JP2778146B2 - Electrical joining method of current-carrying terminal member of ceramic heating element - Google Patents
Electrical joining method of current-carrying terminal member of ceramic heating elementInfo
- Publication number
- JP2778146B2 JP2778146B2 JP21953789A JP21953789A JP2778146B2 JP 2778146 B2 JP2778146 B2 JP 2778146B2 JP 21953789 A JP21953789 A JP 21953789A JP 21953789 A JP21953789 A JP 21953789A JP 2778146 B2 JP2778146 B2 JP 2778146B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- generating member
- heat generating
- heat
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明はセラミックス発熱体を構成する発熱部材と通
電端子部材との接合に際して、これらの突合せ部を局部
加熱する電気接合方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to an electric joining method for locally heating a butt portion of a heating member and a current-carrying terminal member constituting a ceramic heating element.
〈従来の技術と発明が解決しようとする問題点〉 セラミックス同士の接合方法として、各種接合剤によ
るろう付法、反応焼結法、固相拡散法などが提案されて
いるが、いずれも接合反応を促進するために、高温に加
熱する工程が必要である。例えば、被接合部材を高温炉
の中に入れ、高温炉のヒータからの輻射や対流により被
接合部材を所定の温度まで加熱させなけらばならないた
めに、被接合部材が大型化すれば、それに伴ない高温炉
の設備が高価になり、炉が大きくなれば、所定の温度ま
で加熱する時間及び冷却時間も長くなり、ランニングコ
ストも高価となる問題があった。<Problems to be solved by the conventional technology and the invention> As a method of joining ceramics, brazing, reaction sintering, solid phase diffusion, etc. using various joining agents have been proposed. In order to promote the heat treatment, a step of heating to a high temperature is required. For example, if the member to be joined is placed in a high-temperature furnace, and the member to be joined must be heated to a predetermined temperature by radiation or convection from a heater of the high-temperature furnace, so if the member to be joined becomes large, Accordingly, the equipment of the high-temperature furnace becomes expensive, and if the furnace becomes large, the time required for heating to a predetermined temperature and the cooling time become long, and the running cost becomes high.
そこで、第5図に示すように、発熱部材1の両端部と
通電端子部材2a,2bとを、それぞれ第1及び第2の接合
剤3a,3bを介在させて突合せ、これらを電源装置4に接
続された2つの電極10a,10bが挾むように、上記の突合
せ面方向に加圧しつつ対向配置される。接合時は、発熱
部材1,通電端子部材2a,2b及び接合剤3a,3bに流れる加熱
用電流により、主に高低抗の発熱部材1で発生するジュ
ール熱によって、接合剤3a,3bを反応させて発熱部材と
通電端子部材との接合を2ヶ所で同時に行うことも考え
られる。Therefore, as shown in FIG. 5, both ends of the heat-generating member 1 and the current-carrying terminal members 2a and 2b are butted with the first and second bonding agents 3a and 3b interposed therebetween, and these are joined to the power supply device 4. The two electrodes 10a and 10b are opposed to each other while being pressed in the direction of the abutting surface so as to sandwich the two electrodes 10a and 10b. At the time of joining, the bonding agents 3a and 3b are reacted mainly by Joule heat generated by the heating member 1 having high and low resistance due to the heating current flowing through the heating member 1, the conductive terminal members 2a and 2b, and the bonding agents 3a and 3b. It is also conceivable that the heat-generating member and the current-carrying terminal member are simultaneously joined at two places.
しかし、上記のように接合する場合、発熱部材1全体
が一様なジュール熱を発生し高温に加熱され、突合せ部
のみを集中的に所望の接合温度に効率よく加熱させるこ
とができないために、電力消費の点で無駄が多い。However, in the case of joining as described above, the entire heating member 1 generates uniform Joule heat and is heated to a high temperature, and it is not possible to efficiently heat only the butt portion to a desired joining temperature efficiently. There is much waste in terms of power consumption.
また、突合せ部を所望の接合温度、例えば1500℃程度
に加熱しようとすると、発熱部材1の長手方向の中央部
では1700℃〜1800℃以上にもなり、セラミックスの分解
が発生し始めて、劣化が発熱部材1全体に及ぶ虞れがあ
る。Further, when the butt portion is heated to a desired joining temperature, for example, about 1500 ° C., the temperature becomes 1700 ° C. to 1800 ° C. or more at the central portion in the longitudinal direction of the heat generating member 1, and the decomposition of the ceramics starts to occur, and the deterioration is started. There is a possibility that the entire heat generating member 1 is covered.
〈問題点を解決するための手段〉 本発明は、上記の問題点を解決するために、請求項1
においては、セラミックス発熱体を構成する発熱部材の
両端部と第1及び第2の通電端子部材とを、直接または
それぞれ第1及び第2の接合剤を介在させて突合せ、突
合せ部近傍の第1及び第2の端子部材の外周面にそれぞ
れ第1及び第2の電極を当接させると共に、接合時に発
熱体に流れる加熱用電流の大半を、発熱部材の両突合せ
部近傍よりバイパスさせる電流バイパス用部材を、発熱
部材の外周面に当接させて構成した被接合構成体を少な
くとも1つ設けて、電極間に電圧を印加することによる
加熱用電流によって、突合せ部近傍の発熱部材により多
く生じるジュール熱及び突合せ部に生じるジュール熱に
より、突合せ部及びその近傍を加熱して、突合せ部を同
時に接合することを特徴としている。<Means for Solving the Problems> The present invention is directed to claim 1 in order to solve the above problems.
In the above method, both ends of the heat generating member constituting the ceramic heat generating element and the first and second energizing terminal members are butted directly or with the first and second bonding agents interposed therebetween, and the first and second connecting members are brought into contact with each other. A first and a second electrode are respectively brought into contact with the outer peripheral surface of the second terminal member and a current bypass for making most of the heating current flowing through the heating element at the time of joining from the vicinity of both butted portions of the heating member. By providing at least one member to be joined, in which the member is brought into contact with the outer peripheral surface of the heat generating member, a joule generated more in the heat generating member in the vicinity of the butt portion by a heating current by applying a voltage between the electrodes. The joint and the vicinity thereof are heated by heat and Joule heat generated in the joint, and the joints are simultaneously joined.
また請求項2においては、セラミックス発熱体を構成
する発熱部材の両端部と第1及び第2の通電端子部材と
を、直接またはそれぞれ第1及び第2の接合剤を介在さ
せて突合せ、第1の通電端子部材と第1の突合せ部近傍
の発熱部材との外周面に第1の対電極を当接させ、かつ
第2の通電端子部材と第2の突合せ部近傍の発熱部材と
の外周面に第2の対電極を当接させ、第1及び第2の対
電極間に別個に電圧を印加することにより制御される加
熱用電流によって、第1及び第2の突合せ部近傍の発熱
部材により多く生じるジュール熱及び両突合せ部に生じ
るジュール熱により、突合せ部及びその近傍を加熱し
て、突合せ部を同時に接合することを特徴としている。According to a second aspect of the present invention, both ends of the heating member constituting the ceramic heating element and the first and second current-carrying terminal members are butted directly or with the first and second bonding agents interposed therebetween. The first counter electrode is brought into contact with the outer peripheral surface between the current-carrying terminal member and the heat generating member near the first butting portion, and the outer peripheral surface between the second current-carrying terminal member and the heat generating member near the second butting portion And a heating member controlled by separately applying a voltage between the first and second counter electrodes, thereby causing the heating member in the vicinity of the first and second butting portions to contact the second and third counter electrodes. It is characterized in that the butted portion and the vicinity thereof are heated by the Joule heat generated in many portions and the Joule heat generated in both butted portions, and the butted portions are simultaneously joined.
〈作用〉 以上のような請求項1の方法とすることにより、第1
の通電端子部材から第1の突合せ部及びその近傍の発熱
部材へと順次流れる接合時の加熱用電流が、発熱部材の
全長に亘って流れることなく、この電流は発熱部材及び
電流バイパス用部材の抵抗比に応じて、電流バイパス用
部材へと分流し、再び元の全加熱用電流がもう一方の突
合せ部近傍の発熱部材、第2の突合せ部、第2の通電端
子部材へと順次に流れる。この場合、電流バイパス用部
材の抵抗が、この間の発熱部材の抵抗に比べて大きくな
ればなる程、この間の発熱部材に流れる電流は小さくな
り、この部分でのジュール発熱は小さくなる。また、通
電端子部材の抵抗は突合せ部近傍の発熱部材の抵抗に比
べて小さいため、加熱用電流により突合せ部近傍の発熱
部材が最も大きく発熱し、主にその熱伝導による熱と突
合せ部の発熱、例えば接触抵抗による発熱または接合剤
の抵抗による発熱とが相まって、突合せ部及びその近傍
を加熱させることができる。<Operation> By adopting the method of claim 1 as described above, the first
The heating current at the time of joining that flows sequentially from the current-carrying terminal member to the first butting portion and the heating member in the vicinity thereof does not flow over the entire length of the heating member. In accordance with the resistance ratio, the current is shunted to the current bypass member, and the entire current for heating again flows sequentially to the heating member near the other butting portion, the second butting portion, and the second energizing terminal member. . In this case, as the resistance of the current bypassing member becomes larger than the resistance of the heat generating member during this time, the current flowing through the heat generating member during this time decreases, and the Joule heat generated at this portion decreases. In addition, since the resistance of the current-carrying terminal member is smaller than the resistance of the heat-generating member in the vicinity of the joint, the heat-generating member in the vicinity of the joint generates the largest amount of heat due to the heating current. For example, heat generated by contact resistance or heat generated by the resistance of the bonding agent can be combined to heat the butted portion and its vicinity.
また、請求項2の方法とすることにより、第1の通電
端子部材から第1の突合せ部へと順次に流れる接合時の
第1の加熱用電流が、発熱部材の全長に亘って流れるこ
となく、この電流は突合せ部近傍の発熱部材のみに流
れ、他方、第2の通電端子部材から第2の突合せ部へと
流れる第2の加熱用電流がもう一方の突合せ部近傍の発
熱部材のみに流れるので、請求項1と同様、主に突合せ
部近傍の発熱部材での発熱及び接触抵抗による発熱また
は接合剤の抵抗による発熱とが相まって、突合せ部及び
その近傍を加熱させることができると共に、別個に加熱
用電流を制御することによって、両突合せ部を正確に所
望の接合温度に加熱させることができる。According to the method of the second aspect, the first heating current at the time of joining that flows sequentially from the first current-carrying terminal member to the first butting portion does not flow over the entire length of the heating member. This current flows only in the heat generating member near the butting portion, and on the other hand, the second heating current flowing from the second conducting terminal member to the second butting portion flows only in the heat generating member near the other butting portion. Therefore, similarly to the first aspect, the heat generated by the heat generating member in the vicinity of the butting portion and the heat generated by the contact resistance or the heat generated by the resistance of the bonding agent can be combined to heat the butting portion and the vicinity thereof, and separately. By controlling the heating current, both butted portions can be accurately heated to a desired joining temperature.
〈実施例〉 第1の実施例は、本発明の請求項1に対応する。<Example> A first example corresponds to claim 1 of the present invention.
第1図は本発明の方法を適用した第1の実施例を示す
概略構成部分断面図である。まず、パイプ状の高低抗の
炭化ケイ素質セラミックスの発熱部材1の両端部と第1
及び第2の低抵抗の炭化ケイ素質セラミックスの通電端
子部材2a,2bとを、それぞれSi,SiC,C,バインダーからな
るペースト状の第1及び第2の導電性接合剤3a,3bを塗
布し、これらを突合せて約10kg/cm2の圧力Pを加えて固
定した。FIG. 1 is a schematic partial cross-sectional view showing a first embodiment to which the method of the present invention is applied. First, both ends of the heat-generating member 1 made of a pipe-shaped silicon carbide-based ceramic having high and low resistance and the first
Then, the first and second conductive bonding agents 3a, 3b in the form of paste made of Si, SiC, C, and a binder are applied to the current-carrying terminal members 2a, 2b of silicon carbide ceramics having a low resistance and the second, respectively. These were butted and fixed by applying a pressure P of about 10 kg / cm 2 .
つぎに、リング状かつ例えば2分割される形状で、電
源装置4に接続された第1及び第2の電極5a,5bを、そ
れぞれ両突合せ部近傍の第1及び第2の通電端子部材2
a,2bの外周面にボルト締めして緊密に当接させる。そし
て、筒状かつ例えば2分割される形状で、長手方向の寸
法が発熱部材1よりも若干小さい高導電性の耐熱材料、
例えばカーボン製の電流バイパス用部材6を、発熱部材
1の両突合せ部近傍を除く外周面にボルト締めして緊密
に当接させる。また、突合せ部の熱放散を防止するため
に、両突合せ部近傍全体を断熱材7a,7bで覆う。Next, the first and second electrodes 5a and 5b connected to the power supply device 4 in a ring shape and, for example, divided into two parts are connected to the first and second energizing terminal members 2 in the vicinity of both butting portions, respectively.
Bolt the outer peripheral surfaces of a and 2b tightly. A highly conductive heat-resistant material having a cylindrical shape and, for example, divided into two parts, and having a longitudinal dimension slightly smaller than that of the heat generating member 1;
For example, a current bypass member 6 made of carbon is bolted to the outer peripheral surface of the heat generating member 1 except for the vicinity of both abutting portions, so as to be in tight contact with each other. Further, in order to prevent heat dissipation at the butted portions, the entire vicinity of both butted portions is covered with heat insulating materials 7a and 7b.
その後、接合雰囲気を不活性ガス、例えばArガスと
し、第1及び第2の電極5a,5b間に電圧を印加すると、
第1の通電端子部材2aから第1の接合剤3a、突合せ部近
傍の発熱部材1へと順次に流れる加熱用電流が、発熱部
材1の全長に亘って流れることなく、この電流の大半は
電流バイパス用部材6へと分流し、再び元の全加熱用電
流がもう一方の突合せ部近傍の発熱部材1、第2の接合
剤3b、第2の通電端子部材2bへと順次に流れて、それぞ
れの部所での抵抗値に応じたジュール熱が発生する。と
ころで、発熱部材1の抵抗値が他よりも大きいために、
主にこの一部分により多く発生するジュール熱の伝導と
両通電端子部材2a,2b及び両接合剤3a,3bによるジュール
熱とが相まって、両突合せ部近傍全体が集中的により高
温に加熱される。両突合せ部を約1500℃、15分間保持す
る間に両接合剤3a,3bを反応させ、その後は室温まで冷
却し接合を完了した。なお、通電時は急加熱、急冷によ
る破損を防ぐために、電流を徐々に増加、減少させた。Thereafter, when the bonding atmosphere is an inert gas, for example, Ar gas, and a voltage is applied between the first and second electrodes 5a and 5b,
The heating current that flows sequentially from the first current-carrying terminal member 2a to the first bonding agent 3a and to the heat generating member 1 near the butting portion does not flow over the entire length of the heat generating member 1, and most of this current is current. The current is completely diverted to the bypass member 6, and the original total heating current again flows sequentially to the heating member 1, the second bonding agent 3b, and the second energizing terminal member 2b in the vicinity of the other butting portion. Joule heat is generated in accordance with the resistance value at the section. By the way, since the resistance value of the heating member 1 is larger than others,
The conduction of Joule heat, which is mainly generated in a part thereof, and the Joule heat due to both the current-carrying terminal members 2a, 2b and the bonding agents 3a, 3b are combined, so that the entire vicinity of both butted portions is intensively heated to a higher temperature. The two joining agents 3a and 3b were reacted while the both butted portions were held at about 1500 ° C. for 15 minutes, and then cooled to room temperature to complete the joining. The current was gradually increased and decreased during energization to prevent breakage due to rapid heating and rapid cooling.
第2の実施例は、本発明の請求項1に対応する。 The second embodiment corresponds to claim 1 of the present invention.
第2図は本発明の方法を適用した第2の実施例を示す
概略構成部分断面図であって、第1図と異なる点は、電
流バイパス用部材6が集電部材61a,61b及びリード線62
から構成されている。この集電部材61a,61bは、リング
状かつ例えば2分割される形状で、それぞれを両突合せ
部近傍の発熱部材1の外周面に緊密に当接させる。そし
て、この集電部材61a,61b間をリード線62で接続する。FIG. 2 is a schematic partial cross-sectional view showing a second embodiment to which the method of the present invention is applied. The difference from FIG. 1 is that the current bypass member 6 includes current collecting members 61a and 61b and lead wires. 62
It is composed of The current collecting members 61a and 61b have a ring shape and are, for example, divided into two parts, and each of them is brought into close contact with the outer peripheral surface of the heat generating member 1 near both butted portions. Then, the current collecting members 61a and 61b are connected by a lead wire 62.
以上の構成により、第1の通電端子部材2aから第1の
接合剤3a,突合せ部近傍の発熱部材1へと順次に流れる
加熱用電流が、発熱部材1の全長に亘って流れることな
く、この電流の大半は集電部材61aで集電され、リード
線62を通って集電部材61bへと流れ再び元の全加熱用電
流がもう一方の突合せ部近傍の発熱部材1、第2の接合
剤3b,第2の通電端子部材2bへと順次に流れる。With the above configuration, the heating current that flows sequentially from the first energizing terminal member 2a to the first bonding agent 3a and the heating member 1 near the butting portion does not flow over the entire length of the heating member 1. Most of the current is collected by the current collecting member 61a, flows through the lead wire 62 to the current collecting member 61b, and the original total heating current is again applied to the heating member 1 and the second bonding agent near the other butting portion. 3b, and flows sequentially to the second energizing terminal member 2b.
第3の実施例は、本発明の請求項1に対応する。 The third embodiment corresponds to claim 1 of the present invention.
第3図は本発明の方法を適用した第3の実施例を示す
概略構成部分断面図であって、第1図と異なる点は、同
時に大量接合するために、電源装置4から各電極への配
線が直列接続される構成になっている。この直列接続は
例えば2個の発熱部材を上記の方法で接合する場合、発
熱部材1,通電端子部材2a,2b,接合剤3a,3b,電極5a,5b及
び電流バイパス用部材6からなる第1の被接合構成体5
中の電極5aと、発熱部材11,通電端子部材21a,21b,接合
剤31a,31b,電極51a,51b及び電流バイパス用部材61から
なる第2の被接合構成体51中の電極51bとの間に電源装
置4を接続し、かつ第1の被接合構成体5中の電極5bと
第2の被接合構成体51中の電極51aとを直接接続する。FIG. 3 is a schematic partial cross-sectional view showing a third embodiment to which the method of the present invention is applied. The difference from FIG. 1 is that a large number of parts are simultaneously connected from the power supply device 4 to each electrode. Wiring is connected in series. This series connection is, for example, when two heat generating members are joined by the above-described method, a first member including a heat generating member 1, current-carrying terminal members 2a, 2b, bonding agents 3a, 3b, electrodes 5a, 5b, and a current bypass member 6. To be joined 5
Between the inner electrode 5a and the electrode 51b in the second bonded component 51 including the heat generating member 11, the conducting terminal members 21a and 21b, the bonding agents 31a and 31b, the electrodes 51a and 51b, and the current bypass member 61. The power supply device 4 is connected to the power supply device 4, and the electrode 5 b in the first bonded component 5 is directly connected to the electrode 51 a in the second bonded component 51.
なお、直列接続の場合、電源装置4は高電圧出力のも
のが好適である。In the case of serial connection, the power supply device 4 preferably has a high voltage output.
また、この接続方法は並列接続であってもよく、この
場合の電源装置4は大電流出力のものが好適である。The connection method may be parallel connection, and in this case, the power supply device 4 preferably has a large current output.
ところで、以上の実施例においては、両突合せ部を流
れる電流が当然同じであるあめに、発熱部材及び接合剤
の抵抗値、電極位置のバラツキが大きければ、両突合せ
部で加熱温度差が大きくなる可能性があり、例えば片方
が最適接合温度以上に過加熱される虞れもある、したが
って、上記抵抗値のバラツキを小さくする考慮が必要で
あるが、これが解消されない場合には、以下に示す実施
例によって、この問題は解決される。By the way, in the above embodiment, if the current flowing through both butted portions is naturally the same, and if the resistance values of the heating member and the bonding agent and the electrode positions vary greatly, the heating temperature difference between both butted portions becomes large. There is a possibility that, for example, one of them may be overheated to an optimum junction temperature or more.Therefore, it is necessary to consider the variation in the resistance value. However, if this is not solved, the following implementation is required. The example solves this problem.
第4の実施例は、本発明の請求項2に対応する。 The fourth embodiment corresponds to claim 2 of the present invention.
第4図は本発明の方法を適用した第4の実施例を示す
概略構成部分断面図である。まず、第1の実施例と同様
の発熱部材1の両端部と通電端子部材2a,2bとを、それ
ぞれSi,SiC,C,バインダーからなるペースト状の第1及
び第2の導電性接合剤3a,3bを塗布し、これらを突合せ
て約10kg/cm2の圧力Pを加えて固定した。FIG. 4 is a schematic partial cross-sectional view showing a fourth embodiment to which the method of the present invention is applied. First, the both ends of the heat generating member 1 and the current-carrying terminal members 2a and 2b, which are the same as those in the first embodiment, are connected to each other by paste-like first and second conductive bonding agents 3a made of Si, SiC, C and a binder, respectively. , 3b, which were butted together and fixed by applying a pressure P of about 10 kg / cm 2 .
つぎに、リング状かつ例えば2分割される形状で、第
1の電源装置4aに接続された第1の対電極8a,8a′を、
それぞれ第1の突合せ部近傍の第1の通電端子部材2a及
び発熱部材1の外周面にボルト締めして緊密に当接させ
る。そして、第2の電源装置4bに接続された上記と同形
状の第2の対電極8b,8b′を、それぞれ第2の突合せ部
近傍の第2の通電端子部材2b及び発熱部材1外周面にボ
ルト締めして緊密に当接させる。また、突合せ部の熱放
散を防止するために、両突合せ部近傍全体を断熱材7a,7
bで覆う。Next, the first counter electrodes 8a and 8a ′ connected to the first power supply device 4a in the shape of a ring and divided into two parts, for example,
Each of the first energizing terminal member 2a and the heat generating member 1 in the vicinity of the first butting portion is tightly contacted by bolting to the outer peripheral surface thereof. Then, the second counter electrodes 8b and 8b 'having the same shape as the above connected to the second power supply device 4b are respectively attached to the outer peripheral surfaces of the second energizing terminal member 2b and the heat generating member 1 near the second butting portion. Tighten the bolts to make tight contact. In addition, in order to prevent heat dissipation at the butted portion, the entire vicinity of both butted portions is thermally insulated 7a, 7a.
Cover with b.
以上の構成において、接合雰囲気を不活性ガス、例え
ばArガスとし、第1の対電極8a,8a′間及び第2の対電
極間8b,8b′間に電圧を印加すると、第1の通電端子部
材2aから第1の接合剤3a、第1の突合せ部近傍の発熱部
材1へと順次に流れる加熱用電流が発熱部材1全長に亘
って流れることなく、この電流は第1の突合せ部近傍の
みを流れる。また、第2の通電端子部材2bから第2の接
合剤3b、第2の突合せ部近傍の発熱部材1へと流れる加
熱用電流は第2の突合せ部近傍のみを流れ、それぞれに
抵抗値に応じたジュール熱が発生する。ところが、前述
したように両突合せ部及びその近傍の抵抗値の違いによ
る加熱温度差を修正するために、両突合せ部の加熱温度
をそれぞれセンシングしながら、第1及び第2の電源装
置4a,4bからの加熱用電流を別個に制御している。な
お、通電時は、第1の実施例と同様に、電流を徐々に増
加、減少させた。In the above configuration, when the bonding atmosphere is an inert gas, for example, Ar gas, and a voltage is applied between the first counter electrodes 8a and 8a 'and between the second counter electrodes 8b and 8b', the first energizing terminal The heating current that flows sequentially from the member 2a to the first bonding agent 3a and the heating member 1 near the first butting portion does not flow over the entire length of the heating member 1, and this current is only generated near the first butting portion. Flows through. The heating current flowing from the second current-carrying terminal member 2b to the second bonding agent 3b and the heating member 1 near the second butting portion flows only in the vicinity of the second butting portion, and each of the heating currents depends on the resistance value. Joule heat is generated. However, as described above, in order to correct the heating temperature difference due to the difference in the resistance value between the two butted portions and the vicinity thereof, the first and second power supply devices 4a and 4b are sensed while respectively sensing the heating temperatures of the two butted portions. Is separately controlled. During energization, the current was gradually increased and decreased as in the first embodiment.
以上の実施例において、通電端子部材への電極取付位
置は、この端子部材の抵抗が他よりも小さいので、突合
せ部近傍でなく端部でもよい。In the above embodiment, the electrode may be attached to the current-carrying terminal member at an end instead of near the abutting portion because the resistance of the terminal member is smaller than the other members.
また、炭化ケイ素質発熱体の場合について説明した
が、ケイ化モリブデン発熱体などの溶融する物質につい
ては、接合剤を介在させることなく、直接、発熱部材と
通電端子部材とを突合せて、上記の方法により突合せ部
及びその近傍を加熱し、突合せ部を接合させることがで
きる。Although the case of the silicon carbide heating element has been described, for a melting substance such as a molybdenum silicide heating element, the heating member and the current-carrying terminal member are directly butted with no intervening bonding agent. The butt portion and its vicinity can be heated by the method to join the butt portion.
〈発明の効果〉 以上のように、本発明によれば、請求項1,2の共通効
果としては、接合に際しての両突合せ部をジュール熱に
より効果的に加熱させたので、より短時間接合が可能と
なり、また設備費の低減及び電力消費に伴うランニング
コストの低減が図られ、さらに接合温度が高い場合、発
熱部材の劣化が全体に及ぶことを防止できる。<Effects of the Invention> As described above, according to the present invention, the common effect of claims 1 and 2 is that both butted portions at the time of joining are effectively heated by Joule heat, so that joining can be performed in a shorter time. This makes it possible to reduce the equipment cost and the running cost due to the power consumption. Further, when the joining temperature is high, it is possible to prevent the deterioration of the heat generating member from extending to the whole.
また、請求項2の効果としては、両突合せ部での接合
条件を同一に制御できるために、発熱部材の抵抗値のバ
ラツキなどによる接合不良または発熱部材の劣化を防止
できる。According to the second aspect of the present invention, since the joining conditions at both butting portions can be controlled to be the same, it is possible to prevent poor joining or deterioration of the heating member due to a variation in the resistance value of the heating member.
第1図乃至第4図は、それぞれ本発明の方法を適用した
第1乃至第4の実施例を示す概略構成部分断面図であ
る。 第5図は、従来例を示す概略構成断面図である。 1……セラミックス発熱体、2a,2b……通電端子部材、3
a,3b……接合剤、5a,5b……電極、5,51……被接合構成
体、6,61……電流バイパス用部材、8a,8a′,8b,8b′…
…対電極。FIG. 1 to FIG. 4 are schematic partial sectional views showing first to fourth embodiments to which the method of the present invention is applied, respectively. FIG. 5 is a schematic configuration sectional view showing a conventional example. 1 ... ceramic heating element, 2a, 2b ... energizing terminal member, 3
a, 3b ... bonding agent, 5a, 5b ... electrode, 5, 51 ... structure to be bonded, 6, 61 ... current bypass member, 8a, 8a ', 8b, 8b' ...
... counter electrode.
フロントページの続き (56)参考文献 特開 昭58−126690(JP,A) 特開 昭63−26981(JP,A) 特開 昭60−172191(JP,A) 特開 昭63−285891(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05B 3/14 H05B 3/02 H05B 3/00 C04B 37/02Continuation of the front page (56) References JP-A-58-126690 (JP, A) JP-A-63-26981 (JP, A) JP-A-60-172191 (JP, A) JP-A-63-285891 (JP) , A) (58) Field surveyed (Int. Cl. 6 , DB name) H05B 3/14 H05B 3/02 H05B 3/00 C04B 37/02
Claims (2)
方法において、発熱部材の両端部と第1及び第2の通電
端子部材とを、直接またはそれぞれ第1及び第2の接合
剤を介在させて突合せ、前記第1及び第2の端子部材の
外周面にそれぞれ第1及び第2の電極を当接させると共
に、接合時に前記発熱体に流れる加熱用電流の大半を、
前記発熱部材の両突合せ部近傍よりバイパスさせる電流
バイパス用部材を、前記発熱部材の外周面に当接させて
構成した被接合構成体を少なくとも1つ設けて、前記電
極間に電圧を印加することによる加熱用電流によって、
前記突合せ部近傍の発熱部材により多く生じるジュール
熱及び突合せ部に生じるジュール熱により、前記突合せ
部及びその近傍を加熱して、前記突合せ部を同時に接合
するセラミックス発熱体の通電端子部材の電気接合方
法。In a method of joining a current-carrying terminal member of a ceramic heating element, both ends of a heat-generating member and first and second current-carrying terminal members are directly or through first and second bonding agents, respectively. The first and second electrodes are brought into contact with the outer peripheral surfaces of the first and second terminal members, respectively, and most of the heating current flowing through the heating element at the time of joining is
Providing at least one member to be joined constituted by contacting an outer peripheral surface of the heat generating member with a current bypass member for bypassing the vicinity of both butting portions of the heat generating member, and applying a voltage between the electrodes. By the heating current by
A method of electrically connecting a current-carrying terminal member of a ceramic heating element that simultaneously heats the butting portion and the vicinity thereof with the Joule heat generated by the heat generating member near the butting portion and the Joule heat generated at the butting portion and simultaneously joins the butting portion. .
方法において、発熱部材の両端部と第1及び第2の通電
端子部材とを、直接またはそれぞれ第1及び第2の接合
剤を介在させて突合せ、前記第1の通電端子部材と第1
の突合せ部近傍の発熱部材との外周面に第1の対電極を
当接させ、かつ前記第2の通電端子部材と第2の突合せ
部近傍の発熱部材との外周面に第2の対電極を当接さ
せ、前記第1及び第2の対電極間に別個に電圧を印加す
ることにより制御される加熱用電流によって、前記第1
及び第2の突合せ部近傍の発熱部材により多く生じるジ
ュール熱及び両突合せ部に生じるジュール熱により、前
記突合せ部及びその近傍を加熱して、前記突合せ部を同
時に接合するセラミックス発熱体の通電端子部材の電気
接合方法。2. A method for joining a current-carrying terminal member of a ceramic heating element, wherein both end portions of the heat-generating member and the first and second current-carrying terminal members are directly or through first and second bonding agents, respectively. Butting, the first energizing terminal member and the first
The first counter electrode is brought into contact with the outer peripheral surface of the heat generating member near the butting portion, and the second counter electrode is formed on the outer peripheral surface of the second energizing terminal member and the heat generating member near the second butting portion. Are brought into contact with each other, and the first current is controlled by applying a voltage separately between the first and second counter electrodes.
And an energizing terminal member of a ceramic heating element that heats the butted portion and its vicinity by joining the butted portions simultaneously by Joule heat generated by the heat generating member near the second butted portion and Joule heat generated at both butted portions. Electrical joining method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21953789A JP2778146B2 (en) | 1989-08-25 | 1989-08-25 | Electrical joining method of current-carrying terminal member of ceramic heating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21953789A JP2778146B2 (en) | 1989-08-25 | 1989-08-25 | Electrical joining method of current-carrying terminal member of ceramic heating element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0384887A JPH0384887A (en) | 1991-04-10 |
JP2778146B2 true JP2778146B2 (en) | 1998-07-23 |
Family
ID=16737042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21953789A Expired - Lifetime JP2778146B2 (en) | 1989-08-25 | 1989-08-25 | Electrical joining method of current-carrying terminal member of ceramic heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2778146B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9455053B2 (en) * | 2013-09-16 | 2016-09-27 | Westinghouse Electric Company Llc | SiC matrix fuel cladding tube with spark plasma sintered end plugs |
-
1989
- 1989-08-25 JP JP21953789A patent/JP2778146B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0384887A (en) | 1991-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200933941A (en) | Method for producing a thermoelectric component and thermoelectric component | |
JP7502379B2 (en) | Exhaust Heater and Method for Manufacturing the Exhaust Heater - Patent application | |
JP2778146B2 (en) | Electrical joining method of current-carrying terminal member of ceramic heating element | |
US5534091A (en) | Joining method of ceramics and insertion member for heating and joining for use in the method | |
MXPA06005911A (en) | Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device. | |
WO1992006054A1 (en) | Method of electrically joining objects to be joined including ceramics | |
JP2706726B2 (en) | Electric joining method of ceramics | |
JP4048655B2 (en) | Ceramic heater | |
JP2773257B2 (en) | Electric bonding method between Si-containing silicon carbide ceramics | |
JPH01176283A (en) | Method for electrically joining ceramics | |
JP4987839B2 (en) | Heating device | |
JP2745538B2 (en) | Electric joining method between ceramics and insert material for joining | |
JP2745539B2 (en) | Electrical joining method of ceramics and metal and insert material for joining | |
JPH0383870A (en) | Electric bonding of metal si-containing silicon carbide ceramic | |
JP2841598B2 (en) | Electrical joining method of ceramics and insert material for electrical joining | |
JP2825088B2 (en) | Apparatus and method for manufacturing semiconductor device | |
JPH0241876B2 (en) | ||
JPH079124A (en) | Heating element for heat transmission brazing | |
JPH03197370A (en) | Method for electrically joining ceramic hollow members to each other | |
JPH0275189A (en) | Ceramic heater | |
JPH08236816A (en) | Thermoelectric element | |
JPH0613164A (en) | Heater structure | |
JP2001326391A (en) | Electronic device comprising molten electrode | |
JPH01226775A (en) | Method for electrically bonding ceramic and heating member for bonding | |
SU659302A1 (en) | Electric soldering iron |