JP2761112B2 - Metal substrate with insulating layer and method of manufacturing the same - Google Patents

Metal substrate with insulating layer and method of manufacturing the same

Info

Publication number
JP2761112B2
JP2761112B2 JP3027380A JP2738091A JP2761112B2 JP 2761112 B2 JP2761112 B2 JP 2761112B2 JP 3027380 A JP3027380 A JP 3027380A JP 2738091 A JP2738091 A JP 2738091A JP 2761112 B2 JP2761112 B2 JP 2761112B2
Authority
JP
Japan
Prior art keywords
metal substrate
ceramic
laser
sprayed
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3027380A
Other languages
Japanese (ja)
Other versions
JPH04266087A (en
Inventor
俊之 鈴木
策雄 鎌田
明 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3027380A priority Critical patent/JP2761112B2/en
Publication of JPH04266087A publication Critical patent/JPH04266087A/en
Application granted granted Critical
Publication of JP2761112B2 publication Critical patent/JP2761112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、熱伝導性にすぐれ、
絶縁性が高く、耐熱性のある絶縁層付き金属基板および
その製造方法に関する。
BACKGROUND OF THE INVENTION The present invention has excellent heat conductivity,
The present invention relates to a metal substrate with an insulating layer having high insulation properties and heat resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、プリント配線板用の基板として、
紙・フェノール樹脂、ガラス・エポキシ樹脂等の樹脂基
板が多く用いられてきた。しかし、最近、電子機器の高
性能化、小型化、高密度化に伴い、それによって生じる
熱の高密度発生をいかに処理するかが課題になってい
る。
2. Description of the Related Art Conventionally, as a substrate for a printed wiring board,
Resin substrates such as paper and phenolic resins and glass and epoxy resins have been used in many cases. However, recently, as electronic devices have been improved in performance, reduced in size, and increased in density, it has become an issue how to deal with the high-density heat generated thereby.

【0003】前記従来の樹脂基板は、熱伝導性が低くて
熱放散性が悪く、特に大電流を流すように設計された集
積回路では、その熱によってコンデンサー、トランジス
タ等を破損する恐れがあった。また、破損しないまでも
電気特性が大きく変化する欠点があった。このような樹
脂基板の欠点を克服するため、近年、アルミニウム等の
熱伝導性のよい金属板の表面にエポキシ樹脂等の有機系
絶縁物の層を設け、回路を形成するための銅箔などをそ
の上に貼付けた構造の金属基板が使われるようになって
きた。しかし、このような構造では、回路と金属板との
間に熱伝導性の低い樹脂層が存在するため、金属板の高
熱伝導性を十分に活かすことが出来ない。
The above-mentioned conventional resin substrate has low heat conductivity and poor heat dissipation. Particularly, in an integrated circuit designed to flow a large current, there is a risk that the heat may damage a capacitor, a transistor or the like. . In addition, there is a drawback that the electrical characteristics change greatly even if they are not damaged. In order to overcome such disadvantages of the resin substrate, in recent years, a layer of an organic insulating material such as an epoxy resin is provided on the surface of a metal plate having a good thermal conductivity such as aluminum, and a copper foil or the like for forming a circuit is used. Metal substrates with a structure attached to them have come to be used. However, in such a structure, since a resin layer having low thermal conductivity exists between the circuit and the metal plate, the high thermal conductivity of the metal plate cannot be fully utilized.

【0004】[0004]

【発明が解決しようとする課題】このようなことから、
特公昭57−39007号公報等に記載のごとく、絶縁
層を、熱伝導性の良好なアルミナ等のセラミック溶射で
形成する方法が考えられている。この方法によれば、熱
伝導性の低い樹脂を全く使用しないため、熱伝導性が大
いに向上する。
SUMMARY OF THE INVENTION
As described in JP-B-57-39007, a method of forming an insulating layer by ceramic spraying of alumina or the like having good thermal conductivity has been considered. According to this method, since a resin having low heat conductivity is not used at all, the heat conductivity is greatly improved.

【0005】しかし、この方法は、溶射により形成され
るセラミック層に気孔が存在するため、耐電圧、吸湿時
の絶縁特性が低下するという欠点を有する。また、金属
とセラミックとの熱膨張率が大きく違うため、ヒートサ
イクルを行うと、熱膨張率の違いからクラックが生じ、
そこから絶縁破損が起きて、絶縁信頼性が極端に落ちる
という問題もあった。これらの材料間の熱膨張率は、例
えば、エポキシ樹脂:1.60×10-4、アルミニウ
ム:0.237×10-4、アルミナ:0.08×10-4
であって、それぞれ1桁ずつ違う。
[0005] However, this method has a drawback that the pores are present in the ceramic layer formed by thermal spraying, so that the withstand voltage and the insulating properties when absorbing moisture are deteriorated. Also, since the coefficient of thermal expansion between metal and ceramic is significantly different, when a heat cycle is performed, cracks occur due to the difference in coefficient of thermal expansion,
There was also a problem that insulation failure occurred from there, and insulation reliability was extremely reduced. The coefficient of thermal expansion between these materials is, for example, 1.60 × 10 −4 for epoxy resin, 0.237 × 10 −4 for aluminum, and 0.08 × 10 −4 for alumina.
And each differs by one digit.

【0006】この発明の課題は、上記従来の欠点である
熱膨張率の違いによる耐熱衝撃性低下、溶射皮膜の熱伝
導性の悪化といった問題を解決することにある。
An object of the present invention is to solve the above-mentioned conventional disadvantages such as a decrease in thermal shock resistance due to a difference in thermal expansion coefficient and a decrease in thermal conductivity of a sprayed coating.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、この発明では、金属基板の表面にセラミックを溶射
して絶縁層を形成するに当たり、金属基板表面にセラミ
ックを溶射した後に、溶射セラミック層にレーザを照射
し、その後で溶射セラミック層に絶縁材を含浸するよう
にする。具体的には、まず、金属基板(通常は金属板で
あるが、金属箔であってもよい。)の表面にサンドブラ
スト処理を行う。粗面化することにより、表面積を拡大
すると同時にブランク面とし、結晶格子構造を部分的に
破壊して結合力を高め、溶射セラミック層と基板の密着
を良くするためである。密着を良くする他の方法として
は、表面をプラズマエッチングしたり、化学処理による
表面処理を行ったりする等の方法がある。金属基板の材
料としては、アルミニウム、銅、鉄、ステンレススチー
ル、アルミニウム合金、銅合金等なんでも良い。
In order to solve the above-mentioned problems, according to the present invention, in forming an insulating layer by spraying ceramic on the surface of a metal substrate, the ceramic sprayed ceramic layer is sprayed on the surface of the metal substrate. Irradiates laser
Then, the insulating material is impregnated in the sprayed ceramic layer . Specifically, first, the surface of a metal substrate (usually a metal plate, but may be a metal foil) is subjected to sandblasting. This is because, by roughening, the surface area is increased and at the same time, a blank surface is formed, the crystal lattice structure is partially broken, the bonding force is increased, and the adhesion between the sprayed ceramic layer and the substrate is improved. As other methods for improving the adhesion, there are methods such as plasma etching of the surface and surface treatment by chemical treatment. The material of the metal substrate may be aluminum, copper, iron, stainless steel, aluminum alloy, copper alloy, or the like.

【0008】次に、図1にみる工程を行う。すなわち、
前記金属基板の表面にプラズマ溶射等の溶射方法でセラ
ミック層を形成する。この場合、例えば、20〜200
kvの出力で溶射する。溶射するセラミック粉は、1〜
100μmの粒径で熱伝導性が良く、絶縁性の有るもの
であればなんでも良い。例えば、アルミナ、ジルコニ
ア、マグネシア、窒化アルミニウム、窒化ホウ素などで
ある。但し、窒化物は溶射条件が特殊になる。溶射セラ
ミック層(絶縁層。皮膜ともいう。)の厚みは、通常、
30〜300μmである。
Next, the step shown in FIG. 1 is performed. That is,
A ceramic layer is formed on the surface of the metal substrate by a thermal spraying method such as plasma spraying. In this case, for example, 20 to 200
Thermal spraying at kv output. The ceramic powder to be sprayed is 1 to
Any material can be used as long as it has a particle diameter of 100 μm, good thermal conductivity, and insulating properties. For example, alumina, zirconia, magnesia, aluminum nitride, boron nitride, and the like are used. However, the spraying conditions for nitrides are special. The thickness of the sprayed ceramic layer (insulating layer, also called coating) is usually
It is 30 to 300 μm.

【0009】その後に、溶射セラミック層表面にレーザ
を照射するレーザ処理を施す。レーザを照射すると、セ
ラミックが溶融し、溶射皮膜中に存在していた未接合粒
界、マイクロクラック、気孔等の空間が寄り集まって大
きな気孔となり、皮膜表面からガスとして抜け出す。ま
た、このとき、セラミックが凝固し、再結晶化すること
により、非常に緻密な膜が形成され、放熱性、絶縁性が
向上する。溶融したセラミックが凝固する際にはクラッ
クが発生する。レーザ処理により発生するクラックは、
基板に対して垂直であり、かつ網目状である。このクラ
ック以外の組織は、非常にち密である。
Thereafter, a laser treatment for irradiating the surface of the sprayed ceramic layer with a laser is performed. When the laser is irradiated, the ceramic is melted, and spaces such as unbonded grain boundaries, microcracks, and pores existing in the thermal spray coating are gathered to form large pores and escape as gas from the coating surface. Further, at this time, the ceramic is solidified and recrystallized, so that a very dense film is formed, and heat dissipation and insulation are improved. When the molten ceramic solidifies, cracks occur. Cracks generated by laser processing
It is perpendicular to the substrate and reticulated. The structure other than the crack is very dense.

【0010】レーザ処理した溶射セラミック層には絶縁
材を含浸する。絶縁材は、有機系、無機系のどちらでも
良く、例えば有機系ではエポキシ樹脂、無機系では金属
アルコキシレート系である。この絶縁材含浸は、真空含
浸により行うと特に効果が大きい。絶縁材とセラミック
との濡れ性が悪いようであれば、前処理としてカップリ
ング剤等を含浸または塗布する等しても良い。必要であ
れば絶縁材の硬化のために加熱処理をする。
An insulating material is impregnated in the laser-sprayed ceramic layer. The insulating material may be either an organic material or an inorganic material. For example, the organic material is an epoxy resin, and the inorganic material is a metal alkoxylate. This insulating material impregnation is particularly effective when performed by vacuum impregnation. If the wettability between the insulating material and the ceramic is poor, a pre-treatment may be performed by impregnating or applying a coupling agent or the like. If necessary, heat treatment is performed to cure the insulating material.

【0011】レーザで気孔を大きくしてその中に絶縁材
を含浸することにより、絶縁材が緩衝材の働きをし、耐
熱衝撃性に優れた性能を発揮する。このようにして処理
した溶射セラミック層表面に回路形成を行う。この回路
形成は、一般的な方法、例えば銅ペースト印刷、銅箔圧
着、化学銅めっき、蒸着等により行う。この発明にかか
る絶縁層付き金属基板は、このような、表面に金属箔や
回路を備えたものを含む。
When the pores are enlarged by a laser and impregnated with an insulating material, the insulating material functions as a buffer material and exhibits excellent performance in thermal shock resistance. A circuit is formed on the surface of the sprayed ceramic layer thus treated. This circuit formation is performed by a general method, for example, copper paste printing, copper foil pressing, chemical copper plating, vapor deposition or the like. The metal substrate with an insulating layer according to the present invention includes those having a metal foil or a circuit on the surface.

【0012】[0012]

【作用】溶射セラミック層にレーザ処理を施すと、セラ
ミックの再結晶化が起きて、セラミック自体の放熱性、
絶縁性が向上する。レーザ照射により発生するクラック
は金属基板表面に対して垂直であるため、このクラック
に絶縁材を含浸させても、この絶縁材は熱抵抗を示さな
い。溶射セラミック層表面と金属基板の間に熱抵抗とな
るものが存在しないため、基板の放熱性が向上する。セ
ラミックと金属とでは熱膨張率が大きく異なるが、絶縁
材が緩衝材の働きをするため、基板が反らない。
[Function] When a laser treatment is applied to a sprayed ceramic layer, recrystallization of the ceramic occurs, and the heat dissipation property of the ceramic itself,
The insulation is improved. Since the crack generated by laser irradiation is perpendicular to the surface of the metal substrate, the insulating material does not show thermal resistance even if the crack is impregnated with an insulating material. Since there is no thermal resistance between the surface of the sprayed ceramic layer and the metal substrate, the heat dissipation of the substrate is improved. Although the coefficient of thermal expansion differs greatly between ceramic and metal, the substrate does not warp because the insulating material functions as a buffer.

【0013】[0013]

【実施例】板厚3mmのアルミニウム板を金属基板として
用いた。密着力を上げるために、まず、その表面に#3
20のサンドブラスト処理を行った。この金属基板の表
面に、10〜30μmのアルミナを使い、プラズマ溶射
で厚さ100μmの溶射セラミック層(絶縁層)を形成
した。プラズマ溶射条件は30kwであった。
EXAMPLE An aluminum plate having a thickness of 3 mm was used as a metal substrate. First, on the surface, use # 3
20 sandblasting treatments were performed. A sprayed ceramic layer (insulating layer) having a thickness of 100 μm was formed on the surface of the metal substrate by plasma spraying using alumina of 10 to 30 μm. Plasma spray conditions were 30 kw.

【0014】この溶射後に、溶射セラミック層の表面に
レーザ光を照射した。図2はこのレーザ処理の概要を表
す。レーザ照射条件は、出力150w、焦点はずし量+
28mm(F=330mmレンズ)、レーザ走査速度23〜
97mm/sで同一箇所に2回以上の照射を行うというも
のであった。このように、複数回のレーザ照射を行う
と、アルミナ中の気孔が全て消滅し、クラックのみの存
在となる。
After this thermal spraying, the surface of the thermal sprayed ceramic layer was irradiated with laser light. FIG. 2 shows an outline of this laser processing. Laser irradiation conditions are: output 150 w, defocus amount +
28mm (F = 330mm lens), laser scanning speed 23 ~
The same location was irradiated twice or more at 97 mm / s. Thus, when laser irradiation is performed a plurality of times, all pores in the alumina disappear and only cracks are present.

【0015】図3は、エネルギー密度とマイクロクラッ
ク間の平均距離の関係を表す。図に○で表したように、
クラックの発生密度は、レーザの単位時間、単位面積当
りのエネルギー(w/mm2 )と相関関係が認められ、エ
ネルギー密度の減少と共にクラック間の平均距離が大き
くなっている。このため、レーザ照射エネルギー密度を
変化させることにより、クラック発生密度の制御が可能
である。
FIG. 3 shows the relationship between the energy density and the average distance between microcracks. As indicated by a circle in the figure,
The correlation between the crack generation density and the energy per unit time and unit area (w / mm 2 ) of the laser is recognized, and the average distance between the cracks increases as the energy density decreases. For this reason, the crack generation density can be controlled by changing the laser irradiation energy density.

【0016】レーザー照射されると、セラミックは再結
晶化し、クラック(気孔)が大きくなる。2,3回繰り
返して、アルミニウム板表面に達する深さまで照射し
た。レーザ処理したアルミニウム板表面の溶射セラミッ
ク層にエポキシ樹脂を真空含浸した。この含浸処理は、
真空度10Torrで約3時間行った。その後、150
℃で30分硬化処理し、35μm銅箔を50kg/cm2
180℃、90分の成形条件で熱圧着した。
When irradiated with a laser, the ceramic recrystallizes and cracks (pores) increase. Irradiation was repeated a few times to a depth reaching the surface of the aluminum plate. Epoxy resin was vacuum impregnated into the sprayed ceramic layer on the surface of the aluminum plate subjected to the laser treatment. This impregnation process
This was performed at a degree of vacuum of 10 Torr for about 3 hours. Then 150
Curing treatment at 30 ° C for 30 minutes, 50 kg / cm 2 of 35 μm copper foil,
Thermocompression bonding was performed at 180 ° C. for 90 minutes.

【0017】[0017]

【発明の効果】この発明は、以上に説明したようであっ
て、金属表面に形成された溶射セラミック層(絶縁層)
にレーザ処理を施すことによりセラミックが再結晶化し
て、セラミック自体の放熱性、絶縁性が向上する。レー
ザ照射により発生するクラックは基板に対して垂直であ
るため、このクラックに絶縁材を含浸させても、この絶
縁材は熱抵抗を示さない。このように、この発明にかか
る金属基板では、溶射セラミック層表面と金属基板の間
に熱抵抗となるものが存在しないため、基板としての放
熱性が極めて大きい。セラミックと金属とでは熱膨張率
が大きく異なるが、絶縁材が緩衝材の働きをするため、
高温環境に置かれた場合においても、大きく反るような
ことが起きない。このため、この発明によれば、放熱
性、絶縁性、耐熱衝撃性の優れた金属基板を提供するこ
とが出来るのである。
As described above, the present invention provides a sprayed ceramic layer (insulating layer) formed on a metal surface.
By subjecting the ceramic to laser treatment, the ceramic is recrystallized, and the heat dissipation and insulation of the ceramic itself are improved. Since the crack generated by the laser irradiation is perpendicular to the substrate, even if the crack is impregnated with an insulating material, the insulating material does not show thermal resistance. As described above, in the metal substrate according to the present invention, since there is no heat resistance between the surface of the sprayed ceramic layer and the metal substrate, the heat dissipation as the substrate is extremely large. Ceramics and metals have significantly different coefficients of thermal expansion, but because the insulating material acts as a cushioning material,
Even when placed in a high-temperature environment, no significant warping occurs. Therefore, according to the present invention, it is possible to provide a metal substrate excellent in heat dissipation, insulation, and thermal shock resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の工程を具体的に説明する説明図であ
る。
FIG. 1 is an explanatory diagram specifically explaining a process of the present invention.

【図2】この発明のレーザ処理の概要を表す説明図であ
る。
FIG. 2 is an explanatory diagram showing an outline of laser processing of the present invention.

【図3】レーザ処理工程における、エネルギー密度とマ
イクロクラック間の平均距離の関係を表すグラフであ
る。
FIG. 3 is a graph showing a relationship between an energy density and an average distance between micro cracks in a laser processing step.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−114299(JP,A) 特開 昭63−38565(JP,A) 特開 昭63−277748(JP,A) 特公 昭57−39007(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-114299 (JP, A) JP-A-63-38565 (JP, A) JP-A-63-277748 (JP, A) 39007 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属基板の表面にセラミックを溶射して
絶縁層を形成する方法において、金属基板表面にセラミ
ックを溶射した後に、溶射セラミック層にレーザを照射
し、その後で溶射セラミック層に絶縁材を含浸するよう
にすることを特徴とする絶縁層付き金属基板の製法。
In a method of spraying ceramic on a surface of a metal substrate to form an insulating layer, after spraying the ceramic on the surface of the metal substrate, a laser is applied to the sprayed ceramic layer.
And thereafter impregnating the sprayed ceramic layer with an insulating material.
【請求項2】 請求項1記載の製造方法により得られ 金属基板と、 前記金属基板の表面にセラミックを溶射して形成された
後、レーザ照射で再結晶化された溶射セラミック層と、 前記レーザ照射で溶射セラミック層に形成され、基板に
対して垂直なクラックと、 前記溶射セラミック層のクラックに含浸された絶縁材と
を備える 絶縁層付き金属基板。
2. A obtained by the production method according to claim 1, and the metal substrate, which is formed by thermally spraying ceramic on the surface of the metal substrate
After that, the sprayed ceramic layer recrystallized by laser irradiation, and formed on the sprayed ceramic layer by the laser irradiation, the substrate
Cracks perpendicular to the insulator, and an insulating material impregnated in the cracks of the sprayed ceramic layer.
Insulating layer-metal substrate comprising a.
JP3027380A 1991-02-21 1991-02-21 Metal substrate with insulating layer and method of manufacturing the same Expired - Lifetime JP2761112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027380A JP2761112B2 (en) 1991-02-21 1991-02-21 Metal substrate with insulating layer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027380A JP2761112B2 (en) 1991-02-21 1991-02-21 Metal substrate with insulating layer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04266087A JPH04266087A (en) 1992-09-22
JP2761112B2 true JP2761112B2 (en) 1998-06-04

Family

ID=12219446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027380A Expired - Lifetime JP2761112B2 (en) 1991-02-21 1991-02-21 Metal substrate with insulating layer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2761112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890223A (en) * 2011-11-02 2014-06-25 东华隆株式会社 Method of forming densified layer in thermal spray coating, and thermal spray coating covering member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756200B2 (en) 2000-09-04 2011-08-24 Dowaメタルテック株式会社 Metal ceramic circuit board
JP4996868B2 (en) * 2006-03-20 2012-08-08 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2011231356A (en) * 2010-04-26 2011-11-17 Nhk Spring Co Ltd Insulation coating method of metal base, insulation coated metal base, and apparatus for producing semiconductor using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739007A (en) * 1980-08-22 1982-03-04 Ishikawajima Harima Heavy Ind Co Ltd Rolling mill
JPS57114299A (en) * 1981-01-08 1982-07-16 Tokyo Shibaura Electric Co Electrically insulating board
JPS6338565A (en) * 1986-08-04 1988-02-19 Nippon Kokan Kk <Nkk> Method for reinforcing ceramic film
JPS63277748A (en) * 1987-05-11 1988-11-15 Toshiba Corp Formation of heat-resistant coating layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890223A (en) * 2011-11-02 2014-06-25 东华隆株式会社 Method of forming densified layer in thermal spray coating, and thermal spray coating covering member
CN103890223B (en) * 2011-11-02 2016-02-03 东华隆株式会社 Formation method and the spraying overlay film of the densified layer in spraying overlay film are coated to component

Also Published As

Publication number Publication date
JPH04266087A (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JPH02263445A (en) Aluminum nitride substrate and semiconductor using same
JP2761112B2 (en) Metal substrate with insulating layer and method of manufacturing the same
US6248958B1 (en) Resistivity control of CIC material
EP0113088B1 (en) Substrate for mounting semiconductor element
JPS6022347A (en) Substrate for semiconductor element mounting
US4719443A (en) Low capacitance power resistor using beryllia dielectric heat sink layer and low toxicity method for its manufacture
JP2761109B2 (en) Printed wiring board and its manufacturing method
JP2761107B2 (en) Manufacturing method of metal substrate with insulating layer
JP2000100916A5 (en)
JP2957786B2 (en) Method for manufacturing metal substrate with insulating layer
JPH07283499A (en) Compound board for electronic parts
JPS63124555A (en) Substrate for semiconductor device
KR102182699B1 (en) Internal member applying plasma treatment apparatus and method for manufacturing the same
RU2454841C2 (en) Circuit substrate
JP2000071387A (en) Film fitted with metal foil and production of wiring board using the same
KR101211706B1 (en) Optical package comprising direct formed insulating layer without adhesive and method for forming insulating layer
KR102621334B1 (en) Manufacturing method of ceramic heat dissipation substrate simplified masking process
RU2256307C2 (en) Heat transfer device (alternatives), power system incorporating heat transfer device (alternatives), heat transfer device manufacturing process (alternatives), and electrical component manufacturing process (alternatives)
JPH01157589A (en) Manufacture of metal base substrate
JP2687604B2 (en) Method of manufacturing printed circuit board
JPH0518477B2 (en)
JPH0655477B2 (en) Method for manufacturing ceramic coat laminate
JPH1154865A (en) Multilayered printed wiring board and its manufacture
JP3620908B2 (en) Circuit board and semiconductor device including the circuit board
JPH01240676A (en) Manufacture of metallic base substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

EXPY Cancellation because of completion of term