JP2764073B2 - Method for producing propylene block copolymer - Google Patents

Method for producing propylene block copolymer

Info

Publication number
JP2764073B2
JP2764073B2 JP1088046A JP8804689A JP2764073B2 JP 2764073 B2 JP2764073 B2 JP 2764073B2 JP 1088046 A JP1088046 A JP 1088046A JP 8804689 A JP8804689 A JP 8804689A JP 2764073 B2 JP2764073 B2 JP 2764073B2
Authority
JP
Japan
Prior art keywords
polymerization
propylene
block copolymer
reaction
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1088046A
Other languages
Japanese (ja)
Other versions
JPH02276810A (en
Inventor
浅沼  正
勉 岩谷
隆一 杉本
茂 木村
薫 川西
貢 伊藤
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to US07/377,268 priority Critical patent/US5175208A/en
Priority to EP19890113157 priority patent/EP0351781A3/en
Priority to KR1019890010169A priority patent/KR920006449B1/en
Publication of JPH02276810A publication Critical patent/JPH02276810A/en
Application granted granted Critical
Publication of JP2764073B2 publication Critical patent/JP2764073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンのブロック共重合体の製造方法に
関する。詳しくは、実質的にプロピレン単独の重合を行
う重合槽とエチレンとプロピレンの共重合を行う重合槽
の間に向流洗浄塔を設けてなる改良方法に関する。
The present invention relates to a method for producing a propylene block copolymer. More specifically, the present invention relates to an improved method in which a countercurrent washing tower is provided between a polymerization tank for substantially polymerizing propylene alone and a polymerization tank for copolymerizing ethylene and propylene.

〔従来の技術〕[Conventional technology]

アイソタクティックなポリプロピレンの耐衝撃性、特
に低温でのそれを改良する目的で初めに実質的にプロピ
レンの単独重合を行い、ついでエチレンとプロピレンを
重合することが広く行われており、耐衝撃性と剛性のバ
ランスを改良するため種々の試みが成されている。
In order to improve the impact resistance of isotactic polypropylene, especially at low temperatures, it is widely practiced to first conduct propylene homopolymerization and then polymerize ethylene and propylene. Various attempts have been made to improve the balance between stiffness and rigidity.

一般に耐衝撃性と剛性のバランスは、実質的にプロピ
レン単独で重合する部分とエチレンとプロピレンの共重
合を行う部分との割合で定まるが、耐衝撃性はさらに共
重合部の分子量によって影響を受けるし、共重合部の反
応比は剛性に影響を与える。従って、要求される物性に
よっては共重合部の反応比、分子量を多段階の重合をお
こなったりして変えることが必要となる。これに対して
は本発明者等もすでに、塊状重合法の有利さを活かし、
しかも耐衝撃性と剛性のバランスに優れたブロック共重
合体を製造する方法として連続重合と回分重合を組み合
わせた方法を提案した(例えば、特開昭58-11519、同58
-11520等)。
In general, the balance between impact resistance and rigidity is determined by the ratio of the portion that polymerizes substantially with propylene alone and the portion that copolymerizes ethylene and propylene, but the impact resistance is further affected by the molecular weight of the copolymerized portion. However, the reaction ratio of the copolymer affects the rigidity. Therefore, depending on the required physical properties, it is necessary to change the reaction ratio and the molecular weight of the copolymerized portion by performing multi-stage polymerization. To this end, the present inventors have already taken advantage of the bulk polymerization method,
Moreover, as a method for producing a block copolymer having an excellent balance between impact resistance and rigidity, a method combining continuous polymerization and batch polymerization has been proposed (for example, JP-A-58-11519 and JP-A-58-11519).
-11520 etc.).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

連続重合と回分重合を組み合わせることで優れた物性
のブロック共重合体が得られるが、この方法は若干、有
機アルミニウムなどの使用量が多く、有機アルミニウム
などの触媒原単位が良くないとか、重合後単に未反応の
モノマーを蒸発して除去するだけの方法を採用するとポ
リマー中に触媒残渣が多くなると言う問題があり、また
回分重合でより後段でエチレンの反応比の大きい反応を
行うとエチレンの回収再利用の条件が制限されるなどの
問題があった。
A block copolymer having excellent physical properties can be obtained by combining continuous polymerization and batch polymerization.However, this method slightly uses a large amount of organoaluminum and the like, and does not have a good basic unit of catalyst such as organoaluminum, or after polymerization. There is a problem that the catalyst residue in the polymer increases if the method of simply evaporating and removing the unreacted monomer is removed, and if a reaction having a large reaction ratio of ethylene is performed at a later stage in batch polymerization, ethylene is recovered. There were problems such as restrictions on reuse.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは上記問題を解決して、優れた物性のブロ
ック共重合体を効率良く製造する方法について鋭意検討
し本発明を完成した。
Means for Solving the Problems The present inventors have solved the above-mentioned problems and intensively studied a method for efficiently producing a block copolymer having excellent physical properties, and completed the present invention.

即ち、本発明は立体規則性触媒を用いて、2槽以上の
反応槽を連結した重合槽を用いて初めに実質的にプロピ
レン単独で重合し、ついで、エチレンとプロピレンを15
/85〜95/5の比で重合してプロピレンのブロック共重合
体を製造する方法において、重合をプロピレン自身を媒
体とする塊状重合法で、初めの実質的にプロピレンの単
独の重合は、2槽以上の反応槽を直列に連結した重合槽
を用いて行い、ついで得られたスラリーを向流洗浄塔に
導入しプロピレンで向流洗浄し、向流洗浄塔上部より取
り出される洗浄液を実質的にプロピレン単独の重合を行
う反応槽に導入し、該向流洗浄塔下部より取り出される
洗浄スラリーをさらに後段の重合槽に導入して、該後段
の重合槽でエチレンとプロピレンを15/85〜95/5の比で
重合することを特徴とするプロピレンのブロック共重合
体の製造方法である。
That is, the present invention uses a stereoregular catalyst, first polymerizes substantially propylene alone using a polymerization tank in which two or more reaction tanks are connected, and then converts ethylene and propylene into 15
In the method for producing a block copolymer of propylene by polymerizing at a ratio of / 85 to 95/5, the polymerization is a bulk polymerization method using propylene itself as a medium, and the first substantially homopolymerization of propylene is 2 The reaction is performed using a polymerization tank in which more than one reaction tanks are connected in series, and the obtained slurry is introduced into a countercurrent washing tower, countercurrently washed with propylene, and the washing liquid taken out from the upper part of the countercurrent washing tower is substantially removed. Introduced into the reaction vessel for the polymerization of propylene alone, the washing slurry taken out from the lower part of the countercurrent washing tower was further introduced into the subsequent polymerization vessel, and ethylene and propylene were added in the latter polymerization vessel at 15/85 to 95/95. A process for producing a block copolymer of propylene, characterized in that the polymerization is carried out at a ratio of 5.

本発明において使用する立体規則性触媒としては特に
制限はなく公知の種々の触媒系が採用でき、通常遷移金
属触媒と、有機アルミニウムと必要に応じ立体規則性向
上剤からなる触媒が利用できる。例えば遷移金属触媒と
してはハロゲン化チタンが好ましく用いられ、例えば四
塩化チタンを金属アルミニウム、水素或いは有機アルミ
ニウムで還元して得た三塩化チタン又はそれらを電子供
与性化合物で変性処理したものと有機アルミニウム化合
物、さらに必要に応じ含酸素有機化合物などの立体規則
性向上剤からなる触媒系、或いはハロゲン化マグネシウ
ム等の担体、或いはそれらを電子供与性化合物で処理し
たものにハロゲン化チタンを担持して得た遷移金属触媒
と有機アルミニウム化合物、必要に応じ含酸素有機化合
物などの立体規則性向上剤からなる触媒系が例示され
る。例えば、以下の文献に種々の例が記載されている。
The stereoregularity catalyst used in the present invention is not particularly limited, and various known catalyst systems can be employed. In general, a transition metal catalyst, a catalyst comprising organoaluminum and, if necessary, a stereoregularity improver can be used. For example, a titanium halide is preferably used as the transition metal catalyst. For example, titanium trichloride obtained by reducing titanium tetrachloride with metallic aluminum, hydrogen or organic aluminum, or those obtained by modifying them with an electron donating compound and organic aluminum A catalyst system comprising a compound and, if necessary, a stereoregularity improver such as an oxygen-containing organic compound, or a carrier such as a magnesium halide, or those obtained by treating them with an electron-donating compound, by supporting a titanium halide. A catalyst system comprising a transition metal catalyst and a stereoregularity improver such as an organic aluminum compound and, if necessary, an oxygen-containing organic compound is exemplified. For example, various examples are described in the following documents.

Ziegler-Natta Catalysts and Polymerization by Jo
hn Boor Jr.(Academic Press),Journal of Macromore
cular Sience-Reviews in Macromolecular Chemistry a
nd Physics,C24(3)355-385(1984)、同C25(1)57
8-597(1985))。
Ziegler-Natta Catalysts and Polymerization by Jo
hn Boor Jr. (Academic Press), Journal of Macromore
cular Sience-Reviews in Macromolecular Chemistry a
nd Physics, C24 (3) 355-385 (1984), C25 (1) 57
8-597 (1985)).

ここで立体規則性向上剤或いは電子供与性化合物とし
ては、通常エーテル、エステル、オルソエステル、アル
コキシ硅素化合物などの含酸素化合物、あるいはアミ
ン、アミドなどの含窒素化合物が好ましく例示でき、電
子供与性化合物としてはさらにアルコール、アルデヒ
ド、水なども使用可能である。
Preferred examples of the stereoregularity improver or the electron donating compound include oxygen-containing compounds such as ethers, esters, orthoesters, and alkoxysilicon compounds, and nitrogen-containing compounds such as amines and amides. Further, alcohol, aldehyde, water and the like can be used.

有機アルミニウム化合物としては、トリアルキルアル
ミニウム、ジアルキルアルミニウムハライド、アルキル
アルミニウムセスキハライド、アルキルアルミニウムジ
ハライドが使用でき、アルキル基としてはメチル基、エ
チル基、プロピル基、ブチル基、ヘキシル基などが例示
され、ハライドとしては塩素、臭素、ヨウ素が例示され
る。
Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, and alkylaluminum dihalide.Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group. Examples of the halide include chlorine, bromine and iodine.

本発明においては、まず、2槽以上の反応槽を連結し
た重合機で実質的にプロピレンの単独重合が塊状重合法
で行われる。ここで実質的にプロピレン単独とは、まっ
たくの単独重合かあるいはエチレン、ブテン、ヘキセン
等の他のオレフィンと共重合する場合には、最終重合体
の剛性が十分であるように、通常共重合されるオレフィ
ンの含量が6wt%以下となるように重合するという意味
である。重合は通常常温〜100℃で行われ圧力は、該温
度で重合媒体が液状に保たれる条件である。この実質的
にプロピレン単独の重合は、通常全重合体に対して、95
〜40wt%となるように保たれる、95wt%を越えると耐衝
撃性の改良が不充分であり、40wt%に満たないとポリプ
ロピレンに特有の剛性が低下し好ましくない。
In the present invention, first, propylene homopolymerization is substantially carried out by a bulk polymerization method in a polymerization machine having two or more reaction tanks connected to each other. Here, substantially propylene alone means, in the case of complete homopolymerization or copolymerization with other olefins such as ethylene, butene, and hexene, copolymerization is usually performed so that the rigidity of the final polymer is sufficient. Means that the polymerization is carried out so that the olefin content is 6 wt% or less. The polymerization is usually carried out at normal temperature to 100 ° C., and the pressure is such that the polymerization medium is kept in a liquid state at the temperature. This substantially homopolymerization of propylene is usually 95% based on the whole polymer.
When the content exceeds 95% by weight, the improvement in impact resistance is insufficient, and when the content is less than 40% by weight, the rigidity inherent to polypropylene decreases, which is not preferable.

本発明においては、ついで重合スラリーは向流洗浄塔
に導入され、プロピレンで洗浄される。洗浄されたスラ
リーは、次のエチレンとプロピレンの共重合を行う重合
槽に導入される。向流洗浄の方法については特に制限は
なく公知の種々の方法、工夫を採用することができる
(例えば、特開昭51-143091、同51-139886、同58210908
等)。洗浄時の温度としては、向流洗浄塔下部からとり
だされるスラリーの温度が、回分重合を行う温度あるい
はそれ以下となるようにするのが便利である。向流洗浄
塔上部から抜きだされる洗浄液は、蒸留塔に導入して、
プロピレンを回収することもできるが、充分な立体規則
性を与える触媒を用いることで、そのまま実質的にプロ
ピレンの単独重合を行う重合帯域にもどすのが好まし
い。こうすることで、プロピレンの回収のためのエネル
ギーあるいは、プロピレンに溶解した有機金属化合物あ
るいは、電子供与性化合物などを有効に利用できる。ま
た更に、洗浄液の線速度を増して、余り反応していない
遷移金属触媒粒子は洗浄液と同伴して向流洗浄塔上部か
ら抜き出し、連続重合帯域に戻す工夫をすることも可能
である。
In the present invention, the polymerization slurry is then introduced into a countercurrent washing tower and washed with propylene. The washed slurry is introduced into a polymerization tank for performing the next copolymerization of ethylene and propylene. The countercurrent washing method is not particularly limited, and various known methods and devices can be employed (for example, JP-A-51-143091, JP-A-51-139886, and JP-A-58210908).
etc). As the temperature during washing, it is convenient that the temperature of the slurry taken out from the lower part of the countercurrent washing tower is equal to or lower than the temperature at which batch polymerization is performed. The washing liquid extracted from the upper part of the countercurrent washing tower is introduced into the distillation tower,
Although propylene can be recovered, it is preferable to use a catalyst that gives sufficient stereoregularity to return the propylene to the polymerization zone where homopolymerization of propylene is substantially performed. In this manner, energy for recovering propylene, an organometallic compound dissolved in propylene, or an electron donating compound can be effectively used. Further, it is also possible to increase the linear velocity of the washing liquid so that the transition metal catalyst particles that have not reacted much are extracted from the upper part of the countercurrent washing tower together with the washing liquid and returned to the continuous polymerization zone.

本発明においては、エチレンとプロピレンの重合は回
分的に行うこと、あるいは1槽以上の反応槽を利用して
連続的に重合することもできる。回分的に重合する場合
には、回分重合槽では、スラリーを受け入れた後、有機
金属化合物、あるいは必要に応じさらに電子供与性化合
物を加えるかあるいは加えることなく、エチレンとの共
重合がおこなわれる。回分重合を行っているあいだに向
流洗浄されたスラリーを引き続き連続的に受け入れるた
め、好ましくはこの回分重合を行う重合槽は、連続重合
を行う重合槽に対して並列に2槽以上連結され、一方の
槽で重合を行っているあいだに他の重合槽にスラリーを
受け入れることが行われる。
In the present invention, the polymerization of ethylene and propylene can be carried out batchwise or continuously using one or more reaction vessels. In the case of batch polymerization, in the batch polymerization tank, after receiving the slurry, copolymerization with ethylene is performed with or without the addition of an organometallic compound or, if necessary, an electron-donating compound. In order to continuously and continuously receive the slurry subjected to countercurrent washing during the batch polymerization, preferably, the polymerization tank for performing the batch polymerization is connected to the polymerization tank for performing the continuous polymerization in two or more tanks in parallel, During the polymerization in one tank, the slurry is received in another polymerization tank.

回分重合槽での重合はエチレンとプロピレンの反応比
としては15/85〜95/5でおこなわれ、エチレンの一部を
ブテン、ペンテン、ヘキセンなどの他のオレフィンに変
えることもできる。反応比が該範囲を外れると耐衝撃性
の改良効果が不充分である。もちろん共重合を反応比、
あるいは分子量を変え多段に行うこと、あるいは導入す
る電子供与体の種類を変えて反応比を多段に変えること
もできる。
The polymerization in the batch polymerization tank is carried out at a reaction ratio of ethylene and propylene of 15/85 to 95/5, and a part of ethylene can be changed to another olefin such as butene, pentene and hexene. If the reaction ratio is out of this range, the effect of improving impact resistance is insufficient. Of course, the copolymerization reaction ratio,
Alternatively, the reaction can be performed in multiple stages by changing the molecular weight, or the reaction ratio can be changed in multiple stages by changing the type of the electron donor to be introduced.

回分重合部の重合温度は0℃〜80℃、好ましくは30〜
70℃で行われ、圧力は、該反応比を保つために導入する
エチレン等により定まる。
The polymerization temperature of the batch polymerization section is 0 ° C to 80 ° C, preferably 30 to 80 ° C.
The reaction is performed at 70 ° C., and the pressure is determined by ethylene and the like introduced to maintain the reaction ratio.

本発明においては、別の態様として共重合を連続的に
行うこともできる、この場合、共重合は2槽以上の反応
槽を連結して行うのが得られるポリマーの物性の点で好
ましい。共重合部の各槽での重合は上記回分重合で行っ
た条件と同様であるが、より後段で、エチレンとプロピ
レンの反応比を大きくしようとすると、後段で電子供与
体を添加してエチレンとプロピレンの反応比をエチレン
よりにすることが好ましい、何故ならば、より高圧の反
応槽にスラリーを移送することは困難であり、重合温度
を下げて重合圧力を下げると反応熱の除去が困難とな
り、反応槽の容積当たりの生産性が低下することとなる
からである。エチレンとプロピレンの反応比を変えるた
めに利用できる電子供与性化合物としては遷移金属触媒
としてどのようなものを利用するかによって異なるが通
常、エチレンよりの反応を行うのに利用できる電子供与
性化合物としてはカルボン酸のエステル、あるいはジカ
ルボン酸のジエステル、リン酸のエステル、アルキルア
ミンなどが利用でき、よりプロピレンよりの反応を行う
にはアルコキシシランなどが利用できる。実質的にプロ
ピレン単独での重合の際に用いた電子供与性化合物と異
なる電子供与性化合物を利用する場合には向流洗浄筒で
の洗浄を厳密にやるのが好ましい。また共重合部で反応
比を変える時には、共重合部前段では電子供与性化合物
を用いず後段でのみ電子供与性化合物を用いるのがより
好ましい、何故なら電子供与性化合物を混合して用いる
と反応比を変える効果がより小さくなるからである。
In the present invention, as another embodiment, the copolymerization can be carried out continuously. In this case, the copolymerization is preferably carried out by connecting two or more reaction vessels in view of the physical properties of the obtained polymer. The polymerization in each tank of the copolymerization section is the same as the conditions performed in the above batch polymerization, but in a later stage, if an attempt is made to increase the reaction ratio between ethylene and propylene, an electron donor is added in the latter stage and the ethylene and propylene are added. It is preferable to make the reaction ratio of propylene higher than that of ethylene, because it is difficult to transfer the slurry to a higher pressure reactor, and it is difficult to remove the heat of reaction when lowering the polymerization temperature and lowering the polymerization pressure. This is because the productivity per volume of the reaction tank is reduced. The electron donating compound that can be used to change the reaction ratio of ethylene and propylene varies depending on what transition metal catalyst is used, but is usually used as an electron donating compound that can be used to perform a reaction from ethylene. As the carboxylic acid ester, a carboxylic acid ester, a dicarboxylic acid diester, a phosphoric acid ester, an alkylamine, and the like can be used, and an alkoxysilane or the like can be used to carry out a reaction from propylene. When an electron-donating compound different from the electron-donating compound used in the polymerization of propylene alone is used, it is preferable to strictly wash in a countercurrent washing cylinder. Further, when changing the reaction ratio in the copolymerization section, it is more preferable to use the electron donating compound only in the latter stage without using the electron donating compound in the first stage of the copolymerization section, because the reaction is likely to be performed by mixing and using the electron donating compound. This is because the effect of changing the ratio becomes smaller.

プロピレンの実質的な単独重合部、エチレンとプロピ
レンの共重合部でのポリマーの分子量について特に制限
はないが、135℃テトラリン溶液で測定した極限粘度が
連続重合部で0.5〜3程度、回分重合部で0.5〜20程度で
あり、共重合体として、230℃で2.3kg加重で測定したメ
ルトフローインデックス(以下、MIと略記する)が0.1
〜100程度とするのが一般的である。
There is no particular limitation on the molecular weight of the polymer in the substantial homopolymerization part of propylene and the copolymerization part of ethylene and propylene, but the intrinsic viscosity measured at 135 ° C. tetralin solution is about 0.5 to 3 in the continuous polymerization part, and the batch polymerization part. The melt flow index (hereinafter abbreviated as MI) of the copolymer as measured at 230 ° C. with a load of 2.3 kg is 0.1.
Generally, it is set to about 100.

以下に実施例を示しさらに説明する、なお、実施例及
び比較例において、 メルトフローインデックス ASTM D1238(230℃) 曲げ剛性度 ASTM D747-63(23℃) アイゾット(ノッチ付)衝撃強度 kg・cm/cm ASTM D25
6-56(23℃、−10℃) デュポン衝撃強度 kg・cm/1/2″φ JIS K6718(23℃、
−10℃) に基ずきMIは2.16kgの加重で測定した。また極限粘度は
135℃テトラリン溶液で、アイソタクチックインデック
ス(以下IIと略記)はソックスレー抽出器を用い沸騰n
−ヘプタンで6時間抽出しその抽出残分として算出し
た。
Examples are described below to further explain. In Examples and Comparative Examples, melt flow index ASTM D1238 (230 ° C) Flexural rigidity ASTM D747-63 (23 ° C) Izod (with notch) Impact strength kg · cm / cm ASTM D25
6-56 (23 ℃, -10 ℃) Dupont impact strength kg ・ cm / 1/2 ″ φ JIS K6718 (23 ℃,
MI was measured at a load of 2.16 kg. The intrinsic viscosity is
At 135 ° C in tetralin solution, the isotactic index (hereinafter abbreviated as II) is determined by boiling using a Soxhlet extractor.
-Extracted with heptane for 6 hours and calculated as the extraction residue.

実施例1 遷移金属触媒の合成 直径12mmの鋼球9kgの入った内容積4lの粉砕用ポット
を4個装備した振動ミルを用意する。各ポットに窒素雰
囲気中で塩化マグネシウム300g、テトラエトキシシラン
45ml、α、α、α−トリクロロトルエン60mlを加え40時
間粉砕した。
Example 1 Synthesis of Transition Metal Catalyst A vibration mill equipped with four 4 l crushing pots containing 9 kg of steel balls having a diameter of 12 mm and having a capacity of 4 l is prepared. 300g of magnesium chloride in each pot in a nitrogen atmosphere, tetraethoxysilane
45 ml and 60 ml of α, α, α-trichlorotoluene were added and pulverized for 40 hours.

上記共粉砕物300gを5lのフラスコに入れ四塩化チタン
1.5l、トルエン1.5lを加え80℃で30分間撹拌処理し、次
いで静置して上澄液を除去する操作を2回行い、次いで
n−ヘプタン4lを用いて固形分を洗浄することを10回繰
り返した。
300 g of the above co-ground product is placed in a 5 l flask and titanium tetrachloride
1.5 l of toluene and 1.5 l of toluene were added, and the mixture was stirred at 80 ° C. for 30 minutes, and then allowed to stand still to remove the supernatant twice. Then, the solid content was washed with 4 l of n-heptane. Repeated times.

得られた遷移金属触媒はチタンを1.9wt%含有してい
た。
The obtained transition metal catalyst contained 1.9% by weight of titanium.

重合反応 第1図に示す重合装置を用いて重合を行った。連続重
合は300lのオートクレーブ2台を連結した重合装置を用
いて重合を行った。オートクレーブAには上記触媒を1g
/h、ジエチルアルミニウムクロリド4.8ml/h、トルイル
酸メチル2.8ml/hで混合して導入し、別のノズルから、
トリエチルアルミニウムを1.5ml/h、プロピレンを30kg/
hで導入した。オートクレーブAから30kg/hでスラリー
を抜き出しオートクレーブBに導入し、同時にトリエチ
ルアルミニウムを3.0ml/hで装入した。それぞれのオー
トクレーブの内温は75℃に保たれ、気相の水素濃度は6.
5モル%であった。オートクレーブBからのスラリーは
下部が内径10cm、長さ10m、上部が内径30cm、長さ2mの
向流洗浄塔の上部に30kg/hで導入し、下部より30℃の精
プロピレンを導入し、上部より洗浄プロピレンを40Kg/h
で、下部より洗浄されたポリプロピレンのスラリーを30
Kg/hで抜き出した。上部から抜き出された、洗浄プロピ
レン30KgはオートクレーブAに戻し残りは系外にとりだ
した。したがってオートクレーブAにプロピレンを戻し
始めてからは、他のプロピレンの挿入は中止し、トリエ
チルアルミニウムの装入量は活性が略同じとなるように
減少した。一方下部から抜き出されたスラリーはオート
クレーブC1、C2に30分おきに交互に受入、受入完了後エ
チレン、水素を導入し、45℃に昇温後、トリエチルアル
ミニウムを3.0ml装入し50℃で気相水素濃度0.6モル%、
エチレン濃度35モル%で15分間重合した。ついでスラリ
ーはフラッシュタンクにパージし未反応モノマーを除去
してプロピレンのブッロク共重合体を12kg/hで得た。得
られた共重合体は常法により造粒し、1mmのインジェク
ションシートとして物性を評価した。結果を第1表に示
す。
Polymerization Reaction Polymerization was carried out using a polymerization apparatus shown in FIG. The continuous polymerization was carried out using a polymerization apparatus in which two 300-liter autoclaves were connected. 1 g of the above catalyst in autoclave A
/ h, diethyl aluminum chloride 4.8 ml / h, methyl toluate 2.8 ml / h, mixed and introduced.From another nozzle,
1.5 ml / h of triethylaluminum, 30 kg / h of propylene
Introduced in h. The slurry was withdrawn at a rate of 30 kg / h from the autoclave A and introduced into the autoclave B, and at the same time, triethylaluminum was charged at a rate of 3.0 ml / h. The internal temperature of each autoclave is maintained at 75 ° C, and the hydrogen concentration in the gas phase is 6.
It was 5 mol%. The slurry from the autoclave B was introduced at 30 kg / h into the upper part of a countercurrent washing tower with a lower part having an inner diameter of 10 cm and a length of 10 m, an upper part having an inner diameter of 30 cm and a length of 2 m. More washing propylene 40Kg / h
With 30 parts of the polypropylene slurry washed from the bottom
Extracted at Kg / h. 30 kg of washed propylene extracted from the upper part was returned to the autoclave A, and the remainder was taken out of the system. Therefore, after returning the propylene to the autoclave A, the insertion of the other propylene was stopped, and the charged amount of triethylaluminum was reduced so that the activities became substantially the same. On the other hand, the slurry extracted from the lower part is alternately received in autoclaves C1 and C2 every 30 minutes, ethylene and hydrogen are introduced after the completion of the reception, the temperature is raised to 45 ° C, 3.0 ml of triethylaluminum is charged, and the mixture is heated at 50 ° C. Gas-phase hydrogen concentration 0.6 mol%,
Polymerization was carried out at an ethylene concentration of 35 mol% for 15 minutes. Then, the slurry was purged into a flash tank to remove unreacted monomers to obtain a block copolymer of propylene at 12 kg / h. The obtained copolymer was granulated by a conventional method, and the physical properties were evaluated as a 1 mm injection sheet. The results are shown in Table 1.

実施例2 遷移金属触媒Bの合成 内容積20lのオートクレーブに精灯油7l、塩化マグネ
シウム100gおよび2−エチルヘキサノール370gを加え、
100℃で24時間撹拌して完全に溶解せしめた。その中に
無水フタル酸23gを加え撹拌した後、100lのオートクレ
ーブの−10℃に保った四塩化チタン40l中に撹拌下徐々
に滴下した。その後ゆっくりと昇温し、100℃になった
ところでフタル酸ジイソブチル56mlを加えて1時間処理
した。次いで上澄みを除き、さらに四塩化チタン20lを
加え100℃で撹拌処理し、最後に固形分をn−ヘプタン
で10回洗浄して遷移金属触媒を得た。
Example 2 Synthesis of transition metal catalyst B 7 l of kerosene, 100 g of magnesium chloride and 370 g of 2-ethylhexanol were added to an autoclave having an internal volume of 20 l.
The mixture was stirred at 100 ° C. for 24 hours to completely dissolve. 23 g of phthalic anhydride was added thereto, and the mixture was stirred, and then gradually added dropwise to 40 l of titanium tetrachloride kept at -10 ° C in a 100 l autoclave with stirring. Thereafter, the temperature was slowly raised, and when the temperature reached 100 ° C., 56 ml of diisobutyl phthalate was added and the mixture was treated for 1 hour. Next, the supernatant was removed, 20 l of titanium tetrachloride was further added, and the mixture was stirred at 100 ° C. Finally, the solid content was washed 10 times with n-heptane to obtain a transition metal catalyst.

この遷移金属触媒Bはチタン2.8wt%とフタル酸ジイ
ソブチル7.2wt%を含有していた。
The transition metal catalyst B contained 2.8% by weight of titanium and 7.2% by weight of diisobutyl phthalate.

上記反応で得た遷移金属触媒Bを用い、プロピレンの
前処理をおこなった。ヘプタンを3l入れた5lのフラスコ
に上記遷移金属触媒Bを50g、ジエチルアルミニウムク
ロリドを10ml入れ、プロピレンを150g導入した。2時
間、20℃で攪拌した後、静置して上澄みを除去しさら
に、固形分を3lのヘプタンで洗浄して遷移金属触媒スラ
リーとした。
Pretreatment of propylene was performed using the transition metal catalyst B obtained by the above reaction. In a 5 l flask containing 3 l of heptane, 50 g of the above transition metal catalyst B and 10 ml of diethylaluminum chloride were charged, and 150 g of propylene were introduced. After stirring at 20 ° C. for 2 hours, the mixture was allowed to stand, the supernatant was removed, and the solid content was washed with 3 l of heptane to obtain a transition metal catalyst slurry.

重合反応 オートクレーブAへの触媒として上記遷移金属触媒を
遷移金属触媒分として0.3g/h、トリエチルアルミニウム
を2ml/h、ジフェニルジエトキシシランを0.3ml/hで導入
した他は実施例1と同様にした。また回分重合の際に
は、トリエチルアルミニウム2ml、とジフェニルジエト
キシシラン0.2mlを入れ重合時間は18分としたところ、
ブロック共重合体を約11kg/hで得た。得られた共重合体
の物性の測定結果は第1表に示す。
Polymerization reaction Same as Example 1 except that the above transition metal catalyst was introduced into autoclave A at a rate of 0.3 g / h as a transition metal catalyst component, triethylaluminum at 2 ml / h, and diphenyldiethoxysilane at 0.3 ml / h. did. In addition, during batch polymerization, 2 ml of triethylaluminum and 0.2 ml of diphenyldiethoxysilane were added and the polymerization time was set to 18 minutes.
A block copolymer was obtained at about 11 kg / h. The measurement results of the physical properties of the obtained copolymer are shown in Table 1.

比較例1 実施例1と同様に連続重合を行い、ついでそのスラリ
ーを洗浄することなく、回分重合を行う重合槽に入れ、
エチレンの気相濃度、水素濃度は実施例1と同様にし
た。但し、スラリーの受入中にも重合反応は進行するの
で、トリエチルアルミニウムの導入量は1mlとし重合時
間はエチレン含量が実施例1と同様と成るように7分と
変更した。得られたポリマーの物性は第1表に示す。
Comparative Example 1 Continuous polymerization was carried out in the same manner as in Example 1, and then the slurry was put into a polymerization tank for batch polymerization without washing,
The ethylene gas phase concentration and hydrogen concentration were the same as in Example 1. However, since the polymerization reaction proceeds even during the receiving of the slurry, the amount of triethylaluminum introduced was 1 ml, and the polymerization time was changed to 7 minutes so that the ethylene content was the same as in Example 1. The physical properties of the obtained polymer are shown in Table 1.

比較例2 実施例1と同様に連続重合を行い、比較例−1と同様
にスラリーを洗浄することなく、回分重合を行った。回
分重合部にはトリエチルアルミニウム、ジフェニルジエ
トキシシランを添加することなく、重合時間を16分とす
ることで略同じエチレン含量となった。得られたポリマ
ーの物性は第1表に示す。
Comparative Example 2 Continuous polymerization was performed in the same manner as in Example 1, and batch polymerization was performed as in Comparative Example 1, without washing the slurry. By adding 16 minutes to the polymerization time without adding triethylaluminum and diphenyldiethoxysilane to the batch polymerization section, substantially the same ethylene content was obtained. The physical properties of the obtained polymer are shown in Table 1.

実施例3 連続重合の際に気相水素濃度10.5モル%としスラリー
を向流洗浄塔から抜き出した後、スラリーはオートクレ
ーブC1、C2に受け入れ、受け入れた共重合槽では、エチ
レン、水素を装入しトリエチルアルミニウム3.0ml、1,2
−シクロヘキシルジカルボン酸エチルを1.2ml装入し50
℃で気相水素濃度4モル%、エチレン濃度20モル%で15
分間重合した以外は実施例2と同様にしてブロック共重
合体を得た。得られたポリマーの物性は第1表に示す。
エチレン濃度が実施例1に比較して少ない条件で同様の
物性が得られる。
Example 3 In the continuous polymerization, after making the gas phase hydrogen concentration 10.5 mol% and extracting the slurry from the countercurrent washing tower, the slurry was received in autoclaves C1 and C2. In the received copolymerization tank, ethylene and hydrogen were charged. Triethyl aluminum 3.0ml, 1,2
-50 ml charged with 1.2 ml of ethyl cyclohexyldicarboxylate
15 ° C when the gaseous phase hydrogen concentration is 4 mol%
A block copolymer was obtained in the same manner as in Example 2 except that polymerization was performed for minutes. The physical properties of the obtained polymer are shown in Table 1.
Similar physical properties can be obtained under conditions where the ethylene concentration is lower than that in Example 1.

実施例4 回分重合時1,2−シクロヘキシルジカルボン酸エチル
のかわりにリン酸ジ(2−エチルヘキシル)を1.2ml添
加し、気相のエチレン濃度を25モル%としエチレン含量
が実施例3と同様となるように重合時間を18分と変更し
た以外は実施例3と同様に実施したところ、ブロック共
重合体は13kg/hで得られた。なおこの時のリン酸ジ(2
−エチルヘキシル)のチタンに対するモル比は20であ
り、オートクレーブの全圧は32kg/cm2であった。結果を
第1表に示す。
Example 4 At the time of batch polymerization, 1.2 ml of di (2-ethylhexyl) phosphate was added instead of ethyl 1,2-cyclohexyldicarboxylate, and the ethylene concentration in the gas phase was 25 mol%, and the ethylene content was the same as in Example 3. The procedure was carried out in the same manner as in Example 3 except that the polymerization time was changed to 18 minutes to obtain a block copolymer at 13 kg / h. At this time, the phosphoric acid di (2
-Ethylhexyl) to titanium was 20 in molar ratio, and the total pressure in the autoclave was 32 kg / cm 2 . The results are shown in Table 1.

実施例5 回分重合時1,2−シクロヘキシルジカルボン酸エチル
のかわりにリン酸トリエチルエステルを0.96ml添加し、
気相のエチレン濃度を25モル%とし、エチレン含量が実
施例3と同等となるように重合時間を18分と変更した以
外は実施例3と同様に実施したところブロック共重合体
は14kg/hで得られた。なおこの時のリン酸トリエチルエ
ステルのチタンに対するモル比は30であり、オートクレ
ーブの全圧は32kg/cm2であった。結果を第1表に示す。
Example 5 At the time of batch polymerization, 0.96 ml of triethyl phosphate was added instead of ethyl 1,2-cyclohexyldicarboxylate.
The procedure was carried out in the same manner as in Example 3 except that the ethylene concentration in the gas phase was 25 mol% and the polymerization time was changed to 18 minutes so that the ethylene content was equivalent to that in Example 3. Was obtained. At this time, the molar ratio of phosphoric acid triethyl ester to titanium was 30, and the total pressure of the autoclave was 32 kg / cm 2 . The results are shown in Table 1.

実施例6 実施例2において、共重合を行う重合槽C1、C2を向流
洗浄塔に対し直列に連結し連続重合を行った。共重合槽
のC1には向流洗浄塔下部からのスラリーとトリエチルア
ルミニウムを0.2ml/h、プロピレンを10kg/hで装入し滞
留スラリー量10kgで気相水素濃度0.6モル%、エチレン
濃度30モル%で50℃で重合した。次いでスラリーは次の
共重合槽C2に40kg/hで抜き出し、トリエチルアルミニウ
ム1.2ml/h、シクロヘキシルジカルボン酸0.3ml/hを加
え、滞留スラリー量10kgで気相水素濃度0.6モル%、エ
チレン濃度25モル%、50℃で重合した。共重合槽C1に対
しC2はエチレン濃度が低いため2kg/cm2低圧であり、ス
ラリーの移送は可能であった。また分析によれば共重合
槽C1、C2で得られた共重合体の反応比は共に55/45であ
った。得られたポリマーの物性は第1表に示す。
Example 6 In Example 2, the polymerization tanks C1 and C2 for copolymerization were connected in series to a countercurrent washing tower to perform continuous polymerization. C1 in the copolymerization tank was charged with 0.2 ml / h of slurry and triethylaluminum from the lower part of the countercurrent washing tower, and 10 kg / h of propylene. % Polymerized at 50 ° C. Next, the slurry was withdrawn at 40 kg / h into the next copolymerization tank C2, and 1.2 ml / h of triethylaluminum and 0.3 ml / h of cyclohexyldicarboxylic acid were added. %, Polymerized at 50 ° C. Since the ethylene concentration of C2 was lower than that of the copolymerization tank C1, the pressure was 2 kg / cm 2 and the slurry could be transferred. According to the analysis, the reaction ratios of the copolymers obtained in the copolymerization tanks C1 and C2 were both 55/45. The physical properties of the obtained polymer are shown in Table 1.

〔発明の効果〕 本発明の方法を実施することにより極めて優れた物性
の重合体を効率良く与えることができ工業的に極めて価
値がある。
[Effects of the Invention] By carrying out the method of the present invention, a polymer having extremely excellent physical properties can be efficiently provided, which is extremely valuable industrially.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の方法を実施するのに好適なフローの
一例を示す。オートクレーブA、Bは連続重合を行う重
合槽であり、Dは向流洗浄塔を示す。オートクレーブ
1、C2は回分重合を行う重合槽であり、Eはサイクロン
である。
FIG. 1 shows an example of a flow suitable for carrying out the method of the present invention. Autoclaves A and B are polymerization tanks for performing continuous polymerization, and D indicates a countercurrent washing tower. Autoclave 1 and C2 are polymerization tanks for performing batch polymerization, and E is a cyclone.

───────────────────────────────────────────────────── フロントページの続き 審査官 一色 由美子 (56)参考文献 特開 昭58−69215(JP,A) 特開 昭58−49716(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page Examiner Yumiko Isshiki (56) References JP-A-58-69215 (JP, A) JP-A-58-49716 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立体規則性触媒を用いて、2槽以上の反応
槽を連結した重合槽を用いて初めに実質的にプロピレン
単独で重合し、ついでエチレンとプロピレンを15/85〜9
5/5の比で重合してプロピレンのブロック共重合体を製
造する方法において、重合をプロピレン自身を媒体とす
る塊状重合法で、初めの実質的にプロピレンの単独の重
合は、2槽以上の反応槽を直列に連結した重合槽を用い
て行い、ついで得られたスラリーを向流洗浄塔に導入し
プロピレンで向流洗浄し、向流洗浄塔上部より取り出さ
れる洗浄液を実質的にプロピレン単独の重合を行う反応
槽に導入し、該向流洗浄塔下部より取り出される洗浄ス
ラリーをさらに後段の重合槽に導入して、該後段の重合
槽でエチレンとプロピレンを15/85〜95/5の比で重合す
ることを特徴とするプロピレンのブロック共重合体の製
造方法。
(1) using a stereoregular catalyst, using a polymerization tank in which two or more reaction tanks are connected to each other, first polymerizing substantially propylene alone;
In the method of producing a block copolymer of propylene by polymerizing at a ratio of 5/5, the polymerization is a bulk polymerization method using propylene itself as a medium, and the initial substantially homopolymerization of propylene is performed in two or more tanks. The reaction is carried out using a polymerization tank in which the reaction tanks are connected in series, and the obtained slurry is introduced into a countercurrent washing tower, countercurrently washed with propylene, and the washing liquid taken out from the upper part of the countercurrent washing tower is substantially made of propylene alone. Introduced into the reaction tank for polymerization, the washing slurry taken out from the lower part of the countercurrent washing tower is further introduced into a subsequent polymerization tank, and ethylene and propylene are mixed in the latter polymerization tank at a ratio of 15/85 to 95/5. A process for producing a block copolymer of propylene, characterized in that the polymerization is carried out in the following manner.
【請求項2】請求項1に記載のプロピレンのブロック共
重合体の製造方法において、後段の重合槽を向流洗浄塔
に対し並列に連結された2槽以上の重合槽とすることを
特徴とするプロピレンのブロック共重合体の製造方法。
2. The method for producing a block copolymer of propylene according to claim 1, wherein the subsequent polymerization tank is two or more polymerization tanks connected in parallel to the countercurrent washing tower. For producing a propylene block copolymer.
【請求項3】請求項1に記載のプロピレンのブロック共
重合体の製造方法において、後段の重合槽に電子供与性
化合物および/または有機金属化合物を添加することを
特徴とするプロピレンのブロック共重合体の製造方法。
3. The process for producing a block copolymer of propylene according to claim 1, wherein an electron-donating compound and / or an organometallic compound is added to a subsequent polymerization tank. Manufacturing method of coalescence.
JP1088046A 1988-07-18 1989-04-10 Method for producing propylene block copolymer Expired - Lifetime JP2764073B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/377,268 US5175208A (en) 1988-07-18 1989-07-10 Method for preparing block copolymers of propylene
EP19890113157 EP0351781A3 (en) 1988-07-18 1989-07-18 Method for preparing block copolymers of propylene
KR1019890010169A KR920006449B1 (en) 1988-07-18 1989-07-18 Method for preparing block copolymers of propylene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-176964 1988-07-18
JP17696488 1988-07-18
JP1-8500 1989-01-19
JP850089 1989-01-19

Publications (2)

Publication Number Publication Date
JPH02276810A JPH02276810A (en) 1990-11-13
JP2764073B2 true JP2764073B2 (en) 1998-06-11

Family

ID=26343022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088046A Expired - Lifetime JP2764073B2 (en) 1988-07-18 1989-04-10 Method for producing propylene block copolymer

Country Status (2)

Country Link
JP (1) JP2764073B2 (en)
KR (1) KR920006449B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185840B2 (en) 2017-10-12 2021-11-30 Kureha Corporation Continuous polymerization apparatus and continuous production method for polymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869215A (en) * 1981-10-22 1983-04-25 Mitsubishi Chem Ind Ltd Continuous production of propylene/ethylene block copolymer
JPS5849716A (en) * 1981-09-18 1983-03-24 Mitsubishi Chem Ind Ltd Continuous preparation of propylene-ethylene block copolymer

Also Published As

Publication number Publication date
KR910002923A (en) 1991-02-26
JPH02276810A (en) 1990-11-13
KR920006449B1 (en) 1992-08-06

Similar Documents

Publication Publication Date Title
JPS5950246B2 (en) Production method of olefin copolymer for molding
JPH0699507B2 (en) Catalyst component and polymerization catalyst system
GB1566391A (en) Impact-resistant propylene polymer composition and preparation thereof
US6339136B1 (en) Process for making propylene homo or copolymers
US4543389A (en) Copolymerization catalyst and process for polymerizing impact resistant ethylene-propylene polymers
US4520163A (en) Process of sequentially copolymerizing propylene-ethylene copolymers and catalyst therefor
JP2764073B2 (en) Method for producing propylene block copolymer
JP2590180B2 (en) Method for producing propylene polymer
KR100408904B1 (en) Catalyst component for olefin polymerization, preparation method thereof and polymerization method of olefin in the presence of the catalyst component
US5175208A (en) Method for preparing block copolymers of propylene
US4020264A (en) Crystalline polyolefins and production thereof
JPH0680101B2 (en) Process for producing block copolymer of propylene
JPH0446286B2 (en)
JPS6150085B2 (en)
KR100202116B1 (en) Process for preparing polyolefins with broade molecular-weight distribution
JPH02120302A (en) Production of alpha-olefin polymer
JP3409264B2 (en) Catalyst for producing ethylene-propylene copolymer rubber
JP3752074B2 (en) Method for polymerizing α-olefin
JPS6336326B2 (en)
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPH0816140B2 (en) Process for producing block copolymer of propylene
JP2673555B2 (en) Solid catalyst component for ethylene-propylene copolymer heavy rubber production
JPH1025323A (en) Production of alpha-olefin block copolymer
JPH0580496B2 (en)
JP3005944B2 (en) Method for producing propylene block copolymer