JP2772054B2 - Nickel hydride rechargeable battery - Google Patents

Nickel hydride rechargeable battery

Info

Publication number
JP2772054B2
JP2772054B2 JP1215587A JP21558789A JP2772054B2 JP 2772054 B2 JP2772054 B2 JP 2772054B2 JP 1215587 A JP1215587 A JP 1215587A JP 21558789 A JP21558789 A JP 21558789A JP 2772054 B2 JP2772054 B2 JP 2772054B2
Authority
JP
Japan
Prior art keywords
capacity
cathode
hydrogen storage
anode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1215587A
Other languages
Japanese (ja)
Other versions
JPH0378972A (en
Inventor
清志 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16674904&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2772054(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1215587A priority Critical patent/JP2772054B2/en
Publication of JPH0378972A publication Critical patent/JPH0378972A/en
Application granted granted Critical
Publication of JP2772054B2 publication Critical patent/JP2772054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ニッケル水素二次電池に関し、特に水素吸
蔵合金を主成分とする陰極と陽極の容量比及び電解液の
注入量を適正化したニッケル水素二次電池に係わるもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a nickel-metal hydride secondary battery, in particular, a capacity ratio between a cathode and an anode mainly composed of a hydrogen storage alloy and injection of an electrolytic solution. The present invention relates to a nickel-hydrogen secondary battery with an appropriate amount.

(従来の技術) 現在、可逆的に水素を吸収放出させることが可能な水
素吸蔵合金を陰極とし、公知のニッケルカドミウム二次
電池に用いられているニッケルの水酸化物を陽極として
使用したニッケル水素二次電池は、大容量化を可能にす
るという点で注目されている。
(Prior Art) Nickel-metal hydride using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a cathode and a nickel hydroxide used as a known nickel cadmium secondary battery as an anode Secondary batteries are attracting attention because they allow for higher capacities.

前記水素吸蔵合金としては、チタン系の合金、マンガ
ン系の合金、希土類系の合金等があるが、電解液中で電
気化学的に水素の吸蔵・放出を迅速に行うことができる
合金としては、LaNi5系の合金が知られている。しかし
ながら、前記LaNi5はそのままでは電気容量、充放電サ
イクル寿命が共に満足する結果が得られず、それらの特
性と直接関係する合金内に水素が吸蔵された時の格子間
隔の変化等を考慮して他の金属元素を添加し、二次電池
の陰極に適用した時に最適な特性を持つ水素吸蔵合金を
設計する必要がある。
Examples of the hydrogen storage alloy include a titanium-based alloy, a manganese-based alloy, a rare earth-based alloy, and the like.As an alloy capable of electrochemically storing and releasing hydrogen electrochemically in an electrolytic solution, LaNi 5- based alloys are known. However, LaNi 5 as it is does not provide satisfactory results in both electric capacity and charge / discharge cycle life, and takes into account changes in lattice spacing when hydrogen is occluded in the alloy, which is directly related to those characteristics. Therefore, it is necessary to design a hydrogen storage alloy having optimum characteristics when it is applied to the cathode of a secondary battery by adding another metal element.

従来の水素吸蔵合金の研究により、Niの一部をMn、A
l、Coで置換し、LmNiaMnbAlcCod(但し、Lmはランタン
を富化したミッシュメタル)で表される組成であって、
a>3.6、d≦1、4.8≦a+b+c+d≦5.2に規定し
た水素吸蔵合金は前述した二次電池の陰極としてほぼ満
足する特性を有することが見出だされている。しかしな
がら、かかる水素吸蔵合金からなる陰極とニッケル極か
らなる陽極を組み合わせて二次電池を構成した場合、前
記水素吸蔵合金の組成が変わると、その合金の特性が変
化し、結果的には陰極特性が変化してしまう。このた
め、陰極と陽極の最適容量化が変化し、前述したLaNi5
で求めた最適容量比をそのまま適用できないという問題
があった。
Based on research on conventional hydrogen storage alloys, part of Ni was converted to Mn and A
l, substituted by Co, and represented by LmNi a Mn b Al c Co d (where Lm is a lanthanum-enriched misch metal),
It has been found that the hydrogen storage alloy defined as a> 3.6, d ≦ 1, 4.8 ≦ a + b + c + d ≦ 5.2 has almost satisfactory characteristics as the cathode of the above-mentioned secondary battery. However, when a secondary battery is configured by combining a cathode made of such a hydrogen storage alloy and an anode made of a nickel electrode, if the composition of the hydrogen storage alloy changes, the characteristics of the alloy change, and as a result, the cathode characteristics Changes. As a result, the optimum capacity of the cathode and anode changes, and the LaNi 5
However, there is a problem that the optimum capacity ratio obtained in the above cannot be applied as it is.

水素吸蔵合金を用いたニッケル水素二次電池では、そ
の合金組成を変える度に最適な陰極と陽極の容量比を求
める必要がある。前記陰極の容量が多い程、サイクル寿
命は長くなるが、電池の容量は陽極であるニッケル極で
規制される。このため、陰極の容量を増やすことに伴っ
て陰極の体積が大きくなると、一定体積の金属製缶に発
電要素群を収納する関係から対極である陽極の体積を少
なくせざるをえず、陽極の容量が減少し、ひいては電池
容量が少なくなる。反対に、陰極の容量を減らせば電池
の容量を増やすことができるが、電極容量劣化速度は陽
極であるニッケル極よりも、陰極である水素吸蔵合金の
方が速いので、短い充放電サイクルの間で陰極の容量が
陽極の容量よりも少なくなり、その後急速に電池の容量
が減少すると共に、充電の際に陰極から水素が発生して
電池内圧の上昇を招く。
In a nickel-metal hydride secondary battery using a hydrogen storage alloy, it is necessary to find an optimum cathode-to-anode capacity ratio every time the alloy composition is changed. The cycle life becomes longer as the capacity of the cathode increases, but the capacity of the battery is regulated by the nickel electrode serving as the anode. For this reason, if the volume of the cathode increases with the increase in the capacity of the cathode, the volume of the anode, which is the counter electrode, must be reduced because the power generation element group is housed in a metal can of a fixed volume. The capacity is reduced, and thus the battery capacity is reduced. Conversely, if the capacity of the cathode is reduced, the capacity of the battery can be increased.However, the rate of deterioration of the electrode capacity is higher in the hydrogen storage alloy as the cathode than in the nickel electrode as the anode. As a result, the capacity of the cathode becomes smaller than the capacity of the anode, and thereafter the capacity of the battery rapidly decreases, and at the time of charging, hydrogen is generated from the cathode to increase the internal pressure of the battery.

一方、水素吸蔵合金を用いたニッケル水素二次電池で
は金属缶の限られたスペースに陰極、セパレータ、陽極
からなる発電要素群及び電解液を入れるため、陰極又は
陽極の特性の変化に伴って前記電解液の最適注入量も変
化し、前述したLaNi5で求めた最適注入量をそのまま適
用できないという問題があった。
On the other hand, in a nickel-metal hydride secondary battery using a hydrogen storage alloy, a cathode, a separator, a power generation element group including an anode and an electrolytic solution are put in a limited space of a metal can. There is also a problem that the optimum injection amount of the electrolytic solution also changes, and the above-described optimum injection amount obtained for LaNi 5 cannot be directly applied.

即ち、通常、電解液量が多い程、電極内部の空隙を電
解液で満たすため、電極の利用率が高くなり、電池容量
が増加するばかりか、電極反応速度が速くなるため大電
流での充放電が可能となる。しかしながら、密閉型の二
次電池では充電の際に陽極側から発生する酸素を陰極表
面で還元する必要があるが、その酸素還元速度と電解液
量は密接な関係があり、電解液量が増えるほど陰極表面
での酸素還元速度が遅くなるため、電池の内圧が上昇
し、危険な状態となる。これは、次のような理由による
ものである。前記陰極が水素吸蔵合金からなる場合に
は、陽極で発生した酸素は陰極の水素吸蔵合金表面で電
気化学的に還元されるが、水素吸蔵合金の表面は電解液
の薄い液膜で覆われており、酸素はその液の表面で溶解
し、水素吸蔵合金表面まで拡散する。水素吸蔵合金表面
の電解液層が厚いと、酸素の拡散速度は遅くなり、酸素
の発生速度に酸素の還元速度が追い付かなくなるため、
既述したように電圧の内圧が上昇し、危険な状態とな
る。
That is, in general, the larger the amount of the electrolyte, the more the space inside the electrode is filled with the electrolyte, so that the utilization rate of the electrode is increased and the battery capacity is increased. Discharge becomes possible. However, in a sealed secondary battery, it is necessary to reduce oxygen generated from the anode side during charging on the cathode surface, but the oxygen reduction rate and the amount of electrolyte are closely related, and the amount of electrolyte increases. As the rate of oxygen reduction on the cathode surface decreases, the internal pressure of the battery increases, and the state becomes more dangerous. This is for the following reason. When the cathode is made of a hydrogen storage alloy, oxygen generated at the anode is electrochemically reduced on the surface of the hydrogen storage alloy of the cathode, but the surface of the hydrogen storage alloy is covered with a thin liquid film of an electrolytic solution. Oxygen dissolves on the surface of the liquid and diffuses to the surface of the hydrogen storage alloy. If the electrolyte layer on the surface of the hydrogen storage alloy is thick, the diffusion rate of oxygen becomes slow, and the rate of oxygen reduction cannot keep up with the rate of oxygen generation.
As described above, the internal pressure of the voltage increases, and a dangerous state occurs.

従って、金属製缶内に最適な量の電解液を注入する必
要があるが、水素吸蔵合金の組成の違いによる電極特性
の変化により最適な電解液量も変わってくる。また、最
適電解液量は陽極特性によっても変化し、陽極として吸
水性の高いペースト式ニッケル極を使用する場合には焼
結式ニッケル極の場合と比較して電解液量は多めにな
る。
Therefore, it is necessary to inject an optimal amount of the electrolytic solution into the metal can, but the optimal amount of the electrolytic solution also changes due to a change in the electrode characteristics due to a difference in the composition of the hydrogen storage alloy. The optimum amount of the electrolytic solution also changes depending on the anode characteristics. When a paste-type nickel electrode having high water absorption is used as the anode, the amount of the electrolytic solution is larger than that of the sintered nickel electrode.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、水素吸蔵合金を主成分とする陰極と陽極の容量
比の適正化と注入する電解液量を最適化し、電極容量と
充放電サイクル寿命を共に満足し、かつ電池内圧の上昇
を防止したニッケル水素二次電池を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and it is an object of the present invention to optimize a capacity ratio of a cathode and an anode containing a hydrogen storage alloy as a main component and an amount of an electrolyte to be injected. To provide a nickel-metal hydride secondary battery that satisfies both electrode capacity and charge / discharge cycle life and prevents an increase in battery internal pressure.

