JP2781398B2 - Powder flow measurement device - Google Patents
Powder flow measurement deviceInfo
- Publication number
- JP2781398B2 JP2781398B2 JP63307025A JP30702588A JP2781398B2 JP 2781398 B2 JP2781398 B2 JP 2781398B2 JP 63307025 A JP63307025 A JP 63307025A JP 30702588 A JP30702588 A JP 30702588A JP 2781398 B2 JP2781398 B2 JP 2781398B2
- Authority
- JP
- Japan
- Prior art keywords
- granular material
- concentration
- light
- component
- calculating means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透過光量から粉粒体の濃度を測定することに
より粉粒体の流量計測を行う粉粒体流量計測装置に関す
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granular material flow rate measuring device that measures the flow rate of a granular material by measuring the concentration of the granular material from the amount of transmitted light.
微粉炭ボイラ等において、粉粒体(例えば微粉炭,灰
分)の流量を高精度に測定することは運転必要不可欠な
要因の一つである。粉粒体の流量を計測する方法には、
衝撃式,コリオリカ式,差圧式,電磁式,光電式等があ
るが、このうちの光電式計測方式は他の方法と比較して
配管内の流れに変化を与えることがなく、粉塵爆発等の
問題がなく簡単に測定できる特徴を有している。In a pulverized coal boiler or the like, it is one of the indispensable factors to measure the flow rate of the granular material (for example, pulverized coal and ash) with high accuracy. The method of measuring the flow rate of the powder is
There are impact type, Coriolis type, differential pressure type, electromagnetic type, photoelectric type, etc. Among them, the photoelectric measuring method does not change the flow in the pipe compared to other methods, It is easy to measure without any problems.
次に、この光電式(光透過式)による粉粒体流量測定
原理を説明する。Next, the principle of measuring the flow rate of the granular material by the photoelectric method (light transmission method) will be described.
この光透過式粉粒体流量計測法は、粉粒体中に光ビー
ムを通すと、光は粒子により吸収および散乱され、減衰
した透過光量を測定することにより光路中の粉粒体の濃
度を求め、この濃度に流速,断面積をかけて粉粒体の流
量を求めるものである。In this light transmission type powder flow measurement method, when a light beam passes through a powder, the light is absorbed and scattered by the particles, and the concentration of the powder in the light path is measured by measuring the attenuated amount of transmitted light. The flow rate and the cross-sectional area are multiplied by this concentration, and the flow rate of the granular material is obtained.
一般に透過光量はLambert−Beerの法則により、次の
関係が成り立つ。In general, the amount of transmitted light has the following relationship according to Lambert-Beer's law.
I=I0・exp(−C・X・S) ここで、I0:入射光量、I:吸収・散乱により減衰した
透過光量、C:吸収係数であり、これは使用光源の特性
(スペクトル分布等)、粉粒体の特性(粒子の大きさ・
形状等)及び使用機器の特性によつて決まる。X:測定長
さ、即ち光の通る長さ、S:粉粒体濃度。上式より粉粒体
濃度Sは、 吸収係数Cは、前記の如く多くのフアクターによつて
変化するため、特定することはできないが、経験的に或
る一定の条件下では粉粒体濃度Sとlog(I0/I)は直線
的に比例することが確かめられており、S=K・log(I
0/I)(Kは係数)とすることができる。即ち実験的に
Kを求めれば、I及びI0を測定することにより、粉粒体
濃度を求めることができる。現在、この光透過式原理を
用いたダスト濃度計は広く使用されている。I = I 0 · exp (−C × X · S) where I 0 is the incident light amount, I is the transmitted light amount attenuated by absorption / scattering, and C is the absorption coefficient, which is the characteristic (spectral distribution) of the light source used. Etc.), the characteristics of the granular material (particle size,
Shape, etc.) and the characteristics of the equipment used. X: measured length, that is, length through which light passes, S: concentration of powder and granules. From the above equation, the granular material concentration S is Since the absorption coefficient C varies depending on many factors as described above, it cannot be specified. However, empirically, under certain conditions, the powder concentration S and the log (I 0 / I) are linear. It has been confirmed that it is proportional to
0 / I) (K is a coefficient). That be determined experimentally K, by measuring I and I 0, can be obtained granular material concentration. At present, a dust densitometer using the light transmission principle is widely used.
第10図に、光電式測定装置に概略図を示す。 FIG. 10 shows a schematic diagram of the photoelectric measuring device.
図において、1は粉粒体の輸送管、2,3はこの輸送管
1の管壁内面に対向して取り付けられた発光素子及び受
光素子、4,4はエアーパージング装置、5は受光素子3
からの光電変換された信号を処理する信号処理部であ
り、平滑回路10,演算部11,14を備えている。13は演算部
14に入力される外部信号である。In the figure, reference numeral 1 denotes a powder / particle transport pipe, reference numerals 2 and 3 denote light-emitting and light-receiving elements mounted opposite the inner surface of the pipe wall of the transport pipe 1, reference numerals 4 and 4 denote air purging devices, and reference numeral 5 a light-receiving element 3
This is a signal processing unit that processes the signal obtained by photoelectrically converting the image data from the digital camera, and includes a smoothing circuit 10 and operation units 11 and 14. 13 is the operation unit
External signal input to 14.
このような従来装置では、発光素子2,受光素子3に粉
粒体が付着するのを避けるため、エアーパージ等を行う
ため、流量・濃度計測としての信頼性に欠けているのが
現状である。(粉粒体計測ハンドブック/日本粉体工業
協会編、第414頁) また粉粒体の濃度が大きく変化する場合、高濃度の条
件下を精度良く検出することは困難である。具体例を第
7図に示す。第7図は、第10図に示すような装置構成で
工場内ミルの微粉炭流れのC/A(微粉炭/空気)と透過
光量(電圧に変換)の関係を示している。高濃度(ミル
運転時)と低濃度(ミル起動・停止時)の条件での透過
光量は大きな差があり、高濃度の条件下(←→)と共
に広い濃度領域(←→)を検出できるように、従来は
検出信号をロングアンプで対数圧縮して測定している。At present, such a conventional apparatus lacks reliability as a flow rate / concentration measurement because an air purge or the like is performed in order to avoid the powder and particles from adhering to the light emitting element 2 and the light receiving element 3. . (Powder and Particle Measurement Handbook / Japan Powder Industry Association, p. 414) In addition, when the concentration of the powder changes greatly, it is difficult to accurately detect a high concentration condition. A specific example is shown in FIG. FIG. 7 shows the relationship between the C / A (pulverized coal / air) of the pulverized coal flow of the mill in the factory and the amount of transmitted light (converted to voltage) in the apparatus configuration as shown in FIG. There is a large difference in the amount of transmitted light between high density (during mill operation) and low density (during mill start / stop), so that a wide density range (← →) can be detected together with high density conditions (← →). Conventionally, the detection signal is logarithmically compressed by a long amplifier for measurement.
上記従来技術は、粉粒体の濃度が大きく変化するとき
高濃度の条件を精度良く測定することに問題があった。
またエアーパージング装置4等の不具合による発光素子
2及び受光素子3への粉粒体付着や光軸のずれたど光学
系の異常による受光量の減衰を粉粒体濃度の上昇と誤判
定する問題があつた。The prior art described above has a problem in accurately measuring a high-concentration condition when the concentration of the granular material changes greatly.
Further, there is a problem that the attenuation of the amount of received light due to an abnormality in the optical system such as the adhesion of the powder or the like to the light emitting element 2 and the light receiving element 3 due to a defect of the air purging device 4 or the like, or the misalignment of the optical axis is regarded as the increase in the concentration of the powder or the particle. There was.
本発明の目的は粉粒体濃度が高い領域でも精度良く検
出でき、また粉粒体付着や光軸のずれなどの異常時を事
故モニタできる粉粒体流量計測装置を提供することにあ
る。〔課題を解決するための手段〕 上記目的を達成するため、第1の本発明は、 粉粒体の流路に発光素子と受光素子とからなる光透過
式のセンサを設け、粉粒体の濃度の変化による透過光量
の変化から粉粒体の流量を計測する紛粒体流量計測装置
において、 前記受光素子の検出信号を交流成分強度と直流成分強
度に分ける、例えば後述の直流分離回路6などの直流分
離種と、 前記直流成分強度がしきい値以上の場合は、前記交流
成分強度から粉粒体濃度を演算する、例えば後述の演算
部9などの第1の演算手段と、 前記直流成分強度がしきい値未満の場合は、直流成分
強度から粉粒体濃度を演算する、例えば後述の演算部11
などの第2の演算手段と、 前記第1の演算手段または第2の演算手段からの演算
値に基づいて粉粒体流量9を演算する、例えば後述の演
算部14などの第3の演算手段とを備えたことを特徴とす
るものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a granular material flow rate measuring device capable of detecting a granular material with high accuracy even in a region where the concentration of the granular material is high, and capable of monitoring an abnormal situation such as adhesion of the granular material or deviation of an optical axis. [Means for Solving the Problems] In order to achieve the above object, a first aspect of the present invention provides a light transmission type sensor including a light emitting element and a light receiving element in a flow path of a granular material, In a powder flow measuring device that measures the flow rate of a granular material from a change in the amount of transmitted light due to a change in concentration, a detection signal of the light receiving element is divided into an AC component intensity and a DC component intensity. And a first calculating means such as a calculating unit 9 described later, which calculates the granular material concentration from the AC component intensity when the DC component intensity is equal to or higher than a threshold value; If the intensity is less than the threshold, the concentration of the granular material is calculated from the DC component intensity.
And a third calculating means such as a calculating unit 14 to be described later, which calculates the granular material flow rate 9 based on the calculated value from the first calculating means or the second calculating means. It is characterized by having.
上記目的を達成するため、第2の本発明は、 粉粒体の流路に発光素子と受光素子とからなる光透過
式のセンサを設け、粉粒体の濃度の変化による透過光量
の変化から粉粒体の流量を計測する紛粒体流量計測装置
において、 前記受光素子の検出信号を交流成分強度と直流成分強
度に分ける、例えば後述の交直分離回路6などの交直分
離手段と、 前記交流成分強度から粉粒体濃度を演算する、例えば
後述の演算部9などの第1の演算手段と、 前記直流成分強度から粉粒体濃度を演算する、例えば
後述の演算部11などの第2の演算手段と、 前記第1の演算手段と第2の演算手段からの濃度値の
比を求め、その比が所定の範囲内(例えば0.9〜1.1の範
囲)であると光学系統正常、その比が所定の範囲外であ
ると光学系統異常と判定する例えば後述の比較判定部17
などの比較判定手段とを備えたことを特徴とするもので
ある。In order to achieve the above object, a second aspect of the present invention is to provide a light transmission type sensor including a light emitting element and a light receiving element in a flow path of a granular material, and to detect a change in transmitted light amount due to a change in concentration of the granular material. In a powder and particle flow rate measuring device for measuring a flow rate of a granular material, an AC / DC separation unit such as an AC / DC separation circuit 6 described below that divides a detection signal of the light receiving element into an AC component intensity and a DC component intensity; A first calculating means such as a calculating unit 9 described later, which calculates the concentration of the granular material from the intensity; and a second calculating unit calculating the concentration of the granular material from the DC component intensity, such as a calculating unit 11 described later. Means, a ratio of density values from the first calculating means and the second calculating means, and if the ratio is within a predetermined range (for example, in the range of 0.9 to 1.1), the optical system is normal, and the ratio is predetermined. It is determined that the optical system is abnormal if it is out of the range. Comparison judgment unit 17
And the like.
透過光の交流成分とは、粉粒体が光路を遮ることによつ
て生じるちらつきを意味する。第8,第9図に流速・流径
分布一定、発光素子2−受光素子3間距離13mmの条件で
行つた実験のうち、濃度(C/A)と透過光の直流及び交
流成分強度の関係を示す。C/Aが低い場合は、発光素子
2からの光は粉粒によつて遮られることが少ないため受
光素子3が受ける受光量(直流成分)は多く、また光路
がチヨツピングされることが少ないため、ちらつき(交
流成分)強度は小さい。一方、C/Aが上昇すると、発光
素子2からの光は粉粒体によつて遮られることが多くな
るため、受光素子3が受ける光量は減少し、また光路が
チヨツピングされる回数が増えるため、交流成分強度は
増加する。第8図、第9図はこの傾向を示す特性図で、
第8図は微粉炭濃度(C/A)と透過光の直流成分強度の
関係を示す図、第9図は微粉炭濃度(C/A)と透過光の
交流成分強度の関係を示す図である。The AC component of the transmitted light refers to flicker caused by the blocking of the optical path by the granular material. Figs. 8 and 9 show the relationship between the concentration (C / A) and the intensity of the DC and AC components of the transmitted light in the experiments conducted under the condition that the flow velocity and flow diameter distribution are constant and the distance between the light emitting element 2 and the light receiving element 3 is 13 mm. Is shown. When the C / A is low, the light from the light emitting element 2 is less likely to be blocked by the particles, so that the light receiving amount (DC component) received by the light receiving element 3 is large, and the optical path is less likely to be chopped. , The flicker (alternating current component) intensity is small. On the other hand, when the C / A rises, the light from the light emitting element 2 is often blocked by the particles, so that the amount of light received by the light receiving element 3 decreases and the number of times the optical path is chopped increases. , The intensity of the AC component increases. FIG. 8 and FIG. 9 are characteristic diagrams showing this tendency.
FIG. 8 is a diagram showing the relationship between the pulverized coal concentration (C / A) and the DC component intensity of the transmitted light, and FIG. 9 is a diagram showing the relationship between the pulverized coal concentration (C / A) and the AC component intensity of the transmitted light. is there.
この図から明らかなように直流成分強度は低濃度領域
で高い値を示し、高濃度領域になると強度は低下する。
一方、交流成分強度は反対に高濃度領域で高い値を示
し、低濃度領域になると強度は低下する。第1の本発明
はこの両者の傾向を利用して、直流成分強度が予め設定
されたしきい値以上の場合、すなわち低濃度領域の場合
は高い値を示す直流成分強度を用い、直流成分強度がし
きい値未満の場合、すなわち高濃度領域の場合は高い値
を示す交流成分強度を用いて、それぞれ濃度を演算する
ことにより、低濃度領域から高濃度領域まで広い範囲に
わたって精度よく流量計測ができる。As is clear from this figure, the DC component intensity shows a high value in the low density region, and decreases in the high density region.
On the other hand, the AC component intensity shows a high value in the high concentration region, and decreases in the low concentration region. The first aspect of the present invention utilizes the tendency of both, when the DC component intensity is equal to or higher than a predetermined threshold value, that is, in the case of a low concentration region, the DC component intensity indicating a high value is used. Is less than the threshold value, that is, in the case of a high concentration region, by using the AC component intensity indicating a high value to calculate each concentration, the flow rate measurement can be accurately performed over a wide range from the low concentration region to the high concentration region. it can.
また、計測装置の光学系統が正常の場合は、直流成分
強度から演算した濃度値も交流成分強度から演算した濃
度値もほぼ一致するはずである。第2の本発明はこのこ
とを利用して、直流成分強度から演算した濃度値と交流
成分強度から演算した濃度値の比を求め、その値が所定
の範囲から外れていたときには、光学系統が異常である
と判定することにより、自己モニタ機構を付加して、信
頼性の向上を図ることができる。If the optical system of the measuring device is normal, the density value calculated from the DC component intensity and the density value calculated from the AC component intensity should almost match. The second aspect of the present invention utilizes this fact to determine the ratio between the density value calculated from the DC component intensity and the density value calculated from the AC component intensity, and when the value is out of the predetermined range, the optical system By determining that an abnormality is present, a self-monitoring mechanism can be added to improve reliability.
第1図に本発明に係る一実施例の粉粒体流量計測装置
の構成を示す。FIG. 1 shows the configuration of a granular material flow rate measuring device according to an embodiment of the present invention.
第1図に示す粉粒体流量計測装置は、輸送管1を挟ん
で左右に取り付けられている発光素子2,受光素子3,信号
処理部5及びエアーパージング装置4で構成されてい
る。エアーパージング装置4は、光学系への粉粒体付着
を防止するための送風装置である。1 includes a light-emitting element 2, a light-receiving element 3, a signal processing unit 5, and an air purging apparatus 4 mounted on the left and right sides of a transport pipe 1. The air purging device 4 is a blower for preventing powder and granules from adhering to the optical system.
発光素子2と受光素子3は一定距離に配置され、発光
量I0は一定とする。受光素子3は粉粒体濃度に対応した
透過光量を検出し、電気信号に変換した後、交直分値回
路6に通し、交流成分eと直流成分Eに分割する。直流
成分強度Eがしきい値以上の場合は交流成分eのうち30
〜1K Hzを抽出するフイルタ回路7に通し、整流回路8
を通して直流変換し、その信号を前もつて求めた交流成
分強度と濃度に関する実験式に代入して演算部9で演算
し、粉粒体の濃度を求める。一方、直流成分強度Eがし
きい未満の場合は直流成分Eを平滑回路10に通し、直流
成分強度と濃度の関係から演算部11で演算し、粉粒体の
濃度を求める。そして求めた濃度を切り替え回路12によ
り切り替え、この切り替えられた濃度に外部信号13から
の流速,断面積をかけて粉流体の流量を演算部14で演算
する装置構成である。Emitting element 2 and the light receiving element 3 is arranged a predetermined distance, the light emission quantity I 0 is constant. The light receiving element 3 detects the amount of transmitted light corresponding to the concentration of the granular material, converts the amount of transmitted light into an electric signal, and then passes the signal through an AC / DC component value circuit 6 to divide it into an AC component e and a DC component E. If the DC component intensity E is equal to or greater than the threshold, 30 of the AC components e
11 KHz is passed through a filter circuit 7 that extracts
, And substitutes the signal into an empirical formula relating to the previously obtained AC component intensity and concentration to calculate in the calculation unit 9 to obtain the concentration of the granular material. On the other hand, when the DC component intensity E is less than the threshold, the DC component E is passed through the smoothing circuit 10 and the arithmetic unit 11 calculates the relationship between the DC component intensity and the concentration to obtain the concentration of the powder and granules. Then, the obtained concentration is switched by the switching circuit 12, and the switched concentration is multiplied by the flow rate and the cross-sectional area from the external signal 13, and the flow rate of the powder fluid is calculated by the calculation unit 14.
第2図に信号処理部のフローを示す。透過光の直流成
分強度Eが特定のしきい値V1未満高濃度領域)の場合
(ステツプ2−1でY)、直流光Eから濃度Sを算出す
る(ステツプ2−2)。また、透過光の直流成分強度E
がV1以上(低濃度領域の場合(ステツプ2−1でN)、
交流成分強度eから濃度Sを算出する(ステツプ2−
3)。濃度Sと外部信号9(流速v,断面積A)の積をと
り(ステツプ2−4)粉粒体流量Qを求める(ステツプ
2−5)。そしてステツプ2−6で出力を行う。FIG. 2 shows the flow of the signal processing unit. If the DC component intensity E of the transmitted light of a specific threshold V 1 lower than the high concentration region) (Y in step 2-1), and calculates the concentration S from the DC light E (step 2-2). In addition, the DC component intensity E of the transmitted light
There V 1 or (in the case of the low concentration region (N in step 2-1),
The density S is calculated from the AC component intensity e (Step 2-
3). The product of the concentration S and the external signal 9 (flow velocity v, cross-sectional area A) is calculated (Step 2-4), and the flow rate Q of the granular material is obtained (Step 2-5). Then, output is performed in step 2-6.
広い測定領域を上記のように分割して測定することに
より、計測上特に重要な通常運転時の信号を対数圧縮す
ることなく精度よく測定できると共に装置の起動・停止
時の濃度の薄い状態も合わせて測定できる効果がある。By dividing a wide measurement area as described above, it is possible to accurately measure the signal during normal operation, which is particularly important for measurement, without logarithmic compression, and to match the low concentration state when starting and stopping the device. There is an effect that can be measured.
本発明の他の実施例を第3図に示す。本実施例は第1
図に示す粉粒体流量計測装置の発光素子2,受光素子3の
組み合わせのうち、少なくとも一方の先端に導光部とし
て光フアイバを設置した装置構成である。Another embodiment of the present invention is shown in FIG. This embodiment is the first
The apparatus configuration is such that an optical fiber is installed at at least one end of the combination of the light emitting element 2 and the light receiving element 3 of the powder flow measuring device shown in the figure as a light guide.
即ち例えば発光素子2と対向する位置に光フアイバヘ
ツド15を臨ませ、光フアイバ16で発光素子2からの光を
信号処理部5まで導くようにしている。That is, for example, the optical fiber head 15 faces the position facing the light emitting element 2, and the light from the light emitting element 2 is guided to the signal processing unit 5 by the optical fiber 16.
このように光フアイバ16を用いると検出信号を光で伝
送できるため、ノイズの影響なしに信号処理部を劣悪な
測定環境から離すことが可能となる。As described above, since the detection signal can be transmitted by light when the optical fiber 16 is used, the signal processing unit can be separated from a poor measurement environment without the influence of noise.
さらに第4図に本発明の他の実施例を示す。本実施例
は透過光量の直流と交流成分出力を共に利用して、計測
装置の光学系に生じた異常を検知する効果を有する信号
処理部5に関するものである。装置は信号処理部5以外
は第1図もしくは第3図と同様な構成である。FIG. 4 shows another embodiment of the present invention. The present embodiment relates to a signal processing unit 5 having an effect of detecting an abnormality occurring in an optical system of a measuring device by using both the DC and AC component outputs of the transmitted light amount. The apparatus has the same configuration as that of FIG. 1 or FIG. 3 except for the signal processing unit 5.
透過光の直流もしくは交流成分強度のみに着目して換
算する粉粒体流量計では、もし装置の光学系に異常(エ
アパージング装置不調による発光・受光素子への粉粒体
付着,光軸のずれ等)が発生した場合は誤差を含んだ流
量値を示す可能性がある。第5図に一例を示すが、光学
系が正常な場合は、交流成分,直流成分どちらで検出し
た結果を演算しても、同じ粉粒体濃度aを算出する。一
方、光学系統に異常が発生した際、交流・直流成分強度
共に減少するため両者からの演算結果は大きく異なつた
値(b及びc)を示す。In the case of a powder flow meter that converts only the intensity of the DC or AC component of the transmitted light, if there is an abnormality in the optical system of the device (dust particles adhere to the light emitting / receiving element due to malfunction of the air purging device, deviation of the optical axis) ) May indicate a flow value that includes an error. FIG. 5 shows an example. In the case where the optical system is normal, the same powder / particle concentration a is calculated irrespective of whether the result of detection using either the AC component or the DC component is calculated. On the other hand, when an abnormality occurs in the optical system, both the AC and DC component intensities decrease, so that the calculation results from the two show greatly different values (b and c).
本実施例はこの特性を利用して比較判定部17,平均回
路18を付加することにより計測系統の異常を検知できる
ため、より信頼性の高い測定を行うことができる。19は
異常判定信号である。In the present embodiment, an abnormality in the measurement system can be detected by adding the comparison / determination unit 17 and the averaging circuit 18 using this characteristic, so that more reliable measurement can be performed. 19 is an abnormality determination signal.
第6図に異常判定のフローを示す。これは透過光の交
流・直流成分強度の関係が確認されている薄い濃度領域
(C/Aだと0.1以下)で判定すべきものである。透過光の
直流・交流成分強度(ステツプ6−1,6−2)からそれ
ぞれ濃度S,S′を算出し(ステツプ6−3,6−4)、Sと
S′の比が0.9〜1.1以外だと(ステツプ6−5でN)光
学系統に異常が生じたと判定し光学系統異常とする(ス
テツプ6−6)。またSとS′の比が0.9〜1.1以内だと
(ステツプ6−5でY)検出信号は正常とみなし、Sと
S′の平均を粉粒体濃度とし(ステツプ6−7)、外部
信号13からの流量v・断面積Aの積をとる(ステツプ6
−8)ことにより流量を算出する(ステツプ6−9)も
のである。FIG. 6 shows a flow of abnormality determination. This should be determined in a low concentration region (0.1 or less for C / A) where the relationship between the AC and DC component intensities of transmitted light has been confirmed. The densities S and S 'are calculated from the DC and AC component intensities of the transmitted light (steps 6-1 and 6-2) (steps 6-3 and 6-4), and the ratio of S to S' is other than 0.9 to 1.1. If so (N in step 6-5), it is determined that an abnormality has occurred in the optical system, and the optical system is determined to be abnormal (step 6-6). If the ratio of S to S 'is within 0.9 to 1.1 (Y in step 6-5), the detection signal is regarded as normal, and the average of S and S' is taken as the powder concentration (step 6-7). Take the product of the flow rate v and the cross-sectional area A from Step 13 (Step 6).
-8) to calculate the flow rate (step 6-9).
以上説明したように、本発明によれば測定領域を高濃
度と低濃度領域に分割し測定することにより計測上特に
重要な、装置の通常運転時(高濃度)の信号を対数圧縮
することなく精度良く測定できると共に装置の起動・停
止時(低濃度)も合わせて測定できる効果がある。As described above, according to the present invention, the measurement area is divided into the high-density area and the low-density area, and the measurement is performed. There is an effect that the measurement can be performed with high accuracy and the measurement can also be performed when the apparatus is started and stopped (low concentration).
また、粉粒体濃度に対する透過光の直流と交流成分強
度の相関か系から受光信号の妥当性を判定することがで
きるため、信頼性の高い測定ができる。In addition, since the validity of the received light signal can be determined from the system based on the correlation between the DC and AC component intensities of the transmitted light with respect to the granular material concentration, highly reliable measurement can be performed.
第1図は本発明に係る粉粒体流量計測装置の構成図、第
2図は演算部のフロー図、第3図は他の実施例に係る装
置の構成図、第4図は光学系統の異常を判定する信号処
理部の回路図、第5図は粉粒体濃度と透過光の直流及び
交流成分濃度の関係図、第6図は光学系統異常判定のフ
ロー図、第7図はC/Aと透過光量の関係図、第8図はC/A
と透過光の直流成分強度の関係図、第9図はC/Aと透過
光の交流成分強度の関係図、第10図は従来の装置構成図
である。 1……輸送管、2……発光素子、3……受光素子、5…
…信号処理部、6……交直分離回路、7……フイルタ回
路、8……整流回路、9……演算部、10……平滑回路、
11……演算部、12……切り替え回路、13……外部信号、
14……演算部、17……比較判断部、18……平均回路、19
……異常判定信号、E……直流成分、e……交流成分。FIG. 1 is a block diagram of a granular material flow rate measuring device according to the present invention, FIG. 2 is a flowchart of a calculation unit, FIG. 3 is a block diagram of a device according to another embodiment, and FIG. FIG. 5 is a circuit diagram of a signal processing unit for judging abnormality, FIG. 5 is a diagram showing a relationship between the concentration of powder and granules and the concentration of DC and AC components of transmitted light, FIG. 6 is a flowchart of optical system abnormality judgment, and FIG. Fig. 8 shows the relationship between A and the amount of transmitted light. Fig. 8 shows C / A.
FIG. 9 is a diagram showing the relationship between C / A and the intensity of the AC component of the transmitted light, and FIG. 10 is a diagram showing the configuration of a conventional apparatus. 1 ... Transport tube, 2 ... Light emitting element, 3 ... Light receiving element, 5 ...
... Signal processing unit, 6 ... AC / DC separation circuit, 7 ... Filter circuit, 8 ... Rectifier circuit, 9 ... Operation unit, 10 ... Smoothing circuit,
11… Calculator, 12… Switching circuit, 13… External signal,
14… Calculator, 17… Comparative judgment unit, 18… Average circuit, 19
... Abnormality determination signal, E... DC component, e... AC component.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−81216(JP,A) 特開 昭57−124255(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01F 1/74────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-81216 (JP, A) JP-A-57-124255 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01F 1/74
Claims (2)
なる光透過式のセンサを設け、粉粒体の濃度の変化によ
る透過光量の変化から粉粒体の流量を計測する粉粒体流
量計測装置において、 前記受光素子の検出信号を交流成分強度と直流成分強度
に分ける交直分離手段と、 前記直流成分強度がしきい値以上の場合は、前記交流成
分強度から粉粒体濃度を演算する第1の演算手段と、 前記直流成分強度がしきい値未満の場合は、直流成分強
度から粉粒体濃度を演算する第2の演算手段と、 前記第1の演算手段または第2の演算手段からの演算値
に基づいて粉粒体流量を演算する第3の演算手段とを備
えたことを特徴とする粉粒体流量計測装置。An optical transmission sensor comprising a light emitting element and a light receiving element is provided in a flow path of a granular material, and a flow rate of the granular material is measured from a change in the amount of transmitted light due to a change in concentration of the granular material. In the granular material flow measuring device, AC / DC separating means for dividing a detection signal of the light receiving element into an AC component intensity and a DC component intensity; A second calculating means for calculating the concentration of the granular material from the DC component strength when the DC component strength is less than a threshold value; and the first calculating means or the second calculating means. A third calculating means for calculating the flow rate of the granular material based on the calculated value from the calculating means.
なる光透過式のセンサを設け、粉粒体の濃度の変化によ
る透過光量の変化から粉粒体の流量を計測する粉粒体流
量計測装置において、 前記受光素子の検出信号を交流成分強度の直流成分強度
に分ける交直分離手段と、 前記交流成分強度から粉粒体濃度を演算する第1の演算
手段と、 前記直流成分強度から粉粒体濃度を演算する第2の演算
手段と、 前記第1の演算手段と第2の演算手段からの濃度値の比
を求め、その比が所定の範囲内であると光学系統正常、
その比が所定の範囲外であると光学系統異常と判定する
比較判定手段とを備えたことを特徴とする粉粒体流量計
測装置。2. A powder which is provided with a light transmission type sensor comprising a light emitting element and a light receiving element in a flow path of a granular material, and measures a flow rate of the granular material from a change in transmitted light amount due to a change in concentration of the granular material. In the granular material flow measuring device, an AC / DC separation unit that divides a detection signal of the light receiving element into a DC component intensity of an AC component intensity; a first arithmetic unit that calculates a powder / particle concentration from the AC component intensity; A second calculating means for calculating the concentration of the granular material from the strength; and a ratio of the density values from the first calculating means and the second calculating means. If the ratio is within a predetermined range, the optical system is normal. ,
A comparison and determination means for determining that the optical system is abnormal when the ratio is out of a predetermined range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63307025A JP2781398B2 (en) | 1988-12-06 | 1988-12-06 | Powder flow measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63307025A JP2781398B2 (en) | 1988-12-06 | 1988-12-06 | Powder flow measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02154114A JPH02154114A (en) | 1990-06-13 |
JP2781398B2 true JP2781398B2 (en) | 1998-07-30 |
Family
ID=17964124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63307025A Expired - Fee Related JP2781398B2 (en) | 1988-12-06 | 1988-12-06 | Powder flow measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2781398B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124255A (en) * | 1981-01-26 | 1982-08-03 | Mitsubishi Heavy Ind Ltd | Measuring method for velocity of powdered and granular body |
JPS57184920A (en) * | 1981-05-09 | 1982-11-13 | Kubota Ltd | Powder passage detector |
JPS5868645A (en) * | 1981-10-19 | 1983-04-23 | Mitsubishi Heavy Ind Ltd | Method for measuring concentration of particles |
JPS6037822U (en) * | 1983-08-22 | 1985-03-15 | 株式会社 浅野鉄工所 | Dust adhesion prevention device for photodetector window plate in powder flow rate detection device using photoelectricity |
JPS6381216A (en) * | 1986-09-24 | 1988-04-12 | Shinagawa Refract Co Ltd | Flowmeter for granule |
-
1988
- 1988-12-06 JP JP63307025A patent/JP2781398B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02154114A (en) | 1990-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1130604A (en) | Oil-in-water method and detector | |
CA1075035A (en) | Oil in water detection | |
US4506541A (en) | Measurement of bulk density of particulate materials | |
GR3006407T3 (en) | ||
WO2016206000A1 (en) | Method of sensing aerosol characteristic parameter using dual-wavelength scattered signal and application thereof | |
WO1998048867A1 (en) | Optical detection and quantification of microair in blood | |
JPH01132965A (en) | Decision of paper sheet strength | |
US7063731B2 (en) | Method and apparatus for detecting particles in a gas flow | |
US8294894B2 (en) | Particle counter | |
US8345236B2 (en) | Method and apparatus for determining the particles contained in a particle stream | |
KR102017257B1 (en) | Small-sized optical fine dust sensor capable of counting by particle size | |
US10634603B2 (en) | Particle-measuring apparatus and method of operating same | |
KR100910871B1 (en) | Method and apparatus for measuring water contained in the chimney gas | |
JP2781398B2 (en) | Powder flow measurement device | |
JP5326120B2 (en) | Apparatus and method for measuring particle mass concentration in fluid, and apparatus and method for measuring particle density in fluid | |
AU742800B2 (en) | Improved device for measuring the concentration of airborne fibers | |
JP2571844B2 (en) | Gas detection alarm device | |
JPH09189587A (en) | Powder flowmeter | |
JP7546533B2 (en) | Radiation measuring device | |
JP7395428B2 (en) | Dust radiation monitor and dust radiation measurement method | |
RU61883U1 (en) | DEVICE FOR MEASURING DUST CONCENTRATION | |
AU2005205846B2 (en) | Method and apparatus for detecting particles in a gas flow | |
JP2576563B2 (en) | Engine oil deterioration detection device | |
JPH11339157A (en) | Smoke sensor | |
JPS55119042A (en) | Abnormality alarm for particle counter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |