JP2773476B2 - Load control power supply - Google Patents

Load control power supply

Info

Publication number
JP2773476B2
JP2773476B2 JP3206580A JP20658091A JP2773476B2 JP 2773476 B2 JP2773476 B2 JP 2773476B2 JP 3206580 A JP3206580 A JP 3206580A JP 20658091 A JP20658091 A JP 20658091A JP 2773476 B2 JP2773476 B2 JP 2773476B2
Authority
JP
Japan
Prior art keywords
potential
gate
power supply
circuit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3206580A
Other languages
Japanese (ja)
Other versions
JPH0538134A (en
Inventor
正樹 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3206580A priority Critical patent/JP2773476B2/en
Publication of JPH0538134A publication Critical patent/JPH0538134A/en
Application granted granted Critical
Publication of JP2773476B2 publication Critical patent/JP2773476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、とくにNチャンネル
MOSFETを用いたPWM駆動用パワーICによる負
荷制御電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load control power supply device using a power IC for driving a PWM using an N-channel MOSFET.

【0002】[0002]

【従来の技術】パワーICのNチャンネルMOSFET
をハイサイドスイッチとして用いる場合にはゲート電極
を電源電圧以上に昇圧する必要がある。このための従来
の負荷制御電源装置には、特表昭58ー500835で
提案されているような、昇圧回路としてチャージポンプ
回路を用いたものがある。これを図7に示すと、発振器
137が入力端子5に入る信号に応じて発振出力しMO
SFET1を制御する装置において、発振器137とM
OSFET1との間にダイオードおよびコンデンサ2、
2’を有する変換器138を設け、MOSFET1のゲ
ート電極8の制御電圧倍増を行なうものである。
2. Description of the Related Art N-channel MOSFET of a power IC
Is used as a high-side switch, it is necessary to boost the gate electrode to a power supply voltage or higher. A conventional load control power supply for this purpose uses a charge pump circuit as a boosting circuit, as proposed in Japanese Patent Publication No. 58-500835. As shown in FIG. 7, the oscillator 137 oscillates and outputs a signal in response to a signal input to the input terminal 5.
In the device for controlling SFET1, oscillator 137 and M
A diode and a capacitor 2 between the OSFET 1;
A converter 138 having 2 'is provided to double the control voltage of the gate electrode 8 of the MOSFET 1.

【0003】このほか図8に示すように、コンデンサ2
をソース電極7とゲート制御回路3を介したゲート電極
8との間に接続したブートストラップ回路も用いられて
いる。その他、チャージポンプとブートストラップ回路
を組み合わせた回路も用いられる。
[0003] In addition, as shown in FIG.
Is connected between the source electrode 7 and the gate electrode 8 via the gate control circuit 3. In addition, a circuit combining a charge pump and a bootstrap circuit is also used.

【0004】[0004]

【発明が解決しようとする課題】しかしチャージポンプ
を用いる場合、IC内部に大きいコンデンサを作ること
は、チップ面積の増大を招くために難しく、せいぜい数
十pFにとどまる。そのため数千pFレベルの非常に大
きなゲート容量を充電するには非常に時間が掛かり、高
速動作することができない。とくにPWM駆動の場合、
動作周波数を可聴帯城外にする必要があるがこの方式で
は難しい。
However, when a charge pump is used, it is difficult to form a large capacitor inside the IC due to an increase in chip area, and it is at most several tens of pF. Therefore, it takes a very long time to charge a very large gate capacitance of several thousands pF level, and high-speed operation cannot be performed. Especially in the case of PWM drive,
The operating frequency must be outside the audible range, but this is difficult.

【0005】またコンデンサは通常MOS構造で作られ
るために、充放電回数が多くなるとゲート酸化膜の信頼
性に問題が出てくるので、発振器の動作周波数に制限を
設けざるを得ない。さらにチャージポンプ回路のコンデ
ンサを外付けにすると、そのために端子が少なくとも2
個増加し、チップ面積の増大および実装コストの増加を
招く。
[0005] Further, since the capacitor is usually made of a MOS structure, if the number of times of charging and discharging increases, a problem arises in the reliability of the gate oxide film, so that the operating frequency of the oscillator must be limited. Furthermore, if the capacitor of the charge pump circuit is externally connected, at least two terminals are required.
The number increases, resulting in an increase in chip area and an increase in mounting cost.

【0006】ブートストラップ回路では、元来コンデン
サ2を外付けとし大きな容量のものが使え、動作スピー
ドの問題は改善される。しかしながら、フルデューティ
ーで動作しているときはコンデンサ2に新たな電荷は供
給されず、ゲート酸化膜やダイオード等のリーク電流に
よって、ゲートに貯っている電荷は時間とともに減少し
ていくために、長時間フルデューティーで動作している
とゲート・ソース間電圧Vgsが低くなり、MOSFE
T1のオン抵抗が高い状態で駆動されるという問題点が
あった。
In the bootstrap circuit, a capacitor having an external capacitor and a large capacity can be used, and the problem of the operation speed is improved. However, when operating at full duty, no new charge is supplied to the capacitor 2, and the charge stored in the gate decreases with time due to the leak current of the gate oxide film and the diode. When operated at full duty for a long time, the gate-source voltage Vgs becomes low, and the MOSFE
There is a problem that the driving is performed in a state where the on-resistance of T1 is high.

【0007】チャージポンプとブートストラップ回路を
組み合わせたものでは、当然回路構成が複雑になる。と
くにPWM駆動の場合はフルデューティー時以外は定期
的に新たな電荷が供給されるので、チャージポンプが常
時必要なわけではなく実装上もコスト上も問題がある。
When the charge pump and the bootstrap circuit are combined, the circuit configuration is naturally complicated. In particular, in the case of PWM driving, a new charge is supplied periodically except at the time of full duty, so that a charge pump is not always required, and there is a problem in mounting and cost.

【0008】したがってこの発明は、チップ面積の増大
を招くことなく高速動作が可能で、オン抵抗の低い、信
頼性の高いMOSFETのゲート電圧制御装置を低コス
トで提供することを目的とする。
Accordingly, an object of the present invention is to provide a highly reliable MOSFET gate voltage control device which can operate at high speed without increasing the chip area, has a low on-resistance, and has high reliability.

【0009】[0009]

【課題を解決するための手段】このため本発明は、図1
に示すように、ドレイン電極6とソース電極7がそれぞ
れ電源端子9と負荷端子10に接続しゲート電極8の電
位に基づき負荷4への電流を制御するNチャンネルMO
SFET1と、前記ソース電極7に接続してソース電極
の電位に応じて電源電圧以上の電圧を発生する昇圧回路
11と、該昇圧回路11の出力を用いて入力端子5に入
る外部からの信号に応じて前記ゲート電極8の電位を制
御するゲート制御回路13と、MOSFET1のゲート
・ソース間電圧を検出して該電圧が所定値に低下したと
き、またはゲート電極8またはソース電極7が高電位に
されてから所定時間経過したとき、ゲート制御回路13
に信号を出力する電位検出回路12を有し、前記ゲート
制御回路13は電位検出回路12からの信号を受けてゲ
ート電極8の電位を下げて、前記昇圧回路11を再起動
するようにした。
SUMMARY OF THE INVENTION For this reason, the present invention has been described with reference to FIG.
As shown in FIG. 7, an N-channel MO in which a drain electrode 6 and a source electrode 7 are connected to a power supply terminal 9 and a load terminal 10, respectively, and controls a current to the load 4 based on the potential of the gate electrode 8.
An SFET 1, a booster circuit 11 connected to the source electrode 7 for generating a voltage equal to or higher than a power supply voltage in accordance with the potential of the source electrode, and an external signal input to the input terminal 5 using an output of the booster circuit 11. A gate control circuit 13 for controlling the potential of the gate electrode 8 in response thereto, and detecting a gate-source voltage of the MOSFET 1 and reducing the voltage to a predetermined value, or setting the gate electrode 8 or the source electrode 7 to a high potential. When a predetermined time has passed since the start, the gate control circuit 13
The gate control circuit 13 receives the signal from the potential detection circuit 12, lowers the potential of the gate electrode 8, and restarts the booster circuit 11.

【0010】[0010]

【作用】昇圧回路の起動によりゲート電極8へ十分な電
荷が供給され、Vgs低下によるMOSFET1のオン
抵抗増大がなくなる。
A sufficient charge is supplied to the gate electrode 8 by the activation of the booster circuit, so that the on-resistance of the MOSFET 1 does not increase due to the decrease in Vgs.

【0011】[0011]

【実施例】図2は本発明の一実施例を示す。まず、全体
の構成を説明すると、MOSFET1のゲート電極8に
接続されたゲート制御回路13、ソース電極7に接続さ
れた昇圧回路11、およびゲート電極8とソース電極7
に接続された電位検出回路12を備える。
FIG. 2 shows an embodiment of the present invention. First, the overall configuration will be described. The gate control circuit 13 connected to the gate electrode 8 of the MOSFET 1, the booster circuit 11 connected to the source electrode 7, the gate electrode 8 and the source electrode 7
Is provided with a potential detection circuit 12 connected to the power supply.

【0012】ゲート制御回路13はゲート電極8の電位
を制御しMOSFET1の導通状態を制御する。昇圧回
路11はソース電極7の電位が低い場合にはコンデンサ
102に電荷を蓄積し、ソース電位が上昇するにしたが
ってゲート電極8に電荷を移し、それを電源電圧以上に
して、MOSFET1が駆動の際オン抵抗の低い状態に
する。
The gate control circuit 13 controls the potential of the gate electrode 8 to control the conduction state of the MOSFET 1. When the potential of the source electrode 7 is low, the booster circuit 11 accumulates the electric charge in the capacitor 102, transfers the electric charge to the gate electrode 8 as the source electric potential rises, makes the electric charge equal to or higher than the power supply voltage, and drives the MOSFET 1 Make the on-resistance low.

【0013】電位検出回路12はゲート・ソース間電圧
Vgsを検出し、その電圧が所定値に低下したときゲー
ト制御回路13に信号を送り昇圧回路11の再起動を行
わせる。すなわち電位検出回路12からの信号を受ける
と、タイマ108により、コンデンサ102の充電時間
に相当する所定の時間、ゲート制御回路のFET104
が導通してゲート電極8を接地しMOSFET1をオフ
にする。昇圧回路11のコンデンサ102は、MOSF
ET1がオフのとき、つまりソース電極7が接地電位に
あるときに、電源電圧VDDからダイオード105の順
方向電圧(約0.7V)を差し引いたほぼVDDに相当
する電圧が印加され充電される。
The potential detection circuit 12 detects the gate-source voltage Vgs, and when the voltage drops to a predetermined value, sends a signal to the gate control circuit 13 to restart the booster circuit 11. That is, when receiving the signal from the potential detection circuit 12, the timer 108 causes the FET 104 of the gate control circuit to operate for a predetermined time corresponding to the charging time of the capacitor 102.
Is conducted, the gate electrode 8 is grounded, and the MOSFET 1 is turned off. The capacitor 102 of the booster circuit 11 is a MOSF
When ET1 is off, that is, when the source electrode 7 is at the ground potential, a voltage substantially equal to VDD obtained by subtracting the forward voltage (about 0.7 V) of the diode 105 from the power supply voltage VDD is applied and charged.

【0014】MOSFET1がオンし、ソース電極7の
電位が上昇するに連れてコンデンサ102の端子A点の
電位はVDDよりも高くなる。その結果コンデンサ10
2の電荷はゲート制御回路13のFET103を経由し
てMOSFET1のゲート電極8に流れていく。ソース
電位が安定したところで電荷の移動は停止する。
As the MOSFET 1 is turned on and the potential of the source electrode 7 rises, the potential at the terminal A of the capacitor 102 becomes higher than VDD. As a result, the capacitor 10
The charge of No. 2 flows to the gate electrode 8 of the MOSFET 1 via the FET 103 of the gate control circuit 13. When the source potential is stabilized, the movement of charges stops.

【0015】この構成によれば、PWM動作していると
きには図3に示すように、PWM周期ごとにMOSFE
T1がオフされるので、電荷が定期的にゲート電極に貯
められる。従ってVgsは高く保持され、MOSFET
1はオン抵抗の低い状態で駆動される。
According to this configuration, when the PWM operation is performed, as shown in FIG.
Since T1 is turned off, charges are periodically stored in the gate electrode. Therefore, Vgs is kept high and MOSFET
1 is driven with a low on-resistance.

【0016】フルデューティーで動作しているときに
は、図4に示すようにMOSFET1には長時間新たな
電荷が注入されない状態が続く。ゲート酸化膜には高い
電界が掛かっており、ゲート電荷はこの酸化膜を介して
リークし次第に減少していくが、この間電位検出回路1
2は入力端子5に信号が入力されている間随時Vgsを
モニターして、所定値Vtに低下したときゲート制御回
路13に信号を出力する。
When operating at full duty, a state in which no new charge is injected into the MOSFET 1 for a long time continues as shown in FIG. A high electric field is applied to the gate oxide film, and the gate charge leaks through this oxide film and gradually decreases.
2 monitors Vgs at any time while a signal is being input to the input terminal 5 and outputs a signal to the gate control circuit 13 when the voltage drops to a predetermined value Vt.

【0017】ゲート制御回路13はこの電位検出回路1
2からの信号を受けてMOSFET1のゲート電極8に
貯っている電荷をいったん引き抜いてオフする。 その
結果ソース電極7の電位は接地電位まで下がりコンデン
サ102にはほぼ電源電圧VDDに相当する電圧が印加
されて充電される。ゲート制御回路13はコンデンサ1
02に充分電荷が貯ったら再びゲート電極8の電位を上
げてMOSFET1をオンする。これによりゲート電極
8は電源電圧以上に昇圧される。
The gate control circuit 13 includes the potential detection circuit 1
In response to the signal from 2, the charge stored in the gate electrode 8 of the MOSFET 1 is once extracted and turned off. As a result, the potential of the source electrode 7 drops to the ground potential, and the capacitor 102 is charged by applying a voltage substantially corresponding to the power supply voltage VDD. The gate control circuit 13 includes the capacitor 1
When a sufficient charge is stored in the gate electrode 02, the potential of the gate electrode 8 is raised again and the MOSFET 1 is turned on. Thereby, the gate electrode 8 is boosted to a power supply voltage or higher.

【0018】コンデンサ102に充電される時間はその
容量と抵抗106で決まる。コンデサ102は10nF
程度で充分であり、抵抗106が10Ω程度とすると充
電の時定数は0.1μSと充分に短い。この時定数の3
倍の時間があればコンデンサ102の両端の電圧は印加
電圧の95%になる。従って0.3μS程度のオフ時間
で済む。この時間はPWM周期やモーター機械時定数よ
りもかなり短いのでPWM駆動されているモーターなど
の負荷には殆ど影響が出ない。
The time for charging the capacitor 102 is determined by its capacitance and the resistance 106. The capacitor 102 is 10 nF
When the resistance 106 is about 10Ω, the charging time constant is sufficiently short at 0.1 μS. This time constant 3
If the time is doubled, the voltage across capacitor 102 will be 95% of the applied voltage. Therefore, an off time of about 0.3 μS is sufficient. Since this time is considerably shorter than the PWM cycle and the motor mechanical time constant, there is almost no effect on loads such as a motor driven by PWM.

【0019】次に図5は第2の実施例を示す。ここでは
電位検出回路22が内部にタイマー107を備え、ゲー
ト電極8の電位が昇圧されるかソース電極7の電位が上
昇したときからの時間を計り、ゲート容量とリーク電流
から計算される最大通電可能時間に達したときゲート制
御回路13へ信号を出力して、第1の実施例と同じよう
にゲート電極8の電位を下げ、コンデンサ102に電荷
を蓄積する。その後タイマ108により、コンデンサ1
02の充電時間に相当する所定の時間経過後、再びゲー
ト電極8の電位を上げる。
FIG. 5 shows a second embodiment. Here, the potential detection circuit 22 includes a timer 107 therein, measures time from when the potential of the gate electrode 8 is boosted or the potential of the source electrode 7 is increased, and calculates the maximum energization calculated from the gate capacitance and the leak current. When the available time is reached, a signal is output to the gate control circuit 13 to lower the potential of the gate electrode 8 and accumulate the electric charge in the capacitor 102 as in the first embodiment. After that, the capacitor 1
After a lapse of a predetermined time corresponding to the charging time of 02, the potential of the gate electrode 8 is increased again.

【0020】なお上述した2実施例では、コンデンサ1
02の一方の端子は負荷端子10と共用化することがで
きるので、外付けでも追加を要する端子は1個で済む利
点があり、チップ面積の減少および実装コストの低減が
図れる。
In the above two embodiments, the capacitor 1
Since one of the terminals 02 can be shared with the load terminal 10, there is an advantage that only one terminal needs to be added even when externally attached, and the chip area and mounting cost can be reduced.

【0021】図6は第3の実施例を示し、負荷駆動用の
主たるMOSFET1とは別に昇圧回路駆動用MOSF
ET31を設けたものである。電位検出回路12がMO
SFET1のソース・ゲート電極間電圧Vgsの所定値
への低下を検出して信号を出力したとき、ゲート制御回
路33は昇圧回路11駆動のためのMOSFET31の
ゲート電極38の電位のみを下げる。このMOSFET
31のソース電極37はダミー負荷である抵抗308を
介して接地されているので、ソース電位は接地レベルま
で下がり、昇圧回路11中のコンデンサ102は充電を
開始する。その際負荷4は動作したままである。なお電
位検出回路は第2実施例と同様タイマを備えるものであ
ってもよい。
FIG. 6 shows a third embodiment, in which a booster circuit driving MOSF is provided separately from a load driving main MOSFET1.
ET31 is provided. When the potential detection circuit 12
When detecting a decrease in the source-gate electrode voltage Vgs of the SFET 1 to a predetermined value and outputting a signal, the gate control circuit 33 lowers only the potential of the gate electrode 38 of the MOSFET 31 for driving the booster circuit 11. This MOSFET
Since the source electrode 37 of 31 is grounded via the resistor 308 which is a dummy load, the source potential drops to the ground level, and the capacitor 102 in the booster circuit 11 starts charging. At that time, the load 4 remains operating. The potential detection circuit may include a timer as in the second embodiment.

【0022】ゲート電圧制御回路33はコンデンサ10
2に充分電荷が貯ったとき再び昇圧回路駆動用MOSF
ET31のゲート電極38の電位を上げてMOSFET
31をオンする。その後は第1実施例におけると同様に
ゲート電極8は電源電圧VDD以上に昇圧される。
The gate voltage control circuit 33 includes the capacitor 10
When the charge is sufficiently stored in the MOSF2, the MOSF for driving the booster circuit is again turned on.
Increase the potential of the gate electrode 38 of the ET31 to increase the MOSFET
31 is turned on. Thereafter, as in the first embodiment, the gate electrode 8 is boosted to the power supply voltage VDD or higher.

【0023】第1および第2の実施例では昇圧動作を行
う場合にMOSFET1のゲート電極8の電位を下げM
OSFET1をオフしてしまうので、短時間であっても
負荷4の動作を遮断していたが、本実施例では負荷4を
駆動したまま昇圧動作を行うことが出来る。
In the first and second embodiments, the potential of the gate electrode 8 of the MOSFET 1 is lowered when the boosting operation is performed.
Since the OSFET 1 is turned off, the operation of the load 4 is interrupted even for a short time. However, in this embodiment, the boosting operation can be performed while the load 4 is driven.

【0024】[0024]

【発明の効果】以上説明してきたように、本発明は昇圧
回路として大きなコンデンサが使えるブートストラップ
回路を用いて負荷制御電源装置とし、ゲート・ソース間
電圧Vgsあるいは各電極の電位をモニターする電位検
出回路を設け、所定条件(所定電圧への低下または所定
時間経過)になったとき昇圧回路を再起動させるように
したので、次のような利点を有する。 (1)従来のブートストラップ回路の欠点であったフル
デューティーで長時間ドライブする場合に生じるゲート
・ソース間電圧Vgsの低下を防ぎ、常にオン抵抗の低
い状態でパワーMOSFETを駆動でき、信頼性が大幅
に向上する。 (2)高い動作スピードが確保でき、PWM周波数を容
易に可聴帯城外にする事が出来る。
As described above, the present invention provides a load control power supply using a bootstrap circuit in which a large capacitor can be used as a booster circuit, and detects a gate-source voltage Vgs or the potential of each electrode. A circuit is provided, and the booster circuit is restarted when a predetermined condition (reduction to a predetermined voltage or a predetermined time has elapsed) has the following advantages. (1) The voltage Vgs between the gate and the source, which is a drawback of the conventional bootstrap circuit when driving at full duty for a long time, can be prevented from lowering, and the power MOSFET can always be driven with a low on-resistance, thereby improving reliability. Significantly improved. (2) A high operation speed can be secured, and the PWM frequency can be easily set outside the audible band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】発明の実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】PWM動作中の電位図である。FIG. 3 is a potential diagram during a PWM operation.

【図4】フルデューティー動作中の電位図である。FIG. 4 is a potential diagram during a full duty operation.

【図5】第2の実施例を示す図である。FIG. 5 is a diagram showing a second embodiment.

【図6】第3の実施例を示す図である。FIG. 6 is a diagram showing a third embodiment.

【図7】従来例を示す図である。FIG. 7 is a diagram showing a conventional example.

【図8】他の従来例を示す図である。FIG. 8 is a diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1 MOSFET 6 ドレイン電極 7 ソース電極 8 ゲート電極 11 昇圧回路 12、22 電位検出回路 13、33 ゲート制御回路 31 昇圧回路駆動用MOSFET 102 コンデンサ 107 タイマ 108 タイマ DESCRIPTION OF SYMBOLS 1 MOSFET 6 Drain electrode 7 Source electrode 8 Gate electrode 11 Booster circuit 12, 22 Potential detecting circuit 13, 33 Gate control circuit 31 Booster circuit driving MOSFET 102 Capacitor 107 Timer 108 Timer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ドレイン電極とソース電極がそれぞれ電
源端子と負荷端子に接続され、ゲート電極の電位に基づ
き負荷への電流を制御するNチャンネルMOSFET
と、前記ソース電極に接続してソース電極の電位に応じ
て電源電圧以上の電圧を発生する昇圧回路と、該昇圧回
路の出力を用いて外部からの入力信号に応じて前記ゲー
ト電極の電位を制御するゲート制御回路と、ゲート・ソ
ース間電圧を検出して該電圧が所定値に低下したときま
たはゲート電極またはソース電極の何れかが高電位にさ
れたときから所定時間経過したときゲート制御回路に信
号を出力する電位検出回路を有し、前記ゲート制御回路
は電位検出回路からの信号を受けてゲート電極の電位を
下げて、前記昇圧回路を再起動することを特徴とする負
荷制御電源装置。
An N-channel MOSFET having a drain electrode and a source electrode connected to a power supply terminal and a load terminal, respectively, and controlling a current to a load based on a potential of a gate electrode.
A booster circuit connected to the source electrode to generate a voltage equal to or higher than a power supply voltage according to the potential of the source electrode, and using the output of the booster circuit to change the potential of the gate electrode in response to an external input signal. A gate control circuit for controlling, and a gate control circuit for detecting a gate-source voltage and for elapse of a predetermined time after the voltage drops to a predetermined value or when either the gate electrode or the source electrode is set to a high potential A load control power supply device, wherein the gate control circuit receives a signal from the potential detection circuit, lowers the potential of the gate electrode, and restarts the booster circuit. .
JP3206580A 1991-07-23 1991-07-23 Load control power supply Expired - Fee Related JP2773476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206580A JP2773476B2 (en) 1991-07-23 1991-07-23 Load control power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206580A JP2773476B2 (en) 1991-07-23 1991-07-23 Load control power supply

Publications (2)

Publication Number Publication Date
JPH0538134A JPH0538134A (en) 1993-02-12
JP2773476B2 true JP2773476B2 (en) 1998-07-09

Family

ID=16525760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206580A Expired - Fee Related JP2773476B2 (en) 1991-07-23 1991-07-23 Load control power supply

Country Status (1)

Country Link
JP (1) JP2773476B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373435A (en) * 1993-05-07 1994-12-13 Philips Electronics North America Corporation High voltage integrated circuit driver for half-bridge circuit employing a bootstrap diode emulator
JP4597381B2 (en) * 1999-03-01 2010-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device having a variable speed motor
JP2001268899A (en) * 2000-03-17 2001-09-28 Fujitsu Ltd Power source controller, power source circuit and method for controlling power source as well as electronic equipment
JP4526812B2 (en) * 2003-12-16 2010-08-18 富士通テン株式会社 Switch power supply device, boost circuit, and boost method
CN100466433C (en) * 2004-06-01 2009-03-04 精工电子有限公司 Electronic instrument having booster circuit
JP4618149B2 (en) * 2006-02-07 2011-01-26 株式会社デンソー High side drive circuit
JP5582115B2 (en) * 2011-09-05 2014-09-03 三菱電機株式会社 Bootstrap circuit, semiconductor device
JP2014127941A (en) * 2012-12-27 2014-07-07 Shimadzu Corp Control circuit
JP6459917B2 (en) * 2015-11-17 2019-01-30 株式会社デンソー Energizing element driving device
CN109842289A (en) * 2017-11-28 2019-06-04 华为终端有限公司 Increasing apparatus and step-up method

Also Published As

Publication number Publication date
JPH0538134A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
JP2639325B2 (en) Constant voltage generator
KR100720747B1 (en) Bootstrap capacitor refresh circuit
JP2609852B2 (en) Charge pump circuit
US7459945B2 (en) Gate driving circuit and gate driving method of power MOSFET
KR101202204B1 (en) Power mosfet driver and method therefor
US7310006B2 (en) Semiconductor integrated circuit
US6674268B2 (en) Swithing regulator utilizing seperate integrated circuits for driving each switch
EP0581580B1 (en) Gate drive circuit for a MOS power transistor
JP2773476B2 (en) Load control power supply
US5914589A (en) Voltage boosting circuit for high-potential-side MOS switching transistor
US5073850A (en) Start circuit for a power supply control integrated circuit
JPH10323026A (en) Discharge control circuit and series regulator
US6856177B1 (en) High side power switch with charge pump and bootstrap capacitor
US6429635B2 (en) Drive circuit for insulated gate type FETs
JP3314473B2 (en) Power MOSFET control device
JPS6144414B2 (en)
KR100306232B1 (en) Motor drive device with backgate floating MOSFET for reverse current prevention
JPH07245187A (en) Strobe device
US7898319B2 (en) Efficiency improvement in charge pump system for low power application
JP4013011B2 (en) Switching power supply circuit
CN111082655A (en) Load driving circuit
JP2776517B2 (en) Semiconductor device
JPH0681025B2 (en) Gate drive circuit
JP2002281692A (en) Charging circuit of solar battery, and semiconductor device mounting the charging circuit
JPH09200015A (en) Semiconductor switch control circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324

LAPS Cancellation because of no payment of annual fees