[発明の構成] (課題を解決するための手段) 本発明に係わるニッケル水素二次電池は、LnNiaMnbAl
cCod(但し、Lnはランタン単独又はランタンを含む希土
類元素の混合物、a>3.6、d≦1、4.8≦a+b+c+
d≦5.2を示す)で表される水素吸蔵合金を主成分とす
る陰極と、ニッケル化合物を主成分とする陽極と、前記
陰極と陽極との間に介在されるセパレータとからなる発
電要素群を金属製缶に収納し、アルカリ電解液を注入
し、蓋で前記缶の開口部を密閉した構造でAAサイズのニ
ッケル水素二次電池において、前記陰極の単位面積当り
に含まれる水素吸蔵合金量をM(g/cm2)、前記陽極の
単位面積当りの容量をC(mAh/cm2)とする時、 C=x2・M …… の関係で示されるx2の値が100以上、300以下となるよ
うに前記Mを設定し、 かつ前記電解液の注入量をL(cc)とする時、 L=y・C …… の関係で示されるyの値が0.035以上、0.1以下となるよ
うに前記Lを設定することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The nickel-metal hydride secondary battery according to the present invention comprises LnNi a Mn b Al
c Co d (Ln is lanthanum alone or a mixture of rare earth elements containing lanthanum, a> 3.6, d ≦ 1, 4.8 ≦ a + b + c +
d ≦ 5.2), a power generating element group including a cathode mainly composed of a hydrogen storage alloy represented by the formula: an anode mainly composed of a nickel compound; and a separator interposed between the cathode and the anode. In a metal can, an alkaline electrolyte is injected, and the opening of the can is sealed with a lid.In an AA-size nickel-metal hydride secondary battery, the amount of hydrogen storage alloy contained per unit area of the cathode is determined. M (g / cm 2 ), and when the capacity per unit area of the anode is C (mAh / cm 2 ), the value of x 2 represented by the relationship of C = x 2 · M is 100 or more, 300 When M is set so as to be as follows, and the injection amount of the electrolytic solution is L (cc), the value of y represented by the relationship of L = y · C becomes 0.035 or more and 0.1 or less. L is set as described above.

上記組成式で表される水素吸蔵合金のLnとしては、ラ
ンタン(La)単独、又はLaを含む希土類元素を用いるこ
とができるが、実用上、希土類元素のうちのセリウム
(Ce)量を15%以下に減し、相対的にLa量を増加させた
(富化させた)Lmで示されるミッシュメタルが好まし
い。前記Ni、Mn、Al、Coの合計量(a+b+c+d)を
4.8〜5.2の範囲とした理由は、4.8未満及び5.2を越えた
組成にすると水素吸蔵合金1g当りの水素吸蔵量が著しく
減少するためである。前記Niの量a及びCoの量bを限定
した理由は、aを3.6以下、bが1を越えると、電池電
圧の低下を招くからである。前記式で表わされるより好
ましい組成比率はMn、Al、Coの含有量をそれぞれ0.1〜
0.7とした場合である。かかる組成の水素吸蔵合金は、
常圧時の水素吸蔵量が電気容量に換算して1g当り360mAh
程度であり、電気化学的に可逆的に吸蔵・放出できる水
素量は1Cで充電した時に電気容量に換算して300mAhに達
する。
As Ln of the hydrogen storage alloy represented by the above composition formula, lanthanum (La) alone or a rare earth element containing La can be used, but in practice, the amount of cerium (Ce) among the rare earth elements is 15%. A misch metal represented by Lm, which is reduced as follows and whose La content is relatively increased (enriched), is preferable. The total amount of Ni, Mn, Al and Co (a + b + c + d)
The reason for setting the range of 4.8 to 5.2 is that if the composition is less than 4.8 and exceeds 5.2, the amount of hydrogen storage per 1 g of the hydrogen storage alloy is significantly reduced. The reason for limiting the amount a of Ni and the amount b of Co is that if a is 3.6 or less and b exceeds 1, the battery voltage is reduced. More preferable composition ratios represented by the above formula are Mn, Al, Co content of 0.1 to 0.1 respectively.
0.7. Hydrogen storage alloy of such composition,
Hydrogen storage capacity at normal pressure is converted to electric capacity, 360mAh per gram
The amount of hydrogen that can be stored and released reversibly electrochemically reaches 300 mAh in terms of electric capacity when charged at 1 C.

上記ニッケル化合物を主成分とする陽極としては、焼
結式電極、ペースト式電極のいずれでもよいが、電池容
量を大きくする観点からペースト式電極が好ましい。か
かるペースト式電極としては、例えばスポンジ状ニッケ
ル、ニッケル短繊維焼結体などの三次元網状芯体にニッ
ケル酸化物を充填、プレス成型したもの等を挙げること
ができる。
The anode mainly containing the nickel compound may be a sintered electrode or a paste electrode, but a paste electrode is preferable from the viewpoint of increasing the battery capacity. As such a paste electrode, for example, a three-dimensional mesh core such as sponge-like nickel and nickel short fiber sintered body, which is filled with nickel oxide and press-molded, can be used.

上記関係式におけるxの値を限定した理由は、xが
300を越えると充放電サイクル寿命が低下し、一方100未
満にすると大容量の二次電池を得ることが困難となる。
より好ましいxの値は、140〜220の範囲である。
The reason for limiting the value of x in the above relational expression is that x is
If it exceeds 300, the charge / discharge cycle life decreases, while if it is less than 100, it becomes difficult to obtain a large capacity secondary battery.
More preferred values of x are in the range of 140-220.

上記関係式におけるyの値を限定した理由は、yが
0.1を越えると電池内圧の上昇を招き、一方0.035未満に
すると電解液量が不足して電池の容量低下を招く。より
好ましいyの値は、0.04以上、0.08以下である。
The reason for limiting the value of y in the above relational expression is that y is
If it exceeds 0.1, the internal pressure of the battery will increase. On the other hand, if it is less than 0.035, the amount of the electrolyte will be insufficient and the capacity of the battery will decrease. A more preferable value of y is 0.04 or more and 0.08 or less.

(作用) ニッケル水素二次電池の内部では、陰極と陽極とがセ
パレータを介して密着配置されている。このように陰極
と陽極間の距離が非常に狭い場合には、電極反応は対向
している陰極と陽極間で起きる。このため、陰極と陽極
が互いに対向していない電極部分の容量をも含めて金属
製缶内に組み込まれた電極全体の容量同志の比で電池を
設計することは、電池のサイズが異なった場合もしくは
同じ電池サイズでも電極サイズが変わった場合、陰極と
陽極の最適容量比を再度、求めなけるればならず、普遍
的かつ理論的な設計手法とは言い難い。
(Operation) Inside the nickel-metal hydride secondary battery, a cathode and an anode are closely arranged via a separator. When the distance between the cathode and the anode is very small, an electrode reaction occurs between the opposed cathode and the anode. For this reason, designing a battery based on the ratio of the total capacity of the electrodes incorporated in the metal can, including the capacity of the electrode part where the cathode and anode are not opposed to each other, is not possible if the battery sizes are different. Alternatively, when the electrode size changes even with the same battery size, the optimum capacity ratio between the cathode and the anode must be obtained again, which is not a universal and theoretical design method.

従って、陰極と陽極の最適容量比を決定するに際して
はそれら電極が対向している面の容量比を求めることが
必要である。具体的には、陰極と陽極の単位面積当りの
容量を求めることが適切である。仮に、水素吸蔵合金か
ら電気化学的方法で可逆的に得られる容量が水素吸蔵合
金の最大水素吸蔵量から換算した容量に等しく、しかも
アルカリ電解液中で水素吸蔵合金電極が劣化せずに全く
容量減少を起こさない場合には、単位面積辺りの水素吸
蔵合金電極の容量は対極であるニッケ極の単位面積当り
の容量と等しくても構わない。即ち、前記関係式のx
の値は360でもよい。しかしながら、実際に電気化学的
方法で可逆的に水素吸蔵合金電極から得られる容量は、
水素吸蔵合金の最大吸蔵合金量から換算した容量よりも
小さく、しかもアルカリ電解液中で徐々に酸化されるた
めに容量減少も起こる。
Therefore, when determining the optimum capacitance ratio between the cathode and the anode, it is necessary to obtain the capacitance ratio between the surfaces facing the electrodes. Specifically, it is appropriate to determine the capacity per unit area of the cathode and the anode. It is assumed that the capacity reversibly obtained from the hydrogen storage alloy by the electrochemical method is equal to the capacity calculated from the maximum hydrogen storage capacity of the hydrogen storage alloy, and that the capacity of the hydrogen storage alloy electrode is not deteriorated in the alkaline electrolyte without any deterioration. When the decrease does not occur, the capacity of the hydrogen storage alloy electrode per unit area may be equal to the capacity per unit area of the nickel electrode as the counter electrode. That is, x in the above relational expression
The value of may be 360. However, the capacity actually obtained reversibly from a hydrogen storage alloy electrode by an electrochemical method is:
The capacity is smaller than the capacity calculated from the maximum storage alloy amount of the hydrogen storage alloy, and is gradually oxidized in the alkaline electrolyte, so that the capacity decreases.

本発明では、上述した2つの事柄を考慮して特定の組
成の水素吸蔵合金を主成分とする陰極の単位面積当りに
含まれる水素吸蔵合金量をM(g/cm2)、ニッケル化合
物を主成分とする陽極の単位面積当りの容量をC(mAh/
cm2)とする時、 C=x/M …… で示されるxの上限値を充放電サイクル寿命との関係で
300とし、下限値を容量との関係で100となるように前記
Mを設定することによって、水素吸蔵合金を主成分とす
る陰極と陽極の容量比を適正化したものである。
In the present invention, in consideration of the above two points, the amount of the hydrogen storage alloy per unit area of the cathode mainly containing the hydrogen storage alloy having a specific composition is M (g / cm 2 ), and the nickel compound is mainly used. The capacity per unit area of the anode as a component is C (mAh /
cm 2 ), the upper limit value of x expressed by C = x / M...
By setting M so that the lower limit value is set to 300 and the lower limit value is set to 100 in relation to the capacity, the capacity ratio between the cathode and the anode mainly composed of the hydrogen storage alloy is optimized.

また、電解液の注入量をL(cc)、ニッケル化合物を
主成分とする陽極の単位面積当りの容量をC(mAh/c
m2)とする時、 L=y・C …… の関係で示されるyの値が0.035以上、0.1以下となるよ
うに前記Lを設定することによって、前記陰極及び陽極
に対して電解液量の最適化したものである。
Further, the injection amount of the electrolyte is L (cc), and the capacity per unit area of the anode mainly composed of a nickel compound is C (mAh / c
m 2 ), L is set so that the value of y expressed by the relationship L = y · C is not less than 0.035 and not more than 0.1. Is an optimized version of

従って、前記関係式、でのx、yが所定の値とな
るように陰極の単位面積当りに含まれる水素吸蔵合金量
Mと電解液の注入量Lを設定することによって、電極容
量と充放電サイクル寿命を共に満足し、かつ内圧の上昇
を抑制した高性能、高信頼性のニッケル水素二次電池を
得ることができる。
Therefore, by setting the amount M of the hydrogen storage alloy and the amount L of the electrolytic solution contained per unit area of the cathode so that x and y in the above relational expressions become predetermined values, the electrode capacity and the charge / discharge are set. A high performance and high reliability nickel-metal hydride secondary battery that satisfies both cycle life and suppresses an increase in internal pressure can be obtained.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 それぞれ後述する陰極、陽極としてのニッケル極及び
セパレータを用い、前記陰極と陽極の間に前記セパレー
タを介在させた状態で捲回して電池要素群とし、この電
池要素群を金属製缶内に収納し、前記陽極のリードを蓋
に接続し、アルカリ電解液を缶内に注入した後、前記蓋
を前記缶の上部開口部に取り付けて密閉し、AAサイズの
二次電池を組み立てた。なお、前記蓋には缶内部が例え
ば15kg/cm2以上になると作動し、外部にガスを逃散させ
る機構の弁が取り付けられている。また、前記陰極側は
リードを介さずに捲回時に最外周が前記缶内面に接触し
て接続されている。
Example 1 A battery element group was wound by using a cathode, a nickel electrode as an anode, and a separator, which will be described later, in a state where the separator was interposed between the cathode and the anode. Then, the anode lead was connected to a lid, an alkaline electrolyte was injected into the can, and then the lid was attached to the upper opening of the can and hermetically closed to assemble an AA size secondary battery. The lid is provided with a valve that operates when the inside of the can becomes 15 kg / cm 2 or more and allows gas to escape to the outside. The outermost periphery of the cathode side is connected to the inner surface of the can at the time of winding without interposing a lead.

前記ニッケル極は、ニッケル焼結繊維からなる三次元
網状芯体に活物質であるニッケル酸化物を充填し、プレ
ス成形することによって作製されたペースト式電極で、
単位面積当りの容量Cが35mAh/cm2、40mAh/cm2、45mAh/
cm2の3種の電極を使用した。
The nickel electrode is a paste electrode manufactured by filling a nickel oxide as an active material into a three-dimensional mesh core made of nickel sintered fiber and press-molding the same.
Capacitor C 35 mAh / cm 2 per unit area, 40mAh / cm 2, 45mAh /
Three electrodes of cm 2 were used.

前記陰極は、常圧時の水素吸蔵量を電気容量に換算し
た値が360mAh/gであるLmNi4.2Mn0.3Al0.3Co0.3(Lm;ラ
ンタンを富化したミッシュメタル)からなる水素吸蔵合
金を使用前にガス状水素を吸収・放出させて微粉化し、
この粉末をカーボン及びポリテトラフルオロエチレン粉
末と混合、混練してシート化した後、該シート状物をニ
ッケル網に圧着することにより作製した。なお、陰極と
しては単位面積当りに含まれる水素吸蔵合金量Mを前記
関係式から求めたxの値が前記各ニッケル極に対して
80、130、220、300、400となるように設定した15種のも
のを用いた。
The cathode uses a hydrogen storage alloy made of LmNi 4.2 Mn 0.3 Al 0.3 Co 0.3 (Lm; a lanthanum-enriched misch metal) whose value obtained by converting the amount of hydrogen storage at normal pressure into electric capacity is 360 mAh / g. Before absorbing and releasing gaseous hydrogen, it is pulverized,
This powder was mixed with carbon and polytetrafluoroethylene powder, kneaded to form a sheet, and the sheet was pressed against a nickel net to produce a sheet. In addition, as the cathode, the value of x obtained by calculating the amount M of the hydrogen storage alloy contained per unit area from the above-mentioned relational expression was determined for each nickel electrode.
Fifteen types set to be 80, 130, 220, 300, and 400 were used.

前記セパレータは、主繊維がポリオレフィンからなる
不織布で、0.2mmmのものを使用した。
The separator used was a nonwoven fabric whose main fiber was made of polyolefin and had a thickness of 0.2 mm.

前記電解液は、KOHが7規定、LiOHが1規定になるよ
うに調節したものを使用し、各電池の金属製缶への注入
量Lは前記関係式から求めたyが0.05となるように設
定した。
The electrolyte used was adjusted so that KOH was 7N and LiOH was 1N. The injection amount L of each battery into the metal can was such that y obtained from the above relational expression was 0.05. Set.

上述した二次電池を室温で1日間静置した後、0.3Cで
5時間充電、1Cで1Vまで放電させる充放電を行った。但
し、充電と放電、放電と充電の間にそれぞれ1時間の休
止時間を設けた。各電池のサイクル寿命は、電池容量が
初期サイクル(3サイクル目)の容量の90%になるまで
のサイクル数から求めた。また、充放電サイクルの途中
で弁作動したものをチェックし、弁作動したものに関し
てはその時点で充放電サイクルを中止して、その回数を
サイクル寿命として求めた。前記陰極を構成する水素吸
蔵合金のxとサイクル寿命との関係を第1図に示す。ま
た、前記陰極を構成する水素吸蔵合金のxと各電池の初
期サイクル(3サイクル目)の容量比の関係を第2図に
示す。容量比は、xの値が300である容量を100とした時
の相対値で表した。なお、第1図、第2図中の○印は単
位面積当りの容量が35mAh/cm2のニッケル極、□印は同
容量が40mAh/cm2のニッケル極、△印は同容量が45mAh/c
m2のニッケル極を用いたものである。また、第2図にお
いてxの値が400のものは3サイクル目以上で弁が作動
して容量の測定ができなかったため、記載していない。
After the above-mentioned secondary battery was allowed to stand at room temperature for one day, charging and discharging were performed at 0.3 C for 5 hours and discharging at 1 C to 1 V. However, a one-hour rest period was provided between charging and discharging, and between discharging and charging. The cycle life of each battery was determined from the number of cycles until the battery capacity reached 90% of the capacity of the initial cycle (third cycle). In addition, the valve operated during the charge / discharge cycle was checked, and for the valve operated, the charge / discharge cycle was stopped at that time, and the number of times was determined as the cycle life. FIG. 1 shows the relationship between x of the hydrogen storage alloy constituting the cathode and the cycle life. FIG. 2 shows the relationship between x of the hydrogen storage alloy constituting the cathode and the capacity ratio of the initial cycle (third cycle) of each battery. The capacity ratio was expressed as a relative value when the capacity where x was 300 was taken as 100. In FIG. 1 and FIG. 2, a circle indicates a nickel electrode having a capacity per unit area of 35 mAh / cm 2, a square indicates a nickel electrode having a capacity of 40 mAh / cm 2, and a triangle indicates a capacity of 45 mAh / cm 2. c
It uses a nickel electrode of m 2 . Further, in FIG. 2, the case where the value of x is 400 is not described because the valve was activated in the third cycle or more and the capacity could not be measured.

第1図から明らかなようにxの値が220以下の場合に
は、サイクル寿命が全て300サイクルとなる。但し、サ
イクル寿命が300サイクルという意味ではなく、最大300
サイクルしか行わなかったためである。xの値が300に
なるとサイクル寿命はおよそ280サイクルとなり、xの
値が400となるたとたったの2サイクルとなってしま
う。このxの値が400の時に2サイクルとなったのは、
予想通り電池内圧が上昇し、弁作動がなされたためであ
る。従って、第1図のサイクル寿命の結果より陰極の特
定組成の水素吸蔵合金含有量をxの値が300以下になる
ように設定する必要がある。
As is clear from FIG. 1, when the value of x is 220 or less, the cycle life is all 300 cycles. However, the cycle life does not mean 300 cycles, but a maximum of 300
This is because only cycles were performed. When the value of x is 300, the cycle life is about 280 cycles, and when the value of x is 400, it is only two cycles. Two cycles when the value of x is 400 is
This is because the internal pressure of the battery rose as expected and the valve was operated. Therefore, it is necessary to set the content of the hydrogen storage alloy having a specific composition of the cathode such that the value of x is 300 or less from the results of the cycle life shown in FIG.

また、第2図より明らかなようにxの値が小さくなる
に伴って電池容量も小さくなるが、ニッケル極の単位面
積当たりの容量が小さい程、電池容量減少は小さくなる
ことがわかる。これは、次のような理由によるものであ
る。xの値を小さくすることは、水素吸蔵合金の含有量
を増やすことに等しい。一定体積の金属製缶内に発電要
素群を収納するため、水素吸蔵合金の含有量を増やせば
その分だけニッケル極の体積を減少させる必要がある
が、もともとニッケル極の容量が小さく体積が小さい場
合には、減らすニッケル極の体積も少なくて済むからで
ある。ニッケル極の単位面積当りの容量が45mAh/cm2
場合は、xの値が80では相対容量比が60程度まで減少し
てしまう。相対容量比が60では、大容量化の点で不十分
であり、70以上となることが必要である。そのために
は、陰極の特定組成の水素吸蔵合金の含有量をxの値が
100以上となるように設定する必要がある。
Also, as is clear from FIG. 2, the battery capacity decreases as the value of x decreases, but it can be seen that the smaller the capacity per unit area of the nickel electrode, the smaller the battery capacity decrease. This is for the following reason. Decreasing the value of x is equivalent to increasing the content of the hydrogen storage alloy. In order to store the power generation element group in a metal can with a fixed volume, it is necessary to reduce the volume of the nickel electrode by increasing the content of the hydrogen storage alloy, but the capacity of the nickel electrode is originally small and the volume is small In this case, the volume of the nickel electrode to be reduced can be reduced. When the capacity per unit area of the nickel electrode is 45 mAh / cm 2 , when the value of x is 80, the relative capacity ratio decreases to about 60. When the relative capacity ratio is 60, it is insufficient in terms of increasing the capacity, and it is necessary that the relative capacity ratio be 70 or more. For this purpose, the content of the hydrogen storage alloy having a specific composition of the cathode is determined by the value of x.
It must be set to be 100 or more.

実施例2 それぞれ後述する陰極、陽極としてのニッケル極及び
セパレータを用い、前記陰極と陽極の間に前記セパレー
タを介在させた状態で捲回して電池要素群とし、この電
池要素群を金属製缶内に収納し、アルカリ電解液を缶内
に注入した。前記陰極は、リードを介さずに捲回時に最
外周が前記缶内面に接触して接続し、かつ該缶の外側に
ニッケル製リードを取付けた。前記陽極は、ニッケル製
リードを直接取り付け、缶外部に取りせるようにした。
前記缶をアクリル樹脂製容器に収納し、該容器の上部開
口部を圧力センサが取付けられたアクリル樹脂製蓋で密
閉して試験セルを組立てた。
Example 2 A battery element group was wound by using a cathode, a nickel electrode as an anode, and a separator, which will be described later, in a state where the separator was interposed between the cathode and the anode. And the alkaline electrolyte was injected into the can. The outermost periphery of the cathode was connected to the inner surface of the can at the time of winding without a lead, and a nickel lead was attached to the outside of the can. The anode was directly attached with a lead made of nickel so that it could be taken out of the can.
The can was housed in an acrylic resin container, and the upper opening of the container was sealed with an acrylic resin lid to which a pressure sensor was attached, to assemble a test cell.

前記ニッケル極は、ニッケル焼結繊維からなるる三次
元網状芯体に活物質であるニッケル酸化物を充填し、プ
レス成形することによって作製されたペースト式電極
で、単位面積当りの容量Cが35mAh/cm2、40mAh/cm2、45
mAh/cm2の3種の電極を使用した。
The nickel electrode is a paste electrode manufactured by filling a three-dimensional mesh core made of nickel sintered fiber with nickel oxide as an active material and press-molding, and has a capacity C per unit area of 35 mAh. / cm 2 , 40mAh / cm 2 , 45
Three electrodes of mAh / cm 2 were used.

前記陰極は、常圧時の水素吸蔵量を電気容量に換算し
た値が360mAh/gであるLmNi4.2Mn0.3Al0.3Co0.3(Lm;ラ
ンタンを富化したミッシュメタル)からなる水素吸蔵合
金を使用前にガス状水素を吸収・放出させて微粉化し、
この粉末をカーボン及びポリテトラフルオロエチレン粉
末と混合、混練してシート化した後、該シート状物をニ
ッケル網に圧着することにより作製した。なお、陰極と
しては単位面積当りに含まれる水素吸蔵合金量Mを前記
関係式から求めたxの値が前記各ニッケル極に対して
220となるように設定したものを用いた。
The cathode uses a hydrogen storage alloy made of LmNi 4.2 Mn 0.3 Al 0.3 Co 0.3 (Lm; a lanthanum-enriched misch metal) whose value obtained by converting the amount of hydrogen storage at normal pressure into electric capacity is 360 mAh / g. Before absorbing and releasing gaseous hydrogen, it is pulverized,
This powder was mixed with carbon and polytetrafluoroethylene powder, kneaded to form a sheet, and the sheet was pressed against a nickel net to produce a sheet. In addition, as the cathode, the value of x obtained by calculating the amount M of the hydrogen storage alloy contained per unit area from the above-mentioned relational expression was determined for each nickel electrode.
The one set to be 220 was used.

前記セパレータは、主繊維がポリオレフィンからなる
不織布で、0.2mmmのものを使用した。
The separator used was a nonwoven fabric whose main fiber was made of polyolefin and had a thickness of 0.2 mm.

前記電解液は、KOHが7規定、LiOHが1規定になるよ
うに調節したものを使用し、各電池への注入量Lは前記
関係式から求めたyが0.025、0.035、0.05、0.075、
0.10、0.12となるように設定した。
The electrolyte used was adjusted so that KOH was 7N and LiOH was 1N, and the injection amount L into each battery was 0.025, 0.035, 0.05, 0.075, y obtained from the above relational expression.
It was set to be 0.10 and 0.12.

上述した試験セルを室温で1日間静置した後、0.3Cで
5時間充電、1Cで1Vまで放電させる充放電を行って試験
セルの充放電サイクルに伴う容量変化(容量比として求
めた変化)及び試験セルの内圧の変化を測定した。但
し、充電と放電、放電と充電の間にそれぞれ1時間の休
止時間を設けた。前記電解液の注入量yと試験セルの容
量比との関係を第3図に示す。各試験セルの容量比は、
10サイクル目の容量を採用し、yの値が0.05である容量
を100とした時の相対値で表した。また、前記電解液の
注入量yと試験セルの100サイクル目の内圧の最大値と
の関係を第4図に示す。なお、第3図、第4図中の○印
は単位面積当りの容量が35mAh/cm2のニッケル極、□印
は同容量が40mAh/cm2のニッケル極、△印は同容量が45m
Ah/cm2のニッケル極を用いたものである。
After the above-mentioned test cell is allowed to stand at room temperature for one day, it is charged at 0.3 C for 5 hours, and charged and discharged at 1 C to 1 V to change the capacity of the test cell according to the charge and discharge cycle (change obtained as a capacity ratio) And the change of the internal pressure of the test cell was measured. However, a one-hour rest period was provided between charging and discharging, and between discharging and charging. FIG. 3 shows the relationship between the injection amount y of the electrolytic solution and the capacity ratio of the test cell. The capacity ratio of each test cell is
The capacity at the 10th cycle was adopted, and the value was expressed as a relative value when the capacity at which the value of y was 0.05 was taken as 100. FIG. 4 shows the relationship between the injection amount y of the electrolytic solution and the maximum value of the internal pressure at the 100th cycle of the test cell. In FIGS. 3 and 4, a circle indicates a nickel electrode having a capacity per unit area of 35 mAh / cm 2, a square indicates a nickel electrode having a capacity of 40 mAh / cm 2 , and a triangle indicates a capacity of 45 m
A nickel electrode of Ah / cm 2 is used.

第3図から明らかなように、yの値が0.025になると
容量比が60%程度まで低下してしまう。容量比が60%で
は、大容量化の観点で不十分であり、70%以上となるこ
とが必要である。そのためには、電解液の注入量をyの
値が0.035(容量比が80%)以上となるように設定する
必要がある。
As is clear from FIG. 3, when the value of y becomes 0.025, the capacity ratio decreases to about 60%. When the capacity ratio is 60%, it is insufficient from the viewpoint of increasing the capacity, and it is necessary that the capacity ratio be 70% or more. For that purpose, it is necessary to set the injection amount of the electrolytic solution so that the value of y is 0.035 (the capacity ratio is 80%) or more.

また、第4図から明らかなように、yの値が0.1の時
には12kg/cm2であり、通常の電池に取付けられる安全弁
の作動圧以下となっているが、yの値が0.12になると電
池内圧が急激に上昇し、30kg/cm2に達する。従って、第
4図の電池の内圧の結果より電解液の注入量をyの値が
0.1以下となるように設定する必要がある。
As is clear from FIG. 4, when the value of y is 0.1, the pressure is 12 kg / cm 2, which is lower than the operating pressure of a safety valve attached to a normal battery. The internal pressure rises sharply and reaches 30 kg / cm 2 . Therefore, based on the result of the internal pressure of the battery shown in FIG.
It must be set to be 0.1 or less.

[発明の効果] 以上詳述した如く、本発明によれば水素吸蔵合金を主
成分とする陰極と陽極の容量比の適正化と注入する電解
液量を最適化し、電極容量と充放電サイクル寿命を共に
満足し、かつ電池内圧の上昇を防止した高性能、高信頼
性のニッケル水素二次電池を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, the capacity ratio between the cathode and the anode mainly composed of a hydrogen storage alloy is optimized, the amount of the injected electrolyte is optimized, and the electrode capacity and the charge / discharge cycle life are obtained. Can be provided, and a high-performance and highly reliable nickel-metal hydride secondary battery in which an increase in battery internal pressure is prevented can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はxの値と二次電池のサイクル寿命との関係を示
す特性図、第2図はxの値と二次電池の容量比との関係
を示す特性図、第3図はyの値と試験セルの容量比との
関係を示す特性図、第4図はyの値と試験セルの内圧と
の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the value of x and the cycle life of the secondary battery, FIG. 2 is a characteristic diagram showing the relationship between the value of x and the capacity ratio of the secondary battery, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the value and the capacity ratio of the test cell, and FIG. 4 is a characteristic diagram showing the relationship between the value of y and the internal pressure of the test cell.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LnNiaMnbAlcCod(但し、Lnはランタン単独
又はランタンを含む希土類元素の混合物、a>3.6、d
≦1、4.8≦a+b+c+d≦5.2を示す)で表される水
素吸蔵合金を主成分とする陰極と、ニッケル化合物を主
成分とする陽極と、前記陰極と陽極との間に介在される
セパレータとからなる発電要素群を金属製缶に収納し、
アルカリ電解液を注入し、蓋で前記缶の開口部を密閉し
た構造でAAサイズのニッケル水素二次電池において、前
記陰極の単位面積当りに含まれる水素吸蔵合金量をM
(g/cm2)、前記陽極の単位面積当りの容量をC(mAh/c
m2)とする時、 C=x・M …… の関係で示されるxの値が100以上、300以下となるよう
に前記Mを設定し、かつ 前記電解液の注入量をL(cc)とする時、 L=y・C …… の関係で示されるyの値が0.035以上、0.1以下となるよ
うに前記Lを設定することを特徴とするニッケル水素二
次電池。
1. A LnNi a Mn b Al c Co d ( provided that a mixture of rare earth elements Ln may include lanthanum alone or lanthanum, a> 3.6, d
.Ltoreq.1, 4.8.ltoreq.a + b + c + d.ltoreq.5.2), a cathode mainly composed of a hydrogen storage alloy, an anode mainly composed of a nickel compound, and a separator interposed between the cathode and the anode. Power generation element group in a metal can,
In an AA-size nickel-metal hydride secondary battery having a structure in which an alkaline electrolyte is injected and the opening of the can is sealed with a lid, the amount of hydrogen storage alloy contained per unit area of the cathode is M
(G / cm 2 ), and the capacity per unit area of the anode is C (mAh / c
m 2 ), M is set so that the value of x expressed by the relationship C = x · M is not less than 100 and not more than 300, and the injection amount of the electrolytic solution is L (cc). Wherein L is set so that the value of y represented by the following relationship: L = y · C is not less than 0.035 and not more than 0.1.
JP1215587A 1989-08-22 1989-08-22 Nickel hydride rechargeable battery Expired - Fee Related JP2772054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215587A JP2772054B2 (en) 1989-08-22 1989-08-22 Nickel hydride rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215587A JP2772054B2 (en) 1989-08-22 1989-08-22 Nickel hydride rechargeable battery

Publications (2)

Publication Number Publication Date
JPH0378972A JPH0378972A (en) 1991-04-04
JP2772054B2 true JP2772054B2 (en) 1998-07-02

Family

ID=16674904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215587A Expired - Fee Related JP2772054B2 (en) 1989-08-22 1989-08-22 Nickel hydride rechargeable battery

Country Status (1)

Country Link
JP (1) JP2772054B2 (en)

Also Published As

Publication number Publication date
JPH0378972A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
EP0383991B2 (en) Alkaline storage battery using hydrogen absorbing alloy
US4621034A (en) Sealed metal oxide-hydrogen storage cell
US3980501A (en) Use of hydrogen-absorbing electrode in alkaline battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JP2772054B2 (en) Nickel hydride rechargeable battery
JP3114976B2 (en) Nickel hydride rechargeable battery
KR20000069898A (en) Alkaline storage battery and method for charging battery
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP3297375B2 (en) Nickel hydride rechargeable battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH0935718A (en) Alkaline secondary battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP3221040B2 (en) Alkaline storage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP2861152B2 (en) Lead oxide-hydrogen storage battery and its manufacturing method
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP3071033B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees