JP4987839B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP4987839B2
JP4987839B2 JP2008301172A JP2008301172A JP4987839B2 JP 4987839 B2 JP4987839 B2 JP 4987839B2 JP 2008301172 A JP2008301172 A JP 2008301172A JP 2008301172 A JP2008301172 A JP 2008301172A JP 4987839 B2 JP4987839 B2 JP 4987839B2
Authority
JP
Japan
Prior art keywords
electrically insulating
resistance heating
insulating base
heating material
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008301172A
Other languages
Japanese (ja)
Other versions
JP2010129290A (en
Inventor
豊年 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Nissho KK
Original Assignee
Kyushu Nissho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Nissho KK filed Critical Kyushu Nissho KK
Priority to JP2008301172A priority Critical patent/JP4987839B2/en
Publication of JP2010129290A publication Critical patent/JP2010129290A/en
Application granted granted Critical
Publication of JP4987839B2 publication Critical patent/JP4987839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種電子機器の部品や半導体材料などの熱処理に使用される電気抵抗発熱方式の加熱装置に関する。   The present invention relates to an electric resistance heating type heating apparatus used for heat treatment of various electronic equipment components and semiconductor materials.

電子機器部品や半導体材料などの熱処理に使用される加熱装置については、従来、様々な方式のものが提案されているが、本発明に関連するものとして、窒化アルミニウム製のヒータ基材上に設けられた発熱体埋設溝内に抵抗発熱材を配置し、その上面に窒化アルミニウム製のヒータカバーを重ね合わせた構造のセラミックスヒータがある(例えば、特許文献1参照。)。   Various heating systems used for heat treatment of electronic equipment parts and semiconductor materials have been proposed in the past, but they are provided on a heater base made of aluminum nitride as related to the present invention. There is a ceramic heater having a structure in which a resistance heating material is disposed in the formed heating element embedded groove and an aluminum nitride heater cover is superposed on the upper surface (see, for example, Patent Document 1).

特開2005−011769号公報JP 2005-011769 A

特許文献1記載のセラミックスヒータは、抵抗発熱材の表面や発熱体埋設溝が電気絶縁性物質の皮膜で被覆されているため、高温加熱時に抵抗発熱材間でリーク電流が生じない点においては優れている。しかしながら、基材及びヒータカバーと、抵抗発熱体との間に電気絶縁性物質の被膜が介在しているため、抵抗発熱体から基材及びヒータカバーへの熱伝導効率が悪く、加熱状態が不均一となることがある。   The ceramic heater described in Patent Document 1 is excellent in that a leak current does not occur between the resistance heating materials during high-temperature heating because the surface of the resistance heating material and the heating element embedded groove are covered with a film of an electrically insulating material. ing. However, since a coating of an electrically insulating material is interposed between the base material and the heater cover and the resistance heating element, the heat conduction efficiency from the resistance heating element to the base material and the heater cover is poor, and the heating state is not good. May be uniform.

本発明が解決しようとする課題は、均一加熱性及び耐久性に優れ、電気的短絡も発生しない加熱装置を提供することにある。   The problem to be solved by the present invention is to provide a heating device that is excellent in uniform heating properties and durability and that does not cause an electrical short circuit.

本発明の加熱装置は、密着状態に積層された複数の電気絶縁性基材と、前記電気絶縁性基材同士の接触領域における少なくとも一方の面に形成された凹溝内に充填された状態で融着された抵抗発熱材と、を備え、前記抵抗発熱材がケイ素若しくはケイ素化合物を含み、前記電気絶縁性基材を、窒化アルミニウムを主成分とするセラミックスで形成し、前記電気絶縁性基材同士の接触領域の外周の少なくとも一部に形成された開先部内にケイ素若しくはケイ素化合物を含む抵抗発熱材を充填した状態で融着させたことを特徴とする。ここで、抵抗発熱材とは、電流を流すことによってジュール熱を発する性質を有する材料をいう。 The heating device of the present invention is in a state where a plurality of electrically insulating base materials stacked in a close contact state and a groove formed in at least one surface in a contact region between the electrically insulating base materials are filled. includes a fused resistor heating member, wherein the look-containing resistance heating material silicon or silicon compound, the electrically insulating substrate, formed of a ceramic mainly containing aluminum nitride, the electrically insulating base The groove part formed in at least one part of the outer periphery of the contact area | region of materials is fuse | melted in the state filled with the resistance heating material containing a silicon or a silicon compound . Here, the resistance heating material refers to a material having a property of generating Joule heat by flowing an electric current.

このような構成とすれば、電気絶縁性基材の凹溝内に充填された状態で融着された抵抗発熱材が、密着状態に積層された電気絶縁性基材同士を強く接合するため、抵抗発熱材の熱がムラ無く電気絶縁性基材へ伝達され、優れた均一加熱性が得られる。また、抵抗発熱材は、片方の電気絶縁性基材の凹溝と他方の電気絶縁性基材との間に隙間無く充填された状態で融着されているため、通電発熱中に抵抗加熱体にクラックが生じたり、割れたりすることがなく、耐久性にも優れている。さらに、抵抗発熱材は、電気絶縁性素材に予め形成された凹溝内に充填した状態で融着することができるため、予定位置に抵抗発熱体を正確に配置することができ、融着過程における抵抗発熱体のしみだしや拡散に起因する電気的短絡も発生しない。   With such a configuration, the resistance heating material fused in a state filled in the concave grooves of the electrically insulating base material strongly bonds the electrically insulating base materials laminated in a close contact state. The heat of the resistance heating material is transmitted to the electrically insulating substrate without unevenness, and an excellent uniform heating property is obtained. In addition, the resistance heating material is fused in a state of being filled with no gap between the concave groove of one of the electrical insulating substrates and the other electrical insulating substrate. There is no cracking or cracking on the surface, and the durability is excellent. Furthermore, since the resistance heating material can be fused in a state where it is filled in a groove formed in advance in an electrically insulating material, the resistance heating element can be accurately placed at a predetermined position, and the fusion process There is no electrical short circuit caused by the exudation or diffusion of the resistance heating element.

また、前記電気絶縁性基材、窒化アルミニウムを主成分とするセラミックスで形成したことにより、窒化アルミニウムは、ケイ素若しくはケイ素化合物を含む抵抗発熱材との密着性が良好で、熱伝導性も高いため、均一加熱性が高まり、エネルギ効率も向上する。 Furthermore, the electrically insulating substrate, by forming a ceramic mainly containing aluminum nitride, aluminum nitride, good adhesion to the resistance heating material containing silicon or silicon compounds, thermal conductivity is high Therefore, the uniform heating property is improved and the energy efficiency is also improved.

さらに、前記電気絶縁性基材同士の接触領域の外周の少なくとも一部に形成された開先部内にケイ素若しくはケイ素化合物を含む抵抗発熱材を充填した状態で融着させたことにより、電気絶縁性基材同士の接触領域の外周の少なくとも一部が抵抗発熱材で接合されるため、電気絶縁性基材同士の密着力が高まり、耐久性が向上する。 Furthermore, by having fused in a state filled with resistive heating material containing silicon or silicon compound on at least a portion which is formed in groove portion of the outer periphery of the contact area between the electrically insulating substrate, electrically insulating Since at least a part of the outer periphery of the contact region between the substrates is joined by the resistance heating material, the adhesion between the electrically insulating substrates is increased and the durability is improved.

一方、前記電気絶縁性基材の外面から前記電気絶縁性基材同士の接触領域に至るように形成された貫通孔内にケイ素若しくはケイ素化合物を含む抵抗発熱材を充填した状態で融着させることもできる。このような構成とすれば、貫通孔内に充填された状態で融着した抵抗発熱材が、重なり合った電気絶縁性基材同士を接合する機能を発揮するので、電気絶縁性基材同士の密着力が高まり、耐久性が向上する。
On the other hand , fusion is performed in a state where a resistance heating material containing silicon or a silicon compound is filled in a through hole formed so as to reach the contact region between the electrically insulating substrates from the outer surface of the electrically insulating substrate. You can also. With such a configuration, the resistance heating material fused in the state of being filled in the through hole exhibits the function of joining the overlapping electrically insulating substrates, so that the electrically insulating substrates are in close contact with each other. Power is increased and durability is improved.

本発明により、均一加熱性及び耐久性に優れ、電気的短絡も発生しない加熱装置を提供することができる。   According to the present invention, it is possible to provide a heating device that is excellent in uniform heating property and durability and that does not generate an electrical short circuit.

以下、図面に基づいて、本発明の実施の形態について説明する。図1は本発明の第1実施形態である加熱装置を示す平面図、図2は図1に示す加熱装置の正面図、図3は図1におけるA−A線断面図、図4は図1におけるB−B線断面図、図5は図2におけるC−C線断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a plan view showing a heating apparatus according to a first embodiment of the present invention, FIG. 2 is a front view of the heating apparatus shown in FIG. 1, FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG. 5 is a cross-sectional view taken along the line BB in FIG. 2, and FIG. 5 is a cross-sectional view taken along the line CC in FIG.

図1〜図4に示すように、第1実施形態の加熱装置10は、密着状態に積層された複数の電気絶縁性基材11,12と、電気絶縁性基材11,12同士を接合するため電気絶縁性基材11の凹溝15内に充填された状態で融着された抵抗発熱材13と、を備え、抵抗発熱材13はケイ素若しくはケイ素化合物を含んでいる。抵抗発熱材13は、電気絶縁性基材11,12同士の接触領域14における一方の電気絶縁性基材11に形成された凹溝15と他方の電気絶縁性基材12の下面12cの一部とで囲まれた空間内に隙間無く充填された状態で融着されている。電気絶縁性基材11,12は、窒化アルミニウムを主成分とするセラミックスで形成されている。また、電気絶縁性基材11,12同士の接触領域14の外周14aの一方の電気絶縁性基材11の全周に渡って形成された開先部11a内に抵抗発熱材13aが充填された状態で融着されている。この抵抗発熱材13aは抵抗発熱材13と同じ組成である。   As shown in FIGS. 1-4, the heating apparatus 10 of 1st Embodiment joins the several electrically insulating base materials 11 and 12 laminated | stacked in the close contact state, and the electrically insulating base materials 11 and 12 mutually. Therefore, the resistance heating material 13 is melted and filled in the concave groove 15 of the electrically insulating base material 11, and the resistance heating material 13 contains silicon or a silicon compound. The resistance heating material 13 includes a concave groove 15 formed in one electrical insulating base material 11 in a contact region 14 between the electrical insulating base materials 11 and 12, and a part of the lower surface 12c of the other electrical insulating base material 12. It is fused in a state filled with no gap in the space surrounded by. The electrically insulating base materials 11 and 12 are formed of ceramics whose main component is aluminum nitride. Moreover, the resistance heating material 13a was filled in the groove portion 11a formed over the entire circumference of one electrical insulating base material 11 of the outer periphery 14a of the contact region 14 between the electrical insulating base materials 11 and 12. It is fused in a state. The resistance heating material 13 a has the same composition as the resistance heating material 13.

図3,図5に示すように、電気絶縁性基材11,12同士の接触領域14である電気絶縁性基材11の上面11cに形成された凹溝15は交差する部分のない連続した曲線状をなし、その端部15a,15bは、開先部11aの内側に位置している。また、図4に示すように、電気絶縁性基材12における、凹溝15aの端部15a,15bと対向する位置には、それぞれ貫通孔12a,12bが開設され、これらの貫通孔12a,12bに棒状の通電部材16a,16bがそれぞれ差し込まれている。通電部材16a,16bの下端部は凹溝15の端部15a,15b内の抵抗発熱材13に接続されている。通電部材16a,16bの外周は抵抗発熱材13bによって被覆されている。抵抗発熱材13bは抵抗発熱材13と同じ組成である。   As shown in FIGS. 3 and 5, the concave groove 15 formed in the upper surface 11 c of the electrically insulating substrate 11, which is a contact region 14 between the electrically insulating substrates 11 and 12, is a continuous curve having no intersecting portion. The end portions 15a and 15b are located inside the groove portion 11a. Further, as shown in FIG. 4, through holes 12a and 12b are respectively opened at positions facing the end portions 15a and 15b of the groove 15a in the electrically insulating base material 12, and these through holes 12a and 12b are respectively provided. The rod-shaped energizing members 16a and 16b are respectively inserted into the. The lower ends of the current-carrying members 16a and 16b are connected to the resistance heating material 13 in the ends 15a and 15b of the groove 15. The outer peripheries of the energizing members 16a and 16b are covered with a resistance heating material 13b. The resistance heating material 13 b has the same composition as the resistance heating material 13.

電気絶縁性基材12から突出する通電部材15,16を通電端子として外部電源(図示せず)から給電すると抵抗発熱材13が発熱し、電気絶縁性基材11,12が昇温するので、上方の電気絶縁性基材12の上面12hに被加熱物(図示せず)を載置することによって当該被加熱物を熱処理することができる。加熱装置10においては、電気絶縁性基材11の凹溝15内に充填された状態で融着された抵抗発熱材13によって積層状態の電気絶縁性基材11,12同士が強く接合されているため、抵抗発熱材13の熱がムラ無く電気絶縁性基材11,12へ伝達され、電気絶縁性基材12の上面12hの温度分布が均一となる。従って、絶縁性基材12の上面12hに載置される被加熱物(図示せず)を均一に加熱することができる。   When power is supplied from an external power source (not shown) using the current-carrying members 15 and 16 protruding from the electrical insulating base 12 as current-carrying terminals, the resistance heating material 13 generates heat, and the electrical insulating bases 11 and 12 are heated. By placing a heated object (not shown) on the upper surface 12h of the upper electrically insulating substrate 12, the heated object can be heat-treated. In the heating device 10, the laminated electrical insulating base materials 11 and 12 are strongly bonded to each other by the resistance heating material 13 that is fused in a state of being filled in the concave grooves 15 of the electrical insulating base material 11. Therefore, the heat of the resistance heating material 13 is transmitted to the electrical insulating base materials 11 and 12 without unevenness, and the temperature distribution on the upper surface 12h of the electrical insulating base material 12 becomes uniform. Therefore, an object to be heated (not shown) placed on the upper surface 12h of the insulating substrate 12 can be heated uniformly.

また、片方の電気絶縁性基材11の上面11bの凹溝15と、他方の電気絶縁性基材12の下面12cの一部で囲まれた空間内に抵抗発熱材13が隙間無く充填された状態で融着されているため、通電発熱中に抵抗加熱体13にクラックが生じたり、割れたりすることがなく、耐久性にも優れている。さらに、電気絶縁性素材11に予め形成された凹溝15内に隙間無く充填した状態で抵抗発熱材13を融着することができるため、予定位置に抵抗発熱体13を正確に配置することができ、融着過程における抵抗発熱体13のしみだしや拡散に起因する電気的短絡も発生しない。   In addition, the resistance heating material 13 is filled in the space surrounded by the concave groove 15 on the upper surface 11b of one electrical insulating base material 11 and a part of the lower surface 12c of the other electrical insulating base material 12 without any gap. Since it is fused in a state, the resistance heating body 13 does not crack or break during energization heat generation, and is excellent in durability. Furthermore, since the resistance heating material 13 can be fused in a state where the groove 15 formed in advance in the electrical insulating material 11 is filled with no gap, the resistance heating element 13 can be accurately arranged at a predetermined position. In addition, there is no electrical short circuit caused by the exudation or diffusion of the resistance heating element 13 in the fusion process.

電気絶縁性基材11,12は窒化アルミニウムを主成分とするセラミックスで形成されているため、ケイ素若しくはケイ素化合物を含む抵抗発熱材13との密着性が良好で、熱伝導性も高いため、均一加熱性及びエネルギ効率を高める上で有効である。   Since the electrically insulating base materials 11 and 12 are made of ceramics mainly composed of aluminum nitride, the adhesiveness with the resistance heating material 13 containing silicon or silicon compound is good and the heat conductivity is high. This is effective in improving the heating performance and energy efficiency.

図3〜図5に示すように、電気絶縁性基材11,12同士の接触領域14の外周14aに沿って形成された開先部11a内に抵抗発熱材13aを充填した状態で融着させたことにより、電気絶縁性基材11,12同士の接触領域14の外周14a全体が抵抗発熱材13aで接合された状態となるため、電気絶縁性基材11,12同士が強く接合され、耐久性に優れている。また、電気絶縁性基材11,12同士の接触領域14は外部から気液が浸入できない密閉状態に保持されるため、加熱装置10を液体洗浄することもできる。さらに、図2に示すように、抵抗発熱材13aからアース17を配線すれば、電気絶縁性基材11,12などの帯電を回避することができる。   As shown in FIG. 3 to FIG. 5, the heat generating material 13 a is filled in the groove portion 11 a formed along the outer periphery 14 a of the contact region 14 between the electrically insulating base materials 11 and 12, and is fused. As a result, the entire outer periphery 14a of the contact region 14 between the electrically insulating base materials 11 and 12 is joined by the resistance heating material 13a, so that the electrically insulating base materials 11 and 12 are strongly joined and durable. Excellent in properties. Moreover, since the contact area 14 between the electrically insulating base materials 11 and 12 is kept in a sealed state in which gas and liquid cannot enter from the outside, the heating device 10 can also be liquid-cleaned. Furthermore, as shown in FIG. 2, if the ground 17 is wired from the resistance heating material 13a, charging of the electrically insulating base materials 11 and 12 can be avoided.

次に、図6に基づいて、加熱装置10の製造工程について説明する。図6は図1に示す加熱装置の製造工程を示す模式図である。図6(a)に示すように、電気絶縁性基材11の上面11cに凹溝15を設けるとともに、外周11cの外周に沿って開先部11aを形成する。そして、図6(b)に示すように、加熱処理によって溶融、焼結して抵抗発熱材13(図3参照)となるペースト状の抵抗発熱素材13mを凹溝15内へ充填する。   Next, the manufacturing process of the heating device 10 will be described with reference to FIG. FIG. 6 is a schematic view showing a manufacturing process of the heating apparatus shown in FIG. As shown in FIG. 6A, a groove 15 is provided on the upper surface 11c of the electrically insulating substrate 11, and a groove portion 11a is formed along the outer periphery of the outer periphery 11c. Then, as shown in FIG. 6B, the groove 15 is filled with a paste-like resistance heating material 13m that is melted and sintered by heat treatment and becomes the resistance heating material 13 (see FIG. 3).

なお、抵抗発熱素材13mとしては、「Si−7%Ti−5%Mo合金組成(wt%)の金属粉末とPVP(ポリビニルピロリドン)のアルコール溶液とを混合して形成したペースト」、「Si−10%Ni合金組成(wt%)の金属粉末とPVP(ポリビニルピロリドン)のアルコール溶液とを混合して形成したペースト」あるいは「Si−7%Cr合金組成(wt%)の金属粉末とPVP(ポリビニルピロリドン)のアルコール溶液とを混合して形成したペースト」などが好適であるが、これらに限定するものではない。   As the resistance heating material 13m, "a paste formed by mixing a metal powder of Si-7% Ti-5% Mo alloy composition (wt%) and an alcohol solution of PVP (polyvinylpyrrolidone)", "Si- A paste formed by mixing a metal powder of 10% Ni alloy composition (wt%) and an alcohol solution of PVP (polyvinylpyrrolidone) "or" a metal powder of Si-7% Cr alloy composition (wt%) and PVP (polyvinyl chloride). A paste formed by mixing an alcohol solution of pyrrolidone) is suitable, but is not limited thereto.

次に、図6(c)に示すように、電気絶縁性基材11の上面11cに電気絶縁性基材12を重ね合わせ、開先部11a内に抵抗発熱材素材13mを隙間無く充填した後、真空加熱炉18内に装入し、1300〜1400℃程度に加熱する。これにより、抵抗発熱素材13mが溶融、焼結され、抵抗発熱材13,13aとなって凹溝15内や開先部11a内に融着され、図1に示す加熱装置10が完成する。なお、開先部11aに抵抗発熱材素材13mを充填する段階において、図4に示す通電部材16a,16bを電気絶縁性基材12の貫通孔12a,12bに挿入すれば、図6(c)の過程を経ることにより、抵抗発熱材13と通電可能に接続される。   Next, as shown in FIG. 6C, after the electrically insulating base material 12 is overlaid on the upper surface 11c of the electrically insulating base material 11, and the resistance heating material 13m is filled in the groove portion 11a without a gap. Then, it is charged into the vacuum heating furnace 18 and heated to about 1300 to 1400 ° C. As a result, the resistance heating material 13m is melted and sintered, and becomes the resistance heating materials 13 and 13a, and is fused in the groove 15 and the groove portion 11a, thereby completing the heating device 10 shown in FIG. If the current-carrying members 16a and 16b shown in FIG. 4 are inserted into the through holes 12a and 12b of the electrically insulating substrate 12 in the stage of filling the groove 11a with the resistance heating material 13m, FIG. Through this process, the resistance heating material 13 is connected to be energized.

次に、図7〜図13に基づいて、本発明のその他の実施形態について説明する。図7は本発明の第2実施形態である加熱装置を示す平面図、図8は図7に示す加熱装置の正面図、図9は図7におけるD−D線断面図、図10は図8におけるE−E線断面図である。また、図11は本発明の第3実施形態である加熱装置を示す平面図、図12は図11に示す加熱装置の正面図、図13は図12におけるF−F線断面図である。なお、図7〜図13において、図1〜図6と同じ符号を付している部分は加熱装置10の構成部分と同じ構造、機能を有する部分であり、説明を省略する。   Next, another embodiment of the present invention will be described with reference to FIGS. 7 is a plan view showing a heating device according to a second embodiment of the present invention, FIG. 8 is a front view of the heating device shown in FIG. 7, FIG. 9 is a sectional view taken along line DD in FIG. 7, and FIG. It is the EE sectional view taken on the line. 11 is a plan view showing a heating device according to a third embodiment of the present invention, FIG. 12 is a front view of the heating device shown in FIG. 11, and FIG. 13 is a sectional view taken along line FF in FIG. 7 to 13, the parts denoted by the same reference numerals as those in FIGS. 1 to 6 are parts having the same structure and function as the constituent parts of the heating device 10, and the description thereof is omitted.

図7〜図10に示すように、第2実施形態の加熱装置20は、密着状態に積層された複数の電気絶縁性基材21,22と、電気絶縁性基材21,22同士を接合するため電気絶縁性基材21の凹溝15内に充填された状態で融着された抵抗発熱材13と、を備えている。また、電気絶縁性基材22の外面(上面21h)から電気絶縁性基材21,22同士の接触領域14に至る複数の貫通孔23が各コーナ付近に開設され、これらの貫通孔23とそれぞれ同軸をなす凹部24が電気絶縁性基材22の上面21cに形成されている。それぞれの貫通孔23及び凹部24内に抵抗発熱材13aが隙間無く充填された状態で融着されている。抵抗発熱材13aは、前述と同様、ケイ素若しくはケイ素化合物を含んでおり、抵抗発熱素材13m(図6参照)を焼結することによって形成されている。   As shown in FIGS. 7 to 10, the heating device 20 of the second embodiment joins a plurality of electrically insulating base materials 21 and 22 stacked in close contact with each other and the electrically insulating base materials 21 and 22. Therefore, the resistance heating material 13 fused in a state of being filled in the concave groove 15 of the electrically insulating base material 21 is provided. A plurality of through holes 23 extending from the outer surface (upper surface 21 h) of the electrically insulating base material 22 to the contact region 14 between the electrically insulating base materials 21 and 22 are opened near each corner. A concentric concave portion 24 is formed on the upper surface 21 c of the electrically insulating substrate 22. The resistance heating material 13a is filled in the through holes 23 and the recesses 24 without any gaps. As described above, the resistance heating material 13a contains silicon or a silicon compound, and is formed by sintering a resistance heating material 13m (see FIG. 6).

加熱装置20においては、電気絶縁性基材22の貫通孔23及び電気絶縁性基材21の凹部24内に充填された状態で融着された抵抗発熱材13aが、重なり合った電気絶縁性基材21,22同士を接合する機能を発揮するので、電気絶縁性基材21,22同士の密着力が高く、耐久性も優れている。また、貫通孔23内の抵抗発熱材13aからアース17を配線すれば、電気絶縁性基材21,22などの帯電を回避することができる。   In the heating apparatus 20, the resistance heating material 13 a fused in a state of being filled in the through holes 23 of the electrical insulating base material 22 and the recesses 24 of the electrical insulating base material 21 overlaps with each other. Since the function which joins 21 and 22 is exhibited, the adhesive force of the electrically insulating base materials 21 and 22 is high, and durability is also excellent. Further, if the ground 17 is wired from the resistance heating material 13a in the through hole 23, charging of the electrically insulating base materials 21, 22 and the like can be avoided.

図11〜図13に示すように、第3実施形態の加熱装置30においては、密着状態に積層された複数の電気絶縁性基材31,32と、電気絶縁性基材31,32同士を接合するため電気絶縁性基材31の凹溝15内に充填された状態で融着された抵抗発熱材13と、を備えている。電気絶縁性基材31,32同士の接触領域14の外周縁14aにおいて両方の電気絶縁性基材31,32の全周に渡って形成された開先部31a,32a内に充填された状態で抵抗発熱材13aが融着されている。この抵抗発熱材13aは抵抗発熱材13と同じ組成である。   As shown in FIGS. 11 to 13, in the heating device 30 of the third embodiment, a plurality of electrically insulating base materials 31 and 32 stacked in a close contact state and the electrically insulating base materials 31 and 32 are joined to each other. For this purpose, a resistance heating material 13 fused in a state of being filled in the concave groove 15 of the electrically insulating base material 31 is provided. In the state where the groove portions 31a and 32a formed over the entire circumference of both the electrical insulating base materials 31 and 32 are filled in the outer peripheral edge 14a of the contact region 14 between the electrical insulating base materials 31 and 32. The resistance heating material 13a is fused. The resistance heating material 13 a has the same composition as the resistance heating material 13.

図1に示す加熱装置10及び図7に示す加熱装置20はいずれも平面視形状が四角形であるのに対し、図11に示す加熱装置30の平面視形状は円形をなしている。従って、平面視形状が円形の被加熱物(図示せず)を電気絶縁性基材32の上面32hに載置して熱処理する場合などに好適である。なお、本発明に係る加熱装置を構成する電気絶縁性基材の平面視形状は四角形や円形に限定するものではないので、被加熱物の形状に適した形容とすることができる。   While the heating device 10 shown in FIG. 1 and the heating device 20 shown in FIG. 7 are both square in plan view, the shape in plan view of the heating device 30 shown in FIG. 11 is circular. Therefore, it is suitable for a case where an object to be heated (not shown) having a circular shape in plan view is placed on the upper surface 32h of the electrically insulating substrate 32 and heat-treated. In addition, since the planar view shape of the electrically insulating base material which comprises the heating apparatus which concerns on this invention is not limited to a square or a circle, it can be set as the shape suitable for the shape of to-be-heated material.

本発明の熱処理装置は、各種電子機器の部品や半導体材料などの熱処理手段として電子・電気産業分野あるいは機械部品産業などにおいて広く利用することができる。   The heat treatment apparatus of the present invention can be widely used in the electronic / electric industry or the machine parts industry as a heat treatment means for various electronic equipment parts and semiconductor materials.

本発明の第1実施形態である加熱装置を示す平面図である。It is a top view which shows the heating apparatus which is 1st Embodiment of this invention. 図1に示す加熱装置の正面図である。It is a front view of the heating apparatus shown in FIG. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図1におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 図2におけるC−C線断面図である。It is CC sectional view taken on the line in FIG. 図1に示す加熱装置の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the heating apparatus shown in FIG. 本発明の第2実施形態である加熱装置を示す平面図である。It is a top view which shows the heating apparatus which is 2nd Embodiment of this invention. 図7に示す加熱装置の正面図である。It is a front view of the heating apparatus shown in FIG. 図7におけるD−D線断面図である。It is the DD sectional view taken on the line in FIG. 図8におけるE−E線断面図である。It is the EE sectional view taken on the line in FIG. 本発明の第3実施形態である加熱装置を示す平面図である。It is a top view which shows the heating apparatus which is 3rd Embodiment of this invention. 図11に示す加熱装置の正面図である。It is a front view of the heating apparatus shown in FIG. 図12におけるF−F線断面図である。It is the FF sectional view taken on the line in FIG.

符号の説明Explanation of symbols

10,20,30 加熱装置
11,12,21,22,31,32 電気絶縁性基材
11a,31a,32a 開先部
11c,21c 上面
12a,12b,23 貫通孔
12c 下面
12h,22h,32h 上面
13,13a,13b 抵抗発熱材
13m 抵抗発熱素材
14 接触領域
14a 外周
15 凹溝
15a,15b 端部
16a,16b 通電部材
17 アース
18 真空加熱炉
24 凹部
10, 20, 30 Heating device 11, 12, 21, 22, 31, 32 Electrically insulating substrate 11a, 31a, 32a Groove 11c, 21c Upper surface 12a, 12b, 23 Through hole 12c Lower surface 12h, 22h, 32h Upper surface 13, 13a, 13b Resistance heating material 13m Resistance heating material 14 Contact area 14a Outer periphery 15 Concave groove 15a, 15b End portion 16a, 16b Current-carrying member 17 Ground 18 Vacuum heating furnace 24 Recess

Claims (2)

密着状態に積層された複数の電気絶縁性基材と、前記電気絶縁性基材同士の接触領域における少なくとも一方の面に形成された凹溝内に充填された状態で融着された抵抗発熱材と、を備え、前記抵抗発熱材がケイ素若しくはケイ素化合物を含み、
前記電気絶縁性基材を、窒化アルミニウムを主成分とするセラミックスで形成し、
前記電気絶縁性基材同士の接触領域の外周の少なくとも一部に形成された開先部内にケイ素若しくはケイ素化合物を含む抵抗発熱材を充填した状態で融着させたことを特徴とする加熱装置。
A plurality of electrically insulating base materials stacked in close contact with each other, and a resistance heating material fused in a state of being filled in a concave groove formed on at least one surface in a contact region between the electrically insulating base materials When the equipped, it viewed including the resistive heating material is silicon or a silicon compound,
The electrically insulating substrate is formed of ceramics mainly composed of aluminum nitride,
A heating apparatus comprising: a groove portion formed on at least a part of an outer periphery of a contact region between the electrically insulating substrates; and a fusion heating material filled with a resistance heating material containing silicon or a silicon compound .
前記電気絶縁性基材の外面から前記電気絶縁性基材同士の接触領域に至るように形成された貫通孔内にケイ素若しくはケイ素化合物を含む抵抗発熱材を充填した状態で融着させた請求項1記載の加熱装置。 A fusion-bonded state in which a resistance heating material containing silicon or a silicon compound is filled in a through hole formed so as to reach a contact region between the electrically insulating substrates from the outer surface of the electrically insulating substrate. 1 Symbol placement of the heating device.
JP2008301172A 2008-11-26 2008-11-26 Heating device Expired - Fee Related JP4987839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301172A JP4987839B2 (en) 2008-11-26 2008-11-26 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301172A JP4987839B2 (en) 2008-11-26 2008-11-26 Heating device

Publications (2)

Publication Number Publication Date
JP2010129290A JP2010129290A (en) 2010-06-10
JP4987839B2 true JP4987839B2 (en) 2012-07-25

Family

ID=42329549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301172A Expired - Fee Related JP4987839B2 (en) 2008-11-26 2008-11-26 Heating device

Country Status (1)

Country Link
JP (1) JP4987839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587845A (en) * 2018-10-24 2019-04-05 董林妤 One kind exempting from binder baffle heater and its production technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818106B2 (en) * 2012-11-09 2015-11-18 株式会社アンベエスエムティ X-ray inspection heating device and planar heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307994A (en) * 1992-04-28 1993-11-19 Toyota Motor Corp Heater structure
JP3567678B2 (en) * 1996-05-05 2004-09-22 征一郎 宮田 Electric heating element
JPH11307233A (en) * 1998-04-22 1999-11-05 Hitachi Hometec Ltd Heating element
JP2002173378A (en) * 2000-06-30 2002-06-21 Toshiba Ceramics Co Ltd Method of producing ceramic member for semiconductor treatment device
JP2002158081A (en) * 2000-11-17 2002-05-31 Sakaguchi Dennetsu Kk Heater unit
JP2005071781A (en) * 2003-08-25 2005-03-17 Zaiken:Kk Electric resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587845A (en) * 2018-10-24 2019-04-05 董林妤 One kind exempting from binder baffle heater and its production technology

Also Published As

Publication number Publication date
JP2010129290A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
TW200933941A (en) Method for producing a thermoelectric component and thermoelectric component
JP2008153194A (en) Heating device
JP2015018704A (en) Ceramic heater
JP6317469B2 (en) Heater and fluid heating apparatus using the same
JP4987839B2 (en) Heating device
JP2012508461A (en) Multi-layered piezoelectric actuator and method of fixing external electrodes in piezoelectric actuator
JP2009076592A (en) Method of crimping electrode of semiconductor device and heat slinger
JP6035236B2 (en) PTC device
TWI259535B (en) Molding heater for heating semiconductor wafer and fabrication method thereof
JP7321285B2 (en) Systems for ceramic structures and wafers
JP2013170090A (en) Method of bonding ceramics and metal and bonded structure of ceramics and metal
TWI730493B (en) Non-conductive film having heating function and electronic device
JP2018077963A (en) Planar heating element
JP2018006269A (en) Ceramic heater
JPH09172057A (en) Electrostatic chuck
JP7195336B2 (en) CERAMIC STRUCTURE AND METHOD FOR MANUFACTURING CERAMIC STRUCTURE
JP2004119833A (en) Thermoelement module and its manufacturing method
JP2017224641A (en) Resistor and heater
JP7360992B2 (en) Structure with terminal
US8481896B2 (en) Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity
JP6835623B2 (en) heater
TWI280649B (en) Method for manufacturing high-performance thermoelectric semiconductor and the thermoelectric semiconductor device
TW202333267A (en) Substrate holder and method of producing substrate holder
JP2009026723A (en) Planar heating element
JP2002015838A (en) Resistance-heating element and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4987839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees