich gas
EP0327732A1 (en) Adsorptive separation utilizing multiple adsorption beds
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JPH11197434A (en) Vacuum pressure swing adsorption system and method
EP0501344A1 (en) Separation of multicomponent gas mixtures by selective adsorption
US5395427A (en) Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
JPS58104618A (en) Improved rpsa method
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
US6527830B1 (en) Pressure swing adsorption process for co-producing nitrogen and oxygen
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
GB2342871A (en) Single bed pressure swing adsorption.
JP3076912B2 (en) Method and apparatus for separating mixed gas
DE3144012C2 (en)
CA2400354A1 (en) Method of recovering enriched gaseous oxygen
JPH0478410A (en) Method for scavenging pressure-swing oxygen producer
JPH0977502A (en) Oxygen enricher
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow
JPS63107805A (en) Process for producing nitrogen by pressure-swing adsorption process
JPH0352615A (en) Gas separation
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPH0379048B2 (en)
JP3561886B2 (en) Pressure fluctuation adsorption separation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees