JP2777017B2 - Cubic boron nitride sintered body and method for producing the same - Google Patents

Cubic boron nitride sintered body and method for producing the same

Info

Publication number
JP2777017B2
JP2777017B2 JP4172142A JP17214292A JP2777017B2 JP 2777017 B2 JP2777017 B2 JP 2777017B2 JP 4172142 A JP4172142 A JP 4172142A JP 17214292 A JP17214292 A JP 17214292A JP 2777017 B2 JP2777017 B2 JP 2777017B2
Authority
JP
Japan
Prior art keywords
boron nitride
powder
cubic boron
sintered body
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4172142A
Other languages
Japanese (ja)
Other versions
JPH0616476A (en
Inventor
謙也 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4172142A priority Critical patent/JP2777017B2/en
Publication of JPH0616476A publication Critical patent/JPH0616476A/en
Application granted granted Critical
Publication of JP2777017B2 publication Critical patent/JP2777017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、切削工具等に
使用される高硬度,高靱性に優れた立方晶窒化硼素質焼
結体およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride sintered body excellent in high hardness and high toughness used for, for example, cutting tools and the like, and a method for producing the same.

【0002】[0002]

【従来技術】立方晶窒化硼素(Cubic Boron Nitride 以
下cBNと略す)はダイヤモンドに次ぐ高硬度を有し、
しかもダイヤモンドと異なり、鉄系金属との親和性を持
たないため、特に高硬度焼入鋼の研削工具、切削工具に
用いられている。
2. Description of the Related Art Cubic Boron Nitride (hereinafter abbreviated as cBN) has the second highest hardness next to diamond.
Moreover, unlike diamond, it has no affinity for iron-based metals, and is therefore used particularly for grinding tools and cutting tools of hardened steel.

【0003】このようなcBNを使用した切削工具とし
ては、cBNをコバルト(Co)からなる金属で結合し
たものや、窒化チタン(TiN)等のセラミックスで結
合した立方晶窒化硼素質焼結体が用いられている(特公
昭52−43846号公報等参照)。
[0003] As such a cutting tool using cBN, a tool in which cBN is bonded with a metal made of cobalt (Co) or a cubic boron nitride sintered body in which ceramics such as titanium nitride (TiN) are bonded. (Refer to Japanese Patent Publication No. 52-43846).

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、上記
のような切削工具のうちCoを結合材に用いた立方晶窒
化硼素質焼結体では、cBN含有率が高く極めて高硬度
であるが、結合相がCoの金属間化合物を形成している
ため、耐熱性に劣り、刃先温度の上昇する加工には不向
きである。さらに、特公昭52−43846号公報によ
れば、鉄族金属は高温高圧下の溶浸によってcBN中に
分散するものとされているが、このような方法では溶浸
する金属量を一定することが難しいため品質にばらつき
を生じ易く、またCoの偏析が生じ均一な分散組織が得
られないという欠点がある。このため、加工中に突発的
な欠損を生じやすいという問題があった。また、ある条
件下で切削すると、cBN粒子が結合相から脱落するこ
とによって大きな摩耗を引き起こすことがある。これ
は、焼結過程におけるcBNとCoとの反応性が低く、
cBNと結合相との結合力が弱いためと考えられる。
However, among the above cutting tools, the cubic boron nitride sintered body using Co as a binder has a high cBN content and a very high hardness. Since the phase forms an intermetallic compound of Co, it is inferior in heat resistance and is not suitable for processing in which the temperature of the cutting edge rises. Further, according to Japanese Patent Publication No. 52-43846, iron group metals are dispersed in cBN by infiltration under high temperature and high pressure. In such a method, the amount of infiltrated metal must be kept constant. However, there is a disadvantage that quality is liable to vary due to the difficulty, and that a segregation of Co is caused and a uniform dispersed structure cannot be obtained. For this reason, there has been a problem that sudden defects are likely to occur during processing. Also, when cutting under certain conditions, cBN particles may fall off from the binder phase and cause great wear. This is because the reactivity between cBN and Co during the sintering process is low,
It is considered that the binding force between cBN and the binding phase was weak.

【0005】また、cBNを窒化チタン(TiN)等の
セラミックスで結合した立方晶窒化硼素質焼結体では、
cBNの含有率が低いためcBNの優れた特性が十分に
生かされていないという問題があった。
In a cubic boron nitride sintered body in which cBN is bonded with ceramics such as titanium nitride (TiN),
Due to the low content of cBN, there was a problem that the excellent properties of cBN were not fully utilized.

【0006】[0006]

【問題点を解決するための手段】本発明者は、cBNの
含有率を向上して、cBNの高硬度,高耐熱性,高熱伝
導性を十分に生かすべく鋭意研究した結果、BNとの反
応性に富むAl,Ti,Zr,Nb,Mo,Hf,T
a,Wを結合材として用い、AlNとTiB2 等の耐熱
性化合物を生成すると、耐熱性を損なうことなく、cB
Nが結合相と強固に結合した立方晶窒化硼素質焼結体を
得ることができることを見出し、本発明に至った。
Means for Solving the Problems The present inventors have conducted intensive studies to improve the content of cBN and to make full use of the high hardness, high heat resistance and high thermal conductivity of cBN. Al, Ti, Zr, Nb, Mo, Hf, T
When a and W are used as binders to form heat resistant compounds such as AlN and TiB 2 , cB can be obtained without impairing heat resistance.
The present inventors have found that a cubic boron nitride sintered body in which N is strongly bonded to a binder phase can be obtained, and have reached the present invention.

【0007】即ち、本発明の立方晶窒化硼素質焼結体
は、立方晶窒化硼素を80体積%を越え95体積%以下
含有し、残部が、窒化硼素とAlとTi,Zr,Nb,
Mo,Hf,Ta,Wの金属のうちの少なくとも一種と
の反応により生成される化合物を主体とすることを特徴
とする。残部の化合物はAlNとTiB2 を主体とする
ものが好ましい。
That is, the cubic boron nitride sintered body of the present invention contains cubic boron nitride in an amount of more than 80% by volume and 95% by volume or less, with the balance being boron nitride, Al, Ti, Zr, Nb,
It is mainly characterized by a compound produced by a reaction with at least one of the metals Mo, Hf, Ta and W. The remaining compound is preferably one mainly composed of AlN and TiB 2 .

【0008】立方晶窒化硼素(cBN)を80〜95体
積%含有させたのは、80体積%より少ないと、cBN
本来の特性、即ち、高耐熱性、高熱伝導性などの優れた
特性を生かすことができないからであり、95体積%よ
りも多いとcBN粒子と結合相粒子との粒子間結合力が
低下するからである。
[0008] The content of cubic boron nitride (cBN) of 80 to 95% by volume is less than 80% by volume.
This is because the original properties, that is, excellent properties such as high heat resistance and high thermal conductivity cannot be utilized, and if it is more than 95% by volume, the bonding strength between cBN particles and the binder phase particles decreases. It is.

【0009】また、cBNの残部が、窒化硼素(BN)
とAlとの反応により生成される化合物、BNとTi,
Zr,Nb,Mo,Hf,Ta,Wのうちの少なくとも
一種との反応により生成される化合物を主体として構成
したのは、上記のような反応によりAlN,TiB2
の耐熱性化合物を形成し、立方晶窒化硼素質焼結体の耐
熱性を損なうことなく、cBNと結合相が強固に結合し
た焼結体を得ることができるからである。残部の化合物
はAlNとTiB2 を主体とするものが好ましい。これ
は、AlNとTiB2 は、それぞれ耐酸化性,熱伝導
性,硬度に特に優れた特性を有しているからである。
The remainder of cBN is boron nitride (BN)
BN and Ti, a compound formed by the reaction of
The compound mainly composed of a reaction with at least one of Zr, Nb, Mo, Hf, Ta, and W is formed by forming a heat-resistant compound such as AlN or TiB 2 by the above-described reaction. This is because it is possible to obtain a sintered body in which cBN and a binding phase are firmly bonded without impairing the heat resistance of the cubic boron nitride based sintered body. The remaining compound is preferably one mainly composed of AlN and TiB 2 . This is because AlN and TiB 2 each have particularly excellent properties in oxidation resistance, thermal conductivity, and hardness.

【0010】窒化硼素(BN)とAlとの反応により生
成される化合物には、AlN,AlB2 ,AlB12など
があり、これらのAlN,AlB2 ,AlB12などは、
3〜12体積%存在することが好ましい。また、BNと
Ti,Zr,Nb,Mo,Hf,Ta,Wのうちの少な
くとも一種との反応により生成される化合物には、Ti
2 ,ZrB2 ,TaB2 ,TiN,ZrN,TaNな
どがあり、これらは2〜7体積%存在することが好まし
い。そして、本発明では、残部に硼化物が生成している
ことが望まれる。
Compounds formed by the reaction of boron nitride (BN) with Al include AlN, AlB 2 , AlB 12, etc. These AlN, AlB 2 , AlB 12, etc.
It is preferably present at 3 to 12% by volume. Compounds formed by the reaction of BN with at least one of Ti, Zr, Nb, Mo, Hf, Ta and W include Ti
There are B 2 , ZrB 2 , TaB 2 , TiN, ZrN, TaN and the like, and these are preferably present at 2 to 7% by volume. In the present invention, it is desired that boride is generated in the remainder.

【0011】このような立方晶窒化硼素質焼結体は、c
BN粉末とAl粉末とTi,Zr,Nb,Mo,Hf,
Ta,Wのうちの少なくとも一種の粉末とを混合後、或
いはcBN粉末およびAlとTi,Zr,Nb,Mo,
Hf,Ta,Wのうちの少なくとも一種との合金粉末と
を混合後、この混合粉体を圧力3.0GPa以上、温度
1200℃以上で焼結することにより得られる。これに
より、cBN粒子間に結合相が均一に分散した組織を有
することができ、品質をほぼ一定に保持することができ
る。
[0011] Such a cubic boron nitride sintered body has a c
BN powder, Al powder, Ti, Zr, Nb, Mo, Hf,
After mixing at least one powder of Ta and W, or cBN powder and Al and Ti, Zr, Nb, Mo,
It is obtained by mixing an alloy powder with at least one of Hf, Ta, and W, and then sintering the mixed powder at a pressure of 3.0 GPa or more and a temperature of 1200 ° C. or more. Thereby, it is possible to have a structure in which the binder phase is uniformly dispersed between the cBN particles, and it is possible to keep the quality almost constant.

【0012】本発明では、特に、cBN粉末とAl粉末
とTi,Zr,Nb,Mo,Hf,Ta,W等の粉末を
混合し、或いは、cBN粉末とAl−Ti合金,Al−
Zr合金,Al−Nb合金,Al−Mo合金,Al−H
f合金,Al−Ta合金,Al−W合金等を混合し、メ
カニカルアロイング処理(合金化処理)し、cBN−A
l−Ti系等の合金粉末を高温高圧で反応させることが
好ましい。これにより、さらにcBN粒子間に結合相が
均一に分散した組織を有することができる。
In the present invention, in particular, cBN powder, Al powder and powders of Ti, Zr, Nb, Mo, Hf, Ta, W, etc. are mixed, or cBN powder and Al-Ti alloy, Al-
Zr alloy, Al-Nb alloy, Al-Mo alloy, Al-H
f alloy, Al-Ta alloy, Al-W alloy, etc., and mechanically alloyed (alloyed), cBN-A
It is preferable to react an alloy powder such as l-Ti at a high temperature and a high pressure. Thereby, it is possible to further have a structure in which the binder phase is uniformly dispersed between the cBN particles.

【0013】メカニカルアロイング処理は、合金化すべ
き粉体を、例えば、超硬合金製の遊星型ボールミルに収
容し、1〜48時間粉砕混合することにより行われる。
[0013] The mechanical alloying treatment is carried out by accommodating a powder to be alloyed in, for example, a cemented carbide planetary ball mill and pulverizing and mixing for 1 to 48 hours.

【0014】本発明の立方晶窒化硼素質焼結体の具体的
な製造方法としては、原料粉末としてcBN粉末、その
他所望のAl粉末,Ti,Zr,Nb,Mo,Hf,T
a,Wの各粉末等を準備し、或いはcBN粉末、その他
所望のTiAl2 ,ZrAl2 ,NbAl2 ,MoA
l,HfAl2 ,TaAl2 ,WAl粉末を準備し、こ
れらを前述した特定の組成に秤量し、例えば、超硬合金
製の遊星型ボールミルを用いて1〜48時間合金化処理
を行う。この後、必要があれば所定形状に成形する。成
形手段としてはプレス成形,射出成形,鋳込み成形,押
出成形等周知の成形手段を用いることができる。
As a specific method for producing the cubic boron nitride sintered body of the present invention, cBN powder as a raw material powder, other desired Al powder, Ti, Zr, Nb, Mo, Hf, T
a, W powder, etc., or cBN powder, other desired TiAl 2 , ZrAl 2 , NbAl 2 , MoA
1, HfAl 2 , TaAl 2 , and WAl powders are prepared, weighed to the specific composition described above, and alloyed for 1 to 48 hours using, for example, a cemented carbide planetary ball mill. Thereafter, if necessary, it is formed into a predetermined shape. As the molding means, well-known molding means such as press molding, injection molding, cast molding, and extrusion molding can be used.

【0015】次に上記成形体を高温高圧発生装置を用い
て、例えば、特公昭39−8948に開示されるように
高温高圧で焼結する。即ち、圧力3.0GPa以上、温
度1200℃以上で15〜120分間保持し、本発明の
立方晶窒化硼素質焼結体を得る。圧力は3.0〜6.0
GPaが好ましく、温度は1200〜1800℃が好ま
しい。
Next, the compact is sintered at a high temperature and a high pressure by using a high temperature and a high pressure generator, for example, as disclosed in JP-B-39-8948. That is, the pressure is maintained at 3.0 GPa or more and the temperature is 1200 ° C. or more for 15 to 120 minutes to obtain the cubic boron nitride sintered body of the present invention. Pressure is 3.0-6.0
GPa is preferable, and the temperature is preferably 1200 to 1800 ° C.

【0016】また、本発明の立方晶窒化硼素質焼結体
は、立方晶窒化硼素を80体積%を越え95体積%以下
含有し、残部が、酸化硼素(B2 3 ),BNとAlと
Ti,Zr,Nb,Mo,Hf,Ta,Wの金属のうち
の少なくとも一種との反応により生成される化合物を主
体とするものである。
The cubic boron nitride sintered body of the present invention contains cubic boron nitride in an amount of more than 80% by volume and 95% by volume or less, with the balance being boron oxide (B 2 O 3 ), BN and Al The main component is a compound formed by the reaction of a metal with at least one of the metals Ti, Zr, Nb, Mo, Hf, Ta, and W.

【0017】この場合も上記と同様に、B2 3 と、B
Nと、Alと、Ti,Zr,Nb,Mo,Hf,Ta,
Wとの反応によりAl2 3 ,AlN,TiB2 ,Zr
2,TaB2 ,TiN,ZrN,TaN等の耐熱性化
合物を形成し、立方晶窒化硼素質焼結体の耐熱性を損な
うことなく、cBNと結合相が強固に結合した焼結体を
得ることができる。ここで、残部の化合物がAl
2 3 ,AlNおよびTiB2 を主体とするものが好ま
しい。上記と同様に、Al2 3 ,AlNおよびTiB
2 は、それぞれ耐酸化性,熱伝導性,硬度に特に優れた
特性を有しているからである。
In this case, B 2 O 3 and B
N, Al, Ti, Zr, Nb, Mo, Hf, Ta,
Al 2 O 3 , AlN, TiB 2 , Zr
Form a heat-resistant compound such as B 2 , TaB 2 , TiN, ZrN, TaN, etc., and obtain a sintered body in which cBN and a binding phase are firmly bonded without impairing the heat resistance of the cubic boron nitride sintered body. be able to. Here, the remaining compound is Al
Those mainly composed of 2 O 3 , AlN and TiB 2 are preferred. As above, Al 2 O 3 , AlN and TiB
No. 2 is because each of them has particularly excellent properties in oxidation resistance, thermal conductivity, and hardness.

【0018】このような立方晶窒化硼素質焼結体は、表
面酸化処理した立方晶窒化硼素粉末とAl粉末とTi,
Zr,Nb,Mo,Hf,Ta,Wのうちの少なくとも
一種の粉末とを混合後、或いは表面酸化処理した立方晶
窒化硼素粉末およびAlとTi,Zr,Nb,Mo,H
f,Ta,Wのうちの少なくとも一種との合金粉末とを
混合後、この混合粉体を圧力3.0GPa以上、温度1
200℃以上で焼結することにより得られる。この混合
粉体は、合金化処理した後、焼結すること望ましい。ま
た、B2 3 粉末と、BN粉末を添加することによって
も、本発明の立方晶窒化硼素質焼結体を得ることができ
る。
Such a cubic boron nitride sintered body is obtained by treating a surface-oxidized cubic boron nitride powder, Al powder, Ti,
Cubic boron nitride powder mixed with at least one of Zr, Nb, Mo, Hf, Ta and W, or surface oxidized, and Al and Ti, Zr, Nb, Mo, H
After mixing an alloy powder with at least one of f, Ta, and W, the mixed powder is subjected to a pressure of 3.0 GPa or more and a temperature of 1 GPa or more.
It is obtained by sintering at 200 ° C. or higher. This mixed powder is desirably sintered after alloying. The cubic boron nitride sintered body of the present invention can also be obtained by adding B 2 O 3 powder and BN powder.

【0019】cBN粉末を表面酸化処理することによ
り、Ti,Zr,Nb,Mo,Hf,Ta,Wと反応し
て、耐熱性化合物を生成し易いB2 3 をcBN粒子の
周囲に生成することができる。
By subjecting the cBN powder to a surface oxidation treatment, it reacts with Ti, Zr, Nb, Mo, Hf, Ta, and W to generate B 2 O 3, which easily forms a heat-resistant compound, around the cBN particles. be able to.

【0020】本発明の立方晶窒化硼素質焼結体の具体的
な製造方法としては、原料粉末として、大気中で700
〜1100℃で加熱し表面酸化処理したcBN粉末、そ
の他所望のAl粉末,Ti,Zr,Nb,Mo,Hf,
Ta,W等の各粉末等を準備し、或いは大気中で700
〜1100℃で加熱し表面酸化処理したcBN粉末、そ
の他所望のTiAl2 ,ZrAl2 ,NbAl2 ,Mo
Al,HfAl2 ,TaAl2 ,WAl等を準備し、こ
れらを前述した特定の組成に秤量し、例えば、超硬合金
製の遊星型ボールミルを用いて1〜48時間合金化処理
を行う。この後、所望により成形する。成形手段として
はプレス成形,射出成形,鋳込み成形,押出成形等周知
の成形手段を用いることができる。
A specific method for producing the cubic boron nitride sintered body of the present invention is as follows.
CBN powder heated at 11100 ° C. and surface oxidized, other desired Al powder, Ti, Zr, Nb, Mo, Hf,
Prepare each powder such as Ta, W, etc. or 700
CBN powder heated at 11100 ° C. and surface oxidized, and other desired TiAl 2 , ZrAl 2 , NbAl 2 , Mo
Al, HfAl 2 , TaAl 2 , WAl and the like are prepared, weighed to the specific composition described above, and alloyed for 1 to 48 hours using, for example, a cemented carbide planetary ball mill. Thereafter, molding is performed if desired. As the molding means, well-known molding means such as press molding, injection molding, cast molding, and extrusion molding can be used.

【0021】次に上記成形体を高温高圧発生装置を用い
て、例えば、特公昭39−8948に開示されるように
高温高圧で焼結する。即ち、圧力3.0〜6.0GP
a、温度1200〜1800℃で15〜120分間保持
し、本発明の立方晶窒化硼素質焼結体を得る。
Next, the compact is sintered at a high temperature and a high pressure by using a high temperature and a high pressure generator, for example, as disclosed in JP-B-39-8948. That is, the pressure is 3.0 to 6.0 GP.
a, Hold at a temperature of 1200 to 1800 ° C. for 15 to 120 minutes to obtain a cubic boron nitride sintered body of the present invention.

【0022】[0022]

【作用】本発明の立方晶窒化硼素質焼結体では、B2
3 ,BNとAl、B2 3 ,BNとTi,Zr,Nb,
Mo,Hf,Ta,Wとの反応によりAl2 3 ,Al
N,TiB2 等の耐熱性化合物を形成し、立方晶窒化硼
素質焼結体の耐熱性を損なうことなく、cBNと結合相
が強固に結合した焼結体を得ることができる。これは、
cBNと結合相が単に固相焼結しているのではなく、c
BNの一部が反応して結合相となっているからと考えら
れる。
In the cubic boron nitride sintered body of the present invention, B 2 O
3, BN and Al, B 2 O 3, BN and Ti, Zr, Nb,
Al 2 O 3 , Al by reaction with Mo, Hf, Ta, W
A sintered body in which cBN and a binding phase are firmly bonded can be obtained without forming a heat-resistant compound such as N, TiB 2 and the like, without impairing the heat resistance of the cubic boron nitride sintered body. this is,
The cBN and the binder phase are not simply solid phase sintered,
It is considered that a part of BN reacted to form a bonded phase.

【0023】また、結合金属を高温高圧下で溶浸によっ
てcBN中に分散させるのではなく、例えば、予め調合
し処理したcBN−Al−Ti(cBN−B2 3 −A
l−Ti)等の混合粉末を高温高圧下で反応させること
により、cBN粒子間に結合相が均一に分散した組織を
有することができ、品質をほぼ一定に保持することがで
きる。
Instead of dispersing the binding metal in cBN by infiltration under high temperature and high pressure, for example, cBN-Al-Ti (cBN-B 2 O 3 -A
By reacting a mixed powder such as l-Ti) under a high temperature and a high pressure, it is possible to have a structure in which the binder phase is uniformly dispersed between the cBN particles, and the quality can be kept almost constant.

【0024】[0024]

【実施例】【Example】

実施例1 原料粉末として、cBN粉末(平均結晶粒径2〜4μ
m)及びAl粉末と,Ti,Zr,Nb,Mo,Hf,
Ta,W粉末を、表1に示す割合で混合し、この粉体を
超硬合金製の遊星型ボールミルに収容し、6時間粉砕混
合した。
Example 1 cBN powder (average crystal grain size of 2 to 4 μm) was used as a raw material powder.
m) and Al powder, Ti, Zr, Nb, Mo, Hf,
Ta and W powders were mixed at the ratios shown in Table 1, and the powders were accommodated in a cemented carbide planetary ball mill and ground and mixed for 6 hours.

【0025】この粉体を圧力1ton/cm2 で加圧成形し、
この成形体を超高温高圧発生装置を用いて、表1に示す
圧力, 温度で所定時間保持し、焼成し、本発明の立方晶
窒化硼素質焼結体を得た。
This powder is molded under pressure at a pressure of 1 ton / cm 2 ,
This compact was held at the pressure and temperature shown in Table 1 for a predetermined time using an ultra-high temperature and high pressure generator and fired to obtain a cubic boron nitride sintered body of the present invention.

【0026】[0026]

【表1】 [Table 1]

【0027】そして、立方晶窒化硼素質焼結体を取り出
し鏡面加工し、SEM(走査型電子顕微鏡)により組織
観察したところ、ポアのない緻密な組織を示した。
The cubic boron nitride sintered body was taken out, mirror-finished, and observed for its structure by SEM (scanning electron microscope). As a result, a dense structure without pores was shown.

【0028】また、得られた焼結体に対してビッカース
硬度、ビッカース硬度用ダイヤモンド圧子を用いて荷重
20kgで圧痕法により破壊靱性を測定した。さらに、
X線回折法による結晶相の同定と、ICP発光分光分析
による定量分析を行い、焼結体組成を決定した。鏡面を
SEM(走査型電子顕微鏡)で観察しところ、本発明の
試料は何れも偏析のない均質微細な組織が生成している
ことを確認した。さらに、破面をSEM観察したとこ
ろ、本発明の焼結体の破壊様式は粒内破壊であり、粒子
間結合が強固であることが裏付けられた。この焼結体を
用いて工具を作製し、各試料を用いて下記に示す切削条
件で切削評価試験を行った。評価は、15分間切削後の
工具逃げ面摩耗幅を測定することにより行った。
Further, the fracture toughness of the obtained sintered body was measured using a Vickers hardness and a diamond indenter for Vickers hardness under an indentation method under a load of 20 kg. further,
Identification of the crystal phase by X-ray diffraction and quantitative analysis by ICP emission spectroscopy were performed to determine the composition of the sintered body. When the mirror surface was observed with an SEM (scanning electron microscope), it was confirmed that all of the samples of the present invention had a homogeneous and fine structure without segregation. Further, SEM observation of the fractured surface confirmed that the fracture mode of the sintered body of the present invention was intragranular fracture, and that the bonding between grains was strong. A tool was produced using this sintered body, and a cutting evaluation test was performed using each sample under the following cutting conditions. The evaluation was performed by measuring the tool flank wear width after 15 minutes of cutting.

【0029】(切削試験) 被削材 SKD11(HRC60) 切削速度 100m/min 切り込み 0.5mm 送り 0.1mm/rev 切削時間 15min 上記の実験結果を表2に示す。[0029] A (Cutting Test) Workpiece SKD11 (H RC 60) Cutting Speed 100 m / min incision 0.5mm Feed 0.1 mm / rev Cutting time 15min above experimental results shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】表1及び表2により、本発明の立方晶窒化
硼素質焼結体は、硬度が3700以上で、靱性が5.5
MPa・m1/2 以上であった。また、15分間切削した
工具逃げ面摩耗幅は0.166mm以下という優れた特
性を有していることが確認された。
According to Tables 1 and 2, the cubic boron nitride sintered body of the present invention has a hardness of 3700 or more and a toughness of 5.5.
MPa · m 1/2 or more. Further, it was confirmed that the tool flank wear width after cutting for 15 minutes had an excellent characteristic of 0.166 mm or less.

【0032】一方、本発明者は、市販の立方晶窒化硼素
質焼結体の焼結体組成,硬度,破壊靱性,工具逃げ面摩
耗幅を測定したところ、焼結体組成はcBN82.5体
積%、Co212 6 17.5体積%からなり、硬度は
3800、破壊靱性は4.7、工具逃げ面摩耗幅が0.
338mmであった。
On the other hand, the present inventor measured the sintered body composition, hardness, fracture toughness and tool flank wear width of a commercially available cubic boron nitride sintered body. %, Co 21 W 2 B 6 17.5% by volume, hardness 3800, fracture toughness 4.7, tool flank wear width 0.
338 mm.

【0033】実施例2 原料粉末として、cBN粉末(平均結晶粒径2〜4μ
m)を88.8重量%と、TiAl2 合金粉末を11.
2重量%混合し、この粉体を超硬合金製の遊星型ボール
ミルに収容し、6時間粉砕混合した。この粉体を圧力1
ton/cm2 で加圧成形し、この成形体を超高温高圧発生装
置を用いて、圧力5GPa,温度1600℃で15分間
保持し、本発明の立方晶窒化硼素質焼結体を得た。
Example 2 As a raw material powder, cBN powder (average crystal grain size of 2 to 4 μm) was used.
m) and 88.8% by weight of TiAl 2 alloy powder.
2% by weight, and this powder was placed in a cemented carbide planetary ball mill and ground and mixed for 6 hours. Press the powder at pressure 1
pressurizing and pressure molded at ton / cm 2, the molded body using an ultra high temperature high pressure apparatus, pressure 5 GPa, and held for 15 minutes at a temperature 1600 ° C., to obtain a cubic boron nitride sintered body of the present invention.

【0034】そして、上記実施例1と同様にして焼結体
組成および特性を測定したところ、焼結体組成は、cB
Nが84.9体積%、TiB2 が5.9体積%、AlN
が9.2体積%であり、この焼結体の硬度が4150、
破壊靱性が6.0MPa・m1/2 、工具逃げ面摩耗幅が
0.118mmと優れた特性を示した。
When the composition and characteristics of the sintered body were measured in the same manner as in Example 1, the composition of the sintered body was cB
N 84.9 vol%, TiB 2 5.9 vol%, AlN
Is 9.2% by volume, and the hardness of this sintered body is 4150,
It exhibited excellent properties such as a fracture toughness of 6.0 MPa · m 1/2 and a tool flank wear width of 0.118 mm.

【0035】さらに、本発明者は、cBN粉末(平均結
晶粒径2〜4μm)を88.8重量%と、合金粉末の種
類を表3に示すように代え、その焼結体組成および特性
を実施例1と同様にして測定した。
Further, the present inventors changed the cBN powder (average crystal grain size: 2 to 4 μm) to 88.8% by weight and the type of alloy powder as shown in Table 3, and changed the composition and characteristics of the sintered body. The measurement was performed in the same manner as in Example 1.

【0036】[0036]

【表3】 [Table 3]

【0037】表3より、これらの場合にも、優れた特性
を示した。
As shown in Table 3, excellent characteristics were exhibited in these cases.

【0038】実施例3 原料粉末として、大気中において900℃で加熱し表面
酸化処理したcBN粉末を92.3重量%と、Ti粉末
を4.9重量%と、Al粉末を2.8重量%混合し、こ
の粉体を超硬合金製の遊星型ボールミルに収容し、6時
間粉砕混合した。この粉体を圧力1ton/cm2 で加圧成形
し、この成形体を超高温高圧発生装置を用いて、圧力5
GPa,温度1600℃で15分間保持し、本発明の立
方晶窒化硼素質焼結体を得た。
Example 3 92.3% by weight of cBN powder, 4.9% by weight of Ti powder, and 2.8% by weight of Al powder were heated at 900 ° C. in the air and surface oxidized. The powders were mixed and stored in a cemented carbide planetary ball mill and pulverized and mixed for 6 hours. This powder is molded under pressure at a pressure of 1 ton / cm 2 , and the compact is subjected to a pressure of 5 tons using an ultra-high temperature and high pressure generator.
GPa was held at 1600 ° C. for 15 minutes to obtain a cubic boron nitride sintered body of the present invention.

【0039】そして、上記実施例1と同様にして焼結体
組成および特性を測定したところ、焼結体組成は、cB
Nが85.3体積%、TiB2 が5.6体積%、AlN
が4.5体積%、Al2 3 が4.6重量%であり、こ
の焼結体の硬度が3900、破壊靱性が6.5MPa・
1/2 、工具逃げ面摩耗幅が0.130mmと優れた特
性を示した。
The composition and characteristics of the sintered body were measured in the same manner as in Example 1 above.
N is 85.3 vol%, TiB 2 5.6 vol%, AlN
Is 4.5% by volume and Al 2 O 3 is 4.6% by weight. The sintered body has a hardness of 3900 and a fracture toughness of 6.5 MPa ·
m 1/2 , the tool flank wear width was 0.130 mm, showing excellent characteristics.

【0040】さらに、本発明者は、大気中において90
0℃で加熱し表面酸化処理したcBN粉末を92.3重
量%と、添加粉末の種類を表4に示すように代え、その
焼結体組成および特性を測定した。
Further, the present inventor has found that 90
The composition and characteristics of the sintered body were measured by changing the cBN powder heated at 0 ° C. and subjected to the surface oxidation treatment to 92.3% by weight and the type of the added powder as shown in Table 4.

【0041】[0041]

【表4】 [Table 4]

【0042】表4より、これらの場合にも、優れた特性
を示した。
As shown in Table 4, excellent characteristics were exhibited in these cases.

【0043】[0043]

【発明の効果】以上詳述した通り、本発明によれば、B
2 3 ,cBNと、Alと、Ti,Zr等との反応によ
りAlN,TiB2 等の耐熱性化合物を形成し、立方晶
窒化硼素質焼結体の耐熱性を損なうことなく、cBNと
結合相が強固に結合した焼結体を得ることができる。
As described in detail above, according to the present invention, B
The reaction between 2 O 3 , cBN, Al, Ti, Zr, etc. forms a heat-resistant compound such as AlN, TiB 2, etc., and bonds with cBN without impairing the heat resistance of the cubic boron nitride sintered body. A sintered body in which the phases are strongly bonded can be obtained.

【0044】また、結合合金を高温高圧下で溶浸によっ
てcBN中に分散させるのではなく、例えば、予め調合
し処理したcBN−Al−Ti(cBN−B2 3 −A
l−Ti)等の混合粉末を高温高圧下で反応させること
により、均一組成で、かつ、結合相が均一に分散した組
織を得ることができ、これにより、品質をほぼ一定に保
持することができる。
Instead of dispersing the bonding alloy in cBN by infiltration under high temperature and high pressure, for example, cBN-Al-Ti (cBN-B 2 O 3 -A
By reacting a mixed powder such as l-Ti) under a high temperature and a high pressure, it is possible to obtain a structure having a uniform composition and a binder phase uniformly dispersed, thereby keeping the quality almost constant. it can.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立方晶窒化硼素を80体積%を越え95体
積%以下含有し、残部が、窒化硼素とAlとTi,Z
r,Nb,Mo,Hf,Ta,Wの金属のうちの少なく
とも一種との反応により生成される化合物を主体とする
ことを特徴とする立方晶窒化硼素質焼結体。
1. A cubic boron nitride containing more than 80% by volume and not more than 95% by volume, with the balance being boron nitride, Al, Ti, Z
A cubic boron nitride sintered body mainly comprising a compound generated by a reaction with at least one of the metals r, Nb, Mo, Hf, Ta and W.
【請求項2】残部の化合物がAlNとTiB2 を主体と
するものからなる請求項1記載の立方晶窒化硼素質焼結
体。
2. The cubic boron nitride sintered body according to claim 1, wherein the remaining compound mainly comprises AlN and TiB 2 .
【請求項3】立方晶窒化硼素粉末と、Al粉末と、T
i,Zr,Nb,Mo,Hf,Ta,Wの金属のうちの
少なくとも一種の粉末とを混合後、或いは立方晶窒化硼
素粉末と、AlとTi,Zr,Nb,Mo,Hf,T
a,Wの金属のうちの少なくとも一種との合金粉末を混
合後、この混合粉体を圧力3.0GPa以上、温度12
00℃以上で焼結することを特徴とする立方晶窒化硼素
質焼結体の製造方法。
3. A cubic boron nitride powder, an Al powder,
After mixing with at least one powder of metals i, Zr, Nb, Mo, Hf, Ta, and W, or cubic boron nitride powder, and Al and Ti, Zr, Nb, Mo, Hf, T
After mixing an alloy powder with at least one of the metals a and W, the mixed powder is subjected to a pressure of 3.0 GPa or more and a temperature of 12 GPa or more.
A method for producing a cubic boron nitride sintered body, characterized by sintering at a temperature of 00 ° C. or higher.
【請求項4】立方晶窒化硼素を80体積%を越え95体
積%以下含有し、残部が、酸化硼素,窒化硼素とAlと
Ti,Zr,Nb,Mo,Hf,Ta,Wの金属のうち
の少なくとも一種との反応により生成される化合物を主
体とすることを特徴とする立方晶窒化硼素質焼結体。
4. A cubic boron nitride containing more than 80% by volume and not more than 95% by volume, with the balance being boron oxide, boron nitride, Al, Ti, Zr, Nb, Mo, Hf, Ta and W. A cubic boron nitride-based sintered body characterized by mainly comprising a compound produced by a reaction with at least one of the following.
【請求項5】残部の化合物がAl2 3 ,AlNおよび
TiB2 を主体とするものからなる請求項4記載の立方
晶窒化硼素質焼結体。
5. The cubic boron nitride sintered body according to claim 4, wherein the remaining compound is mainly composed of Al 2 O 3 , AlN and TiB 2 .
【請求項6】表面酸化処理した立方晶窒化硼素粉末と、
Al粉末と、Ti,Zr,Nb,Mo,Hf,Ta,W
の金属のうちの少なくとも一種の粉末とを混合後、或い
は表面酸化処理した立方晶窒化硼素粉末と、AlとT
i,Zr,Nb,Mo,Hf,Ta,Wの金属のうちの
少なくとも一種との合金粉末を混合後、この混合粉体を
圧力3.0GPa以上、温度1200℃以上で焼結する
ことを特徴とする立方晶窒化硼素質焼結体の製造方法。
6. A oxidized cubic boron nitride powder,
Al powder, Ti, Zr, Nb, Mo, Hf, Ta, W
Cubic boron nitride powder after mixing with at least one powder of the above metals, or Al and T
After mixing an alloy powder with at least one of the metals i, Zr, Nb, Mo, Hf, Ta, and W, the mixed powder is sintered at a pressure of 3.0 GPa or more and a temperature of 1200 ° C. or more. A method for producing a cubic boron nitride sintered body.
JP4172142A 1992-06-30 1992-06-30 Cubic boron nitride sintered body and method for producing the same Expired - Fee Related JP2777017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172142A JP2777017B2 (en) 1992-06-30 1992-06-30 Cubic boron nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172142A JP2777017B2 (en) 1992-06-30 1992-06-30 Cubic boron nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0616476A JPH0616476A (en) 1994-01-25
JP2777017B2 true JP2777017B2 (en) 1998-07-16

Family

ID=15936348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172142A Expired - Fee Related JP2777017B2 (en) 1992-06-30 1992-06-30 Cubic boron nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2777017B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100927B2 (en) * 2001-01-30 2012-12-19 昭和電工株式会社 Method for producing cubic boron nitride sintered body
JP4883499B2 (en) * 2005-09-09 2012-02-22 独立行政法人産業技術総合研究所 Boron nitride fired body and method for producing the same
WO2016084929A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Sintered object based on cubic boron nitride, and cutting tool constituted of sintered object based on cubic boron nitride
JP6650106B2 (en) * 2014-11-27 2020-02-19 三菱マテリアル株式会社 Cubic boron nitride based sintered body and cutting tool made of cubic boron nitride based sintered body
AU2017254220B2 (en) 2016-04-20 2021-12-23 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip

Also Published As

Publication number Publication date
JPH0616476A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
KR100555640B1 (en) Cubic boron nitride sintered body and cutting tool
JPH0517233A (en) Cubic boron nitride-based ultrahigh pressure sintered material having high strength
JPH08944B2 (en) Mixed sintered metal materials based on boride, nitride and iron binder metals
EP0627017A1 (en) Rhenium-bound tungsten carbide composites
JP4830571B2 (en) cBN super high pressure sintered body
WO2016136531A1 (en) Sintered body and cutting tool
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2777017B2 (en) Cubic boron nitride sintered body and method for producing the same
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
JP2825701B2 (en) Cubic boron nitride sintered body
JP2006037160A (en) Sintered compact
JPH061666A (en) Cubic boron nitride-based sintered compact and its production
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP3297535B2 (en) Cubic boron nitride sintered body
JP3346609B2 (en) Fiber reinforced ceramics and method for producing the same
JP3051603B2 (en) Titanium compound sintered body
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP2005194556A (en) Rare-earth-containing sintered alloy
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP4048410B2 (en) Boride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees