JP2754175B2 - Manufacturing method of cold electron-emitting device - Google Patents

Manufacturing method of cold electron-emitting device

Info

Publication number
JP2754175B2
JP2754175B2 JP6571495A JP6571495A JP2754175B2 JP 2754175 B2 JP2754175 B2 JP 2754175B2 JP 6571495 A JP6571495 A JP 6571495A JP 6571495 A JP6571495 A JP 6571495A JP 2754175 B2 JP2754175 B2 JP 2754175B2
Authority
JP
Japan
Prior art keywords
silicon substrate
solution
inverted pyramid
emitter
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6571495A
Other languages
Japanese (ja)
Other versions
JPH08264111A (en
Inventor
順司 伊藤
健 岡野
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6571495A priority Critical patent/JP2754175B2/en
Publication of JPH08264111A publication Critical patent/JPH08264111A/en
Application granted granted Critical
Publication of JP2754175B2 publication Critical patent/JP2754175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特にフラットパネルデ
ィスプレイ(FPD)型の画像表示装置や光プリンタ、
電子顕微鏡、電子ビーム露光装置等々、種々の電子ビー
ム利用装置の電子源ないし電子銃として、あるいはまた
簡単な場合、単なる照明ランプ等の超小型照明用電子放
出源としても用い得る冷電子放出素子の作製方法に関
し、特にそのエミッタ(冷陰極ないしカソードとも呼ば
れる)の先端を尖鋭化するに好適な作製方法に関する。
The present invention relates to a flat panel display (FPD) type image display device, an optical printer,
Electron microscopes, electron beam exposure devices, etc., a cold electron emitting element that can be used as an electron source or electron gun for various electron beam utilizing devices, or in a simple case, also as an electron emission source for micro illumination such as a simple illumination lamp. The present invention relates to a manufacturing method, particularly to a manufacturing method suitable for sharpening the tip of an emitter (also referred to as a cold cathode or a cathode).

【0002】[0002]

【従来の技術】現在なお、唯一汎用されている真空管と
言っても良い陰極線管(カソードレイチューブ:CR
T)に認められるように、カソードに大きな熱エネルギ
を与えて熱電子放出を起こすのではなく、金属表面に対
し一般に106 〜107 V/cm以上の強電界を印加することで
当該金属表面から冷電子(電界放出電子とか強電界放出
電子とも呼ばれる)の放出を起こさせるタイプの電界放
出型電子放出素子、すなわち冷電子放出素子の研究も、
昨今、富みに盛んになってきている。こうしたタイプの
素子が各所で実用化されれば、CRT等におけるカソー
ド加熱用ヒータに要するような極めて大きな電力消費を
伴う熱エネルギが不要となり、素子自体も極めて小型に
なり得るので、応用デバイスの消費電力も大いに低減
し、筺体も飛躍的に小型化(薄型化)、軽量化する。
2. Description of the Related Art At present, a cathode ray tube (cathode ray tube: CR) which may be said to be the only vacuum tube that is widely used.
As noted in T), rather than applying a large amount of thermal energy to the cathode to cause thermionic emission, an intense electric field of generally 10 6 to 10 7 V / cm or more is applied to the metal surface, thereby Field emission type electron-emitting devices that emit cold electrons (also called field emission electrons or strong field emission electrons), that is, research on cold electron emission devices,
Nowadays, it is becoming rich. If such a type of element is put to practical use in various places, heat energy accompanied by extremely large power consumption required for a cathode heater in a CRT or the like becomes unnecessary, and the element itself can be extremely small. Power is also greatly reduced, and the housing is dramatically reduced in size (thinner) and lighter.

【0003】しかるに、電場はポアソンの方程式に支配
されるため、冷電子放出端となるエミッタ先端をできる
だけ尖鋭化し(エミッタ頂角をできるだけ小さくし)、
電界集中を局所化すればする程、比較的低い引き出し電
圧でも効率的に電界放出を起こすことができ、実用化は
より現実性を増す。そこで従来においても、エミッタ先
端を如何にして尖鋭化するかにつき、種々の工夫が為さ
れてきた。その中に、エミッタを再現性良く、かつまた
材料的な制約も少なく作製できる手法として、図2に示
すようなモールド法と呼ばれる従来法がある。
However, since the electric field is governed by Poisson's equation, the tip of the emitter serving as the cold electron emission end is made as sharp as possible (the apex angle of the emitter is made as small as possible).
The more the electric field concentration is localized, the more efficiently the field emission can be caused even at a relatively low extraction voltage, and the practical application is more realistic. Therefore, various techniques have been devised in the related art as to how to sharpen the tip of the emitter. Among them, there is a conventional method called a molding method as shown in FIG. 2 as a method for producing an emitter with good reproducibility and with few material restrictions.

【0004】作成過程を順を追って説明すると、まず図
2(A) に示すように、シリコン基板11の面方位(100) の
主面上に 0.3μm 厚程度の熱酸化膜(シリコン酸化膜)
12を形成し、その上にフォトレジスト13を形成した後、
図2(B) に示す通り、面内一次元方向あるいは面内二次
元方向に適当なピッチで飛び飛びに複数の正方形開口が
整列するように、当該フォトレジスト13を一般的なリソ
グラフィ技術によってパターニングする。各正方形開口
は、次のエッチング工程を減ることにより若干の寸法差
は出るものの、最終的に形成されるそれぞれピラミッド
形状(四角錐形状)の各エミッタの底面にほぼ相当す
る。
First, as shown in FIG. 2A, a thermal oxide film (silicon oxide film) having a thickness of about 0.3 μm is formed on the main surface of the silicon substrate 11 in the plane orientation (100), as shown in FIG.
After forming 12 and forming a photoresist 13 thereon,
As shown in FIG. 2B, the photoresist 13 is patterned by a general lithography technique so that a plurality of square openings are arranged at an appropriate pitch in an in-plane one-dimensional direction or an in-plane two-dimensional direction. . Each square opening substantially corresponds to the bottom surface of each pyramid-shaped (quadrangular pyramid-shaped) emitter finally formed, although a slight dimensional difference is caused by reducing the number of subsequent etching steps.

【0005】このようにパターニングしたフォトレジス
ト13をエッチングマスクとして、例えば緩衝弗酸を用い
る等したこれも公知のリソグラフィ技術を適用してシリ
コン酸化膜12をエッチングし、図2(C) に示すようにシ
リコン基板11の表面を露呈する開口14を開ける。その状
態で、水酸化カリウム(KOH)溶液中にて異方性エッチン
グを行なうと、図2(D) に示すように、各開口14を介し
て露呈したシリコン基板11には、4回対象の (111)面を
各側面とする逆ピラミッド型(逆四角錐型)の凹部15が
形成される。
Using the photoresist 13 patterned as described above as an etching mask, the silicon oxide film 12 is also etched by applying a well-known lithography technique using, for example, buffered hydrofluoric acid, as shown in FIG. Next, an opening 14 exposing the surface of the silicon substrate 11 is opened. In this state, when anisotropic etching is performed in a potassium hydroxide (KOH) solution, as shown in FIG. 2D, the silicon substrate 11 exposed through each opening 14 An inverted pyramid-shaped (inverted quadrangular pyramid-shaped) concave portion 15 having (111) planes as side surfaces is formed.

【0006】その後、例えば弗酸溶液に浸漬する等して
シリコン基板11の表面上に残っている熱酸化膜12及びフ
ォトレジスト13を除去すると、図2(E) に示されるよう
なエミッタ作製用モールド(鋳型)が完成する。そこで
次いで、図2(F) に示すように、エミッタを作製すべき
エミッタ材料16、例えば高融点金属とかダイアモンドを
各逆ピラミッド型凹部15内に一連に充填する。ただ、高
融点金属よりも、どちらかと言えばダイアモンドが好ま
れる。その側面が負の電子親和力を持つ (111)面とな
り、化学的、物理的にも極めて安定だからである。ま
た、充填手法として望ましい手法には、例えば熱フィラ
メントCVD(化学気相成長法)がある。
Thereafter, the thermal oxide film 12 and the photoresist 13 remaining on the surface of the silicon substrate 11 are removed by, for example, immersion in a hydrofluoric acid solution to obtain an emitter for the emitter as shown in FIG. A mold is completed. Then, as shown in FIG. 2 (F), each inverted pyramid-shaped recess 15 is successively filled with an emitter material 16 for forming an emitter, for example, a refractory metal or diamond. However, diamonds are preferred over refractory metals. This is because its side is a (111) plane with negative electron affinity, which is extremely stable chemically and physically. Further, a preferable method for filling is, for example, hot filament CVD (chemical vapor deposition).

【0007】その後、例えば水酸化カリウム溶液に浸漬
してシリコン基板11を溶解、除去する等、シリコン基板
11を除去すれば、図2(G) に示すように、それぞれ先端
18がある程度鋭く尖ったエミッタ17を形成することがで
きる。
Thereafter, the silicon substrate 11 is dissolved and removed by, for example, dipping in a potassium hydroxide solution.
If 11 is removed, as shown in Fig. 2 (G),
The emitter 18 can be formed to have a sharp and sharp 18.

【0008】[0008]

【発明が解決しようとする課題】こうした従来法にも、
(a) 原則としてエミッタ材料16に制約は少なく、多様な
材料が使用できる,(b) 従って上述のように、高融点金
属の外、エミッタ材料として電気特性的には望ましいが
化学的、物理的に極めて安定がであるがため、むしろ他
の加工手法では加工し難いダイアモンドエミッタ等も作
製できる,(c) 鋳型形状がシリコン基板の面方位に依存
するために精度が良く、作製されるエミッタ形状の再現
性、均一性に優れている,等の利点がある。
[0005] In such a conventional method,
(a) In principle, there are few restrictions on the emitter material 16 and various materials can be used. (b) Therefore, as described above, in addition to the refractory metal, it is desirable in terms of electrical characteristics as an emitter material, but it is chemically and physically. Although it is extremely stable, it is possible to manufacture diamond emitters, which are rather difficult to process with other processing methods. (C) Since the mold shape depends on the plane orientation of the silicon substrate, the accuracy is high, and the emitter shape to be manufactured is high. Has excellent reproducibility and uniformity.

【0009】しかし、逆に言うと、シリコン基板の面方
位に依存して形成された鋳型を用いる場合、作製される
エミッタの頂角は必然的に70°程度となり、頂角をより
小さくしたくても、より急峻な側面を持つピラミッド形
状は得ることができない。また、エミッタ先端における
曲率半径(一般には尖鋭度に直接関与し、小さい程良
い)も、厳密な測定は難しいが、概略1000Å程度に留ま
っていた。
However, conversely, when a mold formed depending on the plane orientation of the silicon substrate is used, the vertex angle of the produced emitter is inevitably about 70 °, and it is desired to make the vertex angle smaller. However, a pyramid shape having steeper sides cannot be obtained. The radius of curvature at the tip of the emitter (generally directly related to the sharpness, the smaller the better), is difficult to measure exactly, but remains at about 1000 °.

【0010】さらに、この種の冷電子放出素子は、原理
的には単一エミッタでも素子として動作可能ではある
が、実用的な見地からは、単位面積当たりの高い電子流
密度を得るために、複数個ないし多数個のエミッタを高
密度で集積形成することが要求される。これを満たすに
は当然、各エミッタの底面四角形の面積が小さい程、換
言すれば当該底面四角形の一辺の長さが短い程、隣接す
るエミッタ間の間隔を小さくできるので良いことにな
る。しかし上述した従来法では、既述のようにシリコン
基板の面方位に従ってのみ、ほぼ一義的に頂角が決定さ
れてしまうので、ピラミッド型エミッタ17の高さ(逆ピ
ラミッド型凹部15の深さ)を十分取ろうとすると底面四
角形の一辺の寸法を余り小さくすることはできず、実用
的な素子として必要な高さを取るためには当該底面四角
形の一辺寸法はせいぜい20数μm、どんなに小さくしても
10数μm 程度が限界であった。
Further, this kind of cold electron-emitting device can operate in principle with a single emitter, but from a practical point of view, in order to obtain a high electron flow density per unit area, It is required to integrate a plurality of or a large number of emitters at a high density. In order to satisfy this, naturally, the smaller the area of the bottom square of each emitter, in other words, the shorter the length of one side of the bottom square, the smaller the interval between adjacent emitters, which is good. However, in the above-described conventional method, the apex angle is almost uniquely determined only according to the plane orientation of the silicon substrate as described above. Therefore, the height of the pyramid-type emitter 17 (the depth of the inverted pyramid-type recess 15) If you try to take enough, the size of one side of the bottom square can not be made too small, and in order to take the necessary height as a practical element, the side of the bottom square should be no more than 20 μm, no matter how small Also
The limit was about 10 μm.

【0011】本発明はこうした点に鑑みてなされたもの
で、上述した従来法の長所はそのままに、より尖鋭な先
端を持ち、占有面積もより小さい冷電子放出素子用エミ
ッタを持つ冷電子放出素子を作製せんとするものであ
る。
The present invention has been made in view of the foregoing points, and has the advantages of the above-described conventional method, but has a sharper tip and occupies a smaller area. Is to be produced.

【0012】[0012]

【課題を解決するための手段】しかるに、上記の目的を
達成するためになされた本発明でも、既に図2(E) に示
したように、シリコン基板の一主面にそれぞれ (111)面
方位の四つの側面から成る逆ピラミッド型凹部を形成す
る所までは、既述した従来法におけると同様の手順に従
って良い。言い換えると本発明の特徴的な作製工程は、
予め (111)面方位の四つの側面から成る逆ピラミッド型
凹部の形成されたシリコン基板を出発部材とし、これに
対して施される。
However, according to the present invention, which has been made to achieve the above object, as shown in FIG. 2E, one principal surface of the silicon substrate has a (111) plane orientation. Up to the point where the inverted pyramid-shaped concave portion composed of the four side surfaces is formed, the same procedure as in the conventional method described above may be followed. In other words, the characteristic manufacturing process of the present invention is:
A silicon substrate on which an inverted pyramid-shaped concave portion composed of four side surfaces having a (111) plane orientation is formed in advance is used as a starting member, and is applied to the silicon substrate.

【0013】まず、上記の出発部材であるシリコン基板
を表面酸化膜除去溶液、好ましくは弗酸容積に適当時
間、好ましくは例えば10分間程、浸漬し、逆ピラミッド
型凹部の側面に自然形成されているかも知れない表面酸
化膜を除去し、結晶表面を露呈させる。既述したよう
に、出発部材が図2に即して説明した工程に従って作製
されたシリコン基板であり、図2(E) の構造を得るため
のその前の図2(D) の工程で残存していたシリコン酸化
膜12やその上のフォトレジスト13を除去するために弗酸
溶液を用いており、かつ、その後、大気環境等の汚染環
境に晒されていなければ、この本発明の最初の工程であ
る表面酸化膜除去工程に関する限り、当該前工程におけ
る弗酸溶液への浸漬工程で兼ねることもできる。ただし
浸漬時間に関しては任意で、上記した時間より長目に採
る方が好ましいこともある。
First, the silicon substrate as the starting member is immersed in a surface oxide film removing solution, preferably in a hydrofluoric acid volume for an appropriate time, preferably, for example, about 10 minutes, and is naturally formed on the side surface of the inverted pyramid-shaped concave portion. Remove any surface oxides that may be present, exposing the crystal surface. As described above, the starting member is a silicon substrate manufactured in accordance with the process described with reference to FIG. 2, and the starting member remains in the previous process of FIG. 2 (D) to obtain the structure of FIG. 2 (E). If a hydrofluoric acid solution is used to remove the silicon oxide film 12 and the photoresist 13 on the silicon oxide film 12 and has not been exposed to a polluted environment such as an air environment, the first of the present invention. As far as the surface oxide film removing step, which is the step, can be used as the immersion step in a hydrofluoric acid solution in the preceding step. However, the immersion time is optional, and it may be preferable to take a longer time than the above-mentioned time.

【0014】次いで、適当なる平均粒子径、好ましくは
平均粒子径 0.1μm から 0.5μm までで高硬度の微粉
末、好ましくはダイアモンド微粉末を含有し、かつシリ
コン基板を少なくとも物理的、化学的に損傷し難い溶
液、好ましくはアセトン溶液中で適当時間、好ましくは
60分間程、超音波洗浄等の物理的ないし機械的振動方法
により洗浄処理する。この洗浄処理工程は、溶液中に高
硬度微粉末を混入して行なわれるので、逆ピラミッド型
凹部の各側面の研磨処理工程、ないしもっと積極的には
傷付け処理工程と言える。なお、シリコン基板を少なく
とも物理的、化学的に損傷し難い溶液とは、もちろん、
全く損傷しない溶液をも含む。また、超音波振動法によ
ることが簡易かつ均一な傷付け処理ができるので望まし
いものの、機械的な溶液撹拌手法等も採用することがで
きる。
Next, a fine powder of high hardness, preferably diamond fine powder having a suitable average particle size, preferably from 0.1 μm to 0.5 μm, is contained, and the silicon substrate is at least physically and chemically damaged. Difficult solution, preferably in acetone solution for a suitable time, preferably
Washing is performed by a physical or mechanical vibration method such as ultrasonic cleaning for about 60 minutes. Since this cleaning process is performed by mixing high-hardness fine powder into the solution, it can be said that this is a polishing process for each side surface of the inverted pyramid-shaped concave portion, or more positively a scratching process. In addition, a solution that is hard to damage the silicon substrate at least physically and chemically is, of course,
Includes solutions that do not damage at all. Further, it is desirable to use an ultrasonic vibration method since a simple and uniform scratching treatment can be performed, but a mechanical solution stirring method or the like can also be employed.

【0015】上記の傷付け処理工程の後、テトラメチル
アンモニウムヒドロキシド溶液(以下、TMAH溶液と
略称)により異方性エッチングを施す。エッチング条件
は、好ましくは溶液濃度15%、溶液温度90℃で適当時
間、好ましくは一分間程度である。
After the above-mentioned scratching step, anisotropic etching is performed using a tetramethylammonium hydroxide solution (hereinafter abbreviated as TMAH solution). The etching conditions are preferably a solution concentration of 15% and a solution temperature of 90 ° C. for an appropriate time, preferably about one minute.

【0016】このような工程を減ることにより、出発部
材における逆ピラミッド型凹部は、深さ方向の途中から
さらに急峻に傾く側面によって規定され、凹部の底での
対向側面のなす角度は40°を下回り、ほぼ30°程度にま
で尖鋭化され得る。この理由は、今の所確証はないもの
の、おそらくは逆ピラミッド型凹部の最深底部の近傍が
(111)面ではなく、より高次の (301)面となったが故と
思われる。
By reducing such steps, the inverted pyramid-shaped concave portion in the starting member is defined by a side surface that is more steeply inclined from the middle in the depth direction, and the angle formed by the opposite side surface at the bottom of the concave portion is 40 °. It can be sharpened below about 30 °. The reason for this, although there is no evidence at this time, is probably near the bottom of the inverted pyramidal recess.
This is probably due to the higher (301) plane instead of the (111) plane.

【0017】本発明に従ってこのような尖鋭化逆ピラミ
ッド型凹部を持つ鋳型が完成したならば、その後は必要
に応じ、純水やアセトン等の洗浄溶液を用いての洗浄工
程や乾燥工程を付与してから、再び従来法と同様の工程
に戻って良く、当該凹部をエミッタ材料で充填する。こ
れに関し好ましいのは、化学気相成長法により高融点金
属、望ましくはダイアモンドを凹部側面上に成長させる
ことである。エミッタ材料充填後は、例えば水酸化カリ
ウム溶液に浸漬しての溶解、除去等、適当なる手法でシ
リコン基板を除去すれば、本発明に従って作製された冷
電子放出素子用エミッタを得ることができる。
After a mold having such a sharpened inverted pyramid-shaped concave portion is completed according to the present invention, a washing step or a drying step using a washing solution such as pure water or acetone is applied as necessary. Thereafter, the process may return to the same step as the conventional method, and the concave portion is filled with the emitter material. In this connection, it is preferable to grow a refractory metal, preferably diamond, on the side surface of the recess by chemical vapor deposition. After filling the emitter material, if the silicon substrate is removed by an appropriate method such as dissolution and removal by immersion in a potassium hydroxide solution, an emitter for a cold electron emission device manufactured according to the present invention can be obtained.

【0018】本発明者はまた、上述した表面酸化膜の除
去工程、逆ピラミッド型凹部側面の傷付け処理工程、そ
して異方性エッチング用TMAH溶液を用いてのエッチ
ング工程を一組の単位連続工程群とし、この単位連続工
程群を二回以上、必要回数繰返す方法も提案する。これ
により、最終的に形成されるエミッタの頂角を尖鋭に保
ったまま、逆ピラミッド型凹部の深さを深く取ることが
できる。
The present inventor has also described a step of removing the surface oxide film, a step of treating the side surface of the inverted pyramid-shaped recess, and an etching step using a TMAH solution for anisotropic etching. Then, a method of repeating this unit continuous process group two or more times as needed is also proposed. Thus, the depth of the inverted pyramid-shaped concave portion can be increased while the vertex angle of the finally formed emitter is kept sharp.

【0019】もちろん、シリコン基板に形成する逆ピラ
ミッド型凹部の数やピッチは任意設計的な事項である。
エミッタはただ一個であっても原理的には冷電子放出素
子として動作させることができる。しかし、より一般的
には既述のようにエミッタを多数個集積する。そしてこ
の場合、本発明に従うと、上述のようにピラミッド型エ
ミッタの頂角を最小でほぼ30°程度にまで十分小さくで
きるので、ピラミッドの高さを十分に取っても裾野の底
面四角形の一辺寸法は小さく留めることができる。従っ
て、隣接するピラミッド同志をより近付けることができ
るようになり、既述した従来法に従う場合よりも高密度
化を図ることができる。
Of course, the number and pitch of the inverted pyramid-shaped concave portions formed on the silicon substrate are arbitrary design items.
In principle, even a single emitter can be operated as a cold electron-emitting device. However, more generally, a large number of emitters are integrated as described above. In this case, according to the present invention, as described above, the vertex angle of the pyramid-type emitter can be sufficiently reduced to a minimum of about 30 °, so that even if the height of the pyramid is sufficiently taken, the size of one side of the bottom square of the base is taken. Can be kept small. Therefore, adjacent pyramids can be brought closer to each other, and higher density can be achieved as compared with the case of following the conventional method.

【0020】[0020]

【実施例】以下、図1に即し、本発明に従う実施例につ
き説明する。ただし、図1は本発明により従来法に追加
されるか変更される特徴的な工程群をのみ示しており、
図1(A) に示されるように、本発明の適用される出発部
材としてのシリコン基板11は、予め (111)面方位の四つ
の側面から成る逆ピラミッド型凹部15の形成されたシリ
コン基板である。すなわち、図1(A) に示されているシ
リコン基板11は、例えば既に説明した図2(A) 〜図2
(E) までの工程に従って作製された逆ピラミッド型凹部
15を有するシリコン基板11であって良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIG. However, FIG. 1 shows only characteristic steps added or changed to the conventional method according to the present invention,
As shown in FIG. 1 (A), a silicon substrate 11 as a starting member to which the present invention is applied is a silicon substrate on which an inverted pyramid-shaped concave portion 15 having four side surfaces having a (111) plane orientation is formed in advance. is there. That is, the silicon substrate 11 shown in FIG.
Inverted pyramid-shaped recess produced according to the steps up to (E)
It may be a silicon substrate 11 having 15.

【0021】本発明のこの実施例では、このように予め
逆ピラミッド型凹部15の形成されているシリコン基板11
を、まず弗酸溶液中に10分間程、浸漬し、基板表面や逆
ピラミッド型凹部15の側面に自然形成されているかも知
れないシリコン酸化膜を除去する。ただし、出発部材と
してのシリコン基板11が、図2に即して説明された従来
法により形成されたものであって、図2(E) の一工程前
の図2(D) の工程で残存していたシリコン酸化膜12やそ
の上のフォトレジスト13を除去するために弗酸溶液を用
いており、かつ、その後、大気等の汚染環境に晒されて
いなければ、本実施例の最初の工程である表面酸化膜除
去工程は、当該前工程における弗酸溶液への浸漬工程で
兼ねても良い。浸漬時間に関しても原則としては任意
で、上記した時間より長目に採る方が好ましいこともあ
る。
In this embodiment of the present invention, the silicon substrate 11 on which the inverted pyramid-shaped concave portion 15 is formed in advance
Is first immersed in a hydrofluoric acid solution for about 10 minutes to remove a silicon oxide film which may be naturally formed on the substrate surface or the side surface of the inverted pyramid-shaped concave portion 15. However, the silicon substrate 11 as a starting member is formed by the conventional method described with reference to FIG. 2 and remains in the step of FIG. 2 (D) one step before the step of FIG. 2 (E). If a hydrofluoric acid solution is used to remove the silicon oxide film 12 and the photoresist 13 thereon, and the substrate is not exposed to a contaminated environment such as the atmosphere thereafter, the first step of this embodiment The step of removing the surface oxide film may be also used as the step of dipping in a hydrofluoric acid solution in the preceding step. The immersion time is also arbitrary in principle, and it may be preferable to take a longer time than the above-mentioned time.

【0022】次いで、適当なる平均粒子径、好ましくは
平均粒子径 0.1μm から 0.5μm のダイアモンド微粉末
を含有するアセトン溶液中にて超音波洗浄する。ただ
し、この洗浄処理工程は、溶液中にダイアモンド微粉末
を混入して行なわれるので、逆ピラミッド型凹部15の各
側面の研磨処理工程、ないしもっと積極的には傷付け処
理工程となる。
Next, ultrasonic cleaning is performed in an acetone solution containing a fine diamond powder having an appropriate average particle diameter, preferably from 0.1 μm to 0.5 μm. However, since this cleaning process is performed by mixing diamond fine powder into the solution, it becomes a polishing process for each side surface of the inverted pyramid-shaped concave portion 15, or a more aggressive scratching process.

【0023】この傷付け処理工程の後、TMAH溶液に
より異方性エッチングを施す。エッチング条件は、好ま
しくは溶液濃度15%、溶液温度90℃で一分間程度であ
る。
After the scratching process, anisotropic etching is performed using a TMAH solution. The etching conditions are preferably a solution concentration of 15% and a solution temperature of 90 ° C. for about one minute.

【0024】このような工程を減ることで、図1(B) に
示されるように、出発部材における逆ピラミッド型凹部
15は、深さ方向の途中からさらに急峻に傾く側面によっ
て規定され、凹部の底での対向側面のなす角度が少なく
とも40°以下、最小ではほぼ30°程度にまで尖鋭化され
た尖鋭化逆ピラミッド型凹部21となったことが確認さ
れ、先端曲率半径も 500Å以下にまでなっていた。この
理由は、今の所は定量的検証はなされていないが、おそ
らくは逆ピラミッド型凹部の最深底部の極く近傍が (11
1)面ではなく、より高次の (301)面となったが故と思わ
れ、また、上記の傷付け処理工程とこの異方性エッチン
グ工程との相乗効果により、従来法よりも深く、かつ、
先端曲率半径の小さい良好な尖鋭化逆ピラミッド型凹部
形状が得られたものと思われる。
By reducing such steps, as shown in FIG. 1B, the inverted pyramid-shaped concave portion in the starting member is formed.
15 is a sharpened inverted pyramid that is defined by a side surface that is more steeply inclined from the middle of the depth direction, and the angle formed by the opposite side surface at the bottom of the concave portion is at least 40 ° or less, and at least about 30 ° at the minimum. It was confirmed that the mold concave portion 21 was formed, and the radius of curvature at the tip was also reduced to 500 ° or less. The reason for this has not been quantitatively verified so far, but it is probably that the immediate vicinity of the deepest bottom of the inverted pyramid-shaped recess is (11
It is presumed that the (301) plane was not a 1) plane but a higher order (301) plane.Moreover, due to the synergistic effect of the above-described scratching step and this anisotropic etching step, it was deeper than the conventional method, and ,
It is considered that a good sharpened inverted pyramid-shaped concave shape with a small tip radius of curvature was obtained.

【0025】このような尖鋭化逆ピラミッド型凹部21を
持つ鋳型が完成したならば、その後は必要に応じ、純水
やアセトン等の洗浄溶液を用いての洗浄工程や乾燥工程
を付与してから、再び従来法と同様の工程に戻って良
く、図1(C) に示すように当該尖鋭化逆ピラミッド型凹
部21をエミッタ材料16で充填する。これに関し好ましい
のは、化学気相成長法により高融点金属、好ましくはダ
イアモンドを凹部側面上に成長させることである。
After the mold having such a sharpened inverted pyramid-shaped concave portion 21 is completed, a cleaning step using a cleaning solution such as pure water or acetone or a drying step is performed, if necessary. Then, the process may return to the same step as the conventional method, and the sharpened inverted pyramid-shaped concave portion 21 is filled with the emitter material 16 as shown in FIG. In this connection, it is preferable to grow the refractory metal, preferably diamond, on the side surface of the recess by chemical vapor deposition.

【0026】そして、このエミッタ材料16の充填後、例
えば水酸化カリウム溶液に浸漬してシリコン基板11を溶
解、除去するとか、あるいは図示しない適当なる機械的
剥離方法等、適当なる除去手法でシリコン基板11を除去
すれば、図1(D) に示されるように、本発明に従って作
製された冷電子放出素子用エミッタ17を得ることができ
る。
After the emitter material 16 is filled, the silicon substrate 11 is dissolved and removed by, for example, dipping in a potassium hydroxide solution, or the silicon substrate 11 is removed by an appropriate removing method such as an appropriate mechanical peeling method (not shown). By removing 11, as shown in FIG. 1D, an emitter 17 for a cold electron emission device manufactured according to the present invention can be obtained.

【0027】このようにしてモールド成形されたエミッ
タ17は、モールド形状に良く整合しており、頂角は最小
でほぼ30°程度にまで尖鋭化し、先端22の曲率半径も 5
00Å以下となっていた。これはもちろん、既述した従来
法により作製されたものに比し、遥かに優れた値であ
る。また、ダイアモンド微粉末を含有する溶液を用いて
の傷付け処理工程は、異方性エッチング工程との相乗効
果により逆ピラミッド型凹部の最深部の尖鋭化に寄与す
るだけではなく、エミッタ材料16を尖鋭化逆ピラミッド
型凹部21内に例えば化学気相成長法により成長させる場
合には、その成長の「核」を形成し易くし、モールド形
状に対し最終的に形成されるピラミッド型エミッタ17の
形状整合性を良好にする働きもあるように思われる。
The emitter 17 molded in this manner is well matched to the mold shape, the apex angle is sharpened to a minimum of about 30 °, and the radius of curvature of the tip 22 is 5 °.
It was less than 00Å. This is, of course, a value far superior to that produced by the conventional method described above. The scratching process using a solution containing diamond fine powder not only contributes to the sharpening of the deepest portion of the inverted pyramid-shaped concave portion due to a synergistic effect with the anisotropic etching process, but also sharpens the emitter material 16. For example, when the growth is performed in the inverted pyramid-shaped concave portion 21 by chemical vapor deposition, the "nucleus" of the growth is easily formed, and the shape of the pyramid-type emitter 17 finally formed with respect to the mold shape is matched. It seems to have a function to improve the properties.

【0028】いずれにしても本発明により形成されたエ
ミッタ17はその頂角が小さくなるので、電界集中効果が
高まるのみならず、エミッタ17の高さ(尖鋭化逆ピラミ
ッド型凹部21の深さ)を素子として必要な寸法に取る場
合、同じ要求高さであるならば図2に即して説明した従
来法に比し、裾野の底面四角形の一辺寸法は相当小さく
できる。例えば従来法によった場合、底面寸法を20μm
程度とした時のエミッタ高さと同じ高さを得るにも、本
発明によった場合には底面寸法は 6μm 程度で済んだ。
これは当然、原理的に単一エミッタでの動作を図る素子
とてしても小型化を図ることができるので望ましいし、
より実用的に、エミッタ17を複数個(多数個)集積した
冷電子放出素子を構築するに際し、その集積密度を高
め、素子の小型化を図る上で極めて有利である。
In any case, since the apex angle of the emitter 17 formed according to the present invention is small, not only the electric field concentration effect is enhanced, but also the height of the emitter 17 (the depth of the sharpened inverted pyramid-shaped concave portion 21). In the case where the required size is taken as an element, if the required height is the same, the size of one side of the bottom square of the foot can be considerably reduced as compared with the conventional method described with reference to FIG. For example, when using the conventional method, the bottom dimension is 20 μm
In order to obtain the same height as the emitter height when the height is set to about the same, according to the present invention, the bottom dimension is only about 6 μm.
This is, of course, desirable because, in principle, it is possible to reduce the size of an element that operates with a single emitter.
More practically, when constructing a cold electron-emitting device in which a plurality of (many) emitters 17 are integrated, it is extremely advantageous in increasing the integration density and miniaturizing the device.

【0029】なお、上述した表面酸化膜除去工程、逆ピ
ラミッド型凹部側面の傷付け処理工程、そしてTMAH
溶液を用いての異方性エッチング工程を一組の単位連続
工程群とし、この単位連続工程群を二回以上、必要回数
繰返す方法も提案する。これにより、繰返し回数に応
じ、最終的に形成されるエミッタの頂角を尖鋭に保った
まま、逆ピラミッド型凹部の深さ、ひいては最終的に形
成されるエミッタ17の高さを必要な寸法に調整すること
ができる。
It should be noted that the above-described surface oxide film removing step, the step of scratching the side surface of the inverted pyramid-shaped concave portion, and the TMAH
A method of repeating the anisotropic etching process using a solution as a set of unit continuous process groups and repeating this unit continuous process group two or more times as needed is also proposed. With this, the depth of the inverted pyramid-shaped concave portion, and finally the height of the finally formed emitter 17 are set to required dimensions while keeping the apex angle of the finally formed emitter sharp according to the number of repetitions. Can be adjusted.

【0030】以上、本発明の一実施例につき説明した
が、本発明の要旨構成に即する限り、当業者にとっての
任意の改変は自由である。例えば上記の実施例では尖鋭
化逆ピラミッド型凹部21の側面の傷付け処理工程におい
てダイアモンド微粉末を利用したが、他の高硬度微粉末
により代替も可能である。微粉末の分散媒も、アセトン
溶液には限らず、少なくともシリコン基板11を物理的、
化学的に損傷し難い溶液であれば良い。エミッタ材料16
についても、ダイアモンドが望ましいものの、他の高融
点金属であっても良い。
The embodiment of the present invention has been described above. However, any modifications can be freely made by those skilled in the art as long as they conform to the gist of the present invention. For example, in the above-described embodiment, the diamond fine powder is used in the step of scratching the side surface of the sharpened inverted pyramid-shaped concave portion 21, but it can be replaced with another high-hardness fine powder. The dispersion medium of the fine powder is not limited to the acetone solution, and at least the silicon substrate 11 is physically and
Any solution that is hardly damaged chemically may be used. Emitter material 16
Also, although diamond is desirable, other refractory metals may be used.

【0031】[0031]

【発明の効果】本発明によると、極めて尖鋭な先端のエ
ミッタを持つ冷電子放出素子を再現性良く提供できる。
尖鋭なエミッタ先端は電界集中効率を高め、結局は冷電
子放出素子としての動作効率を高める。省電力にも繋が
る。また、アスペクト比の高い(底面寸法に対する高さ
寸法比の高い)エミッタ形状を得ることができるので、
必要とする高さが同じならば従来法によって作製された
場合よりも底面寸法の小さなエミッタを作製でき、素子
寸法を小型化できる。要すればエミッタを多数個集積す
る際にも、隣接するエミッタ同志をずっと近付けること
ができ、高い集積密度を得ることができる。
According to the present invention, a cold electron-emitting device having an extremely sharp emitter can be provided with good reproducibility.
The sharp emitter tip enhances the electric field concentration efficiency, and eventually increases the operation efficiency as a cold electron emitting device. It also leads to power saving. In addition, since an emitter shape having a high aspect ratio (a high ratio of the height dimension to the bottom dimension) can be obtained,
If the required height is the same, an emitter with a smaller bottom dimension can be manufactured as compared with the case where it is manufactured by the conventional method, and the element size can be reduced. If necessary, even when a large number of emitters are integrated, adjacent emitters can be much closer to each other, and a high integration density can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明作製方法の一実施例における工程群の説
明図である。
FIG. 1 is an explanatory view of a group of steps in one embodiment of the manufacturing method of the present invention.

【図2】従来の作製方法に従いピラミッド型エミッタを
持つ冷電子放出素子を作製する場合の工程順に従った説
明図である。
FIG. 2 is an explanatory view in the order of steps when manufacturing a cold electron-emitting device having a pyramid-shaped emitter according to a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

11 シリコン基板, 12 シリコン酸化膜, 13 フォトレジスト, 14 開口, 15 逆ピラミッド型凹部, 16 エミッタ材料, 17 エミッタ, 21 尖鋭化逆ピラミッド型凹部, 22 エミッタ先端. 11 silicon substrate, 12 silicon oxide film, 13 photoresist, 14 opening, 15 inverted pyramid recess, 16 emitter material, 17 emitter, 21 sharpened inverted pyramid recess, 22 emitter tip.

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エミッタ先端に電界を集中させることで
該エミッタから冷電子を放出させる冷電子放出素子の作
製方法であって;予め (111)面方位の四つの側面から成
る逆ピラミッド型凹部の形成されたシリコン基板を表面
酸化膜除去溶液に浸漬する表面酸化膜除去工程と;高硬
度微粉末を含有し、該シリコン基板を少なくとも物理
的、化学的に損傷し難い溶液中に該シリコン基板を浸漬
して該溶液を該シリコン基板に対し相対的に振動させ、
該高硬度微粉末により上記逆ピラミッド型凹部の側面を
傷付ける傷付け処理工程と;テトラメチルアンモニウム
ヒドロキシド溶液中に該シリコン基板を浸漬し、上記逆
ピラミッド型凹部をさらに異方性エッチングし、尖鋭化
逆ピラミッド型凹部を形成するエッチング工程と;該尖
鋭化逆ピラミッド型凹部中にエミッタ材料を充填的に形
成するエミッタ材料充填工程と;該エミッタ材料の充填
後、上記シリコン基板を除去する工程と;を含んで成る
冷電子放出素子の作製方法。
1. A method of manufacturing a cold electron-emitting device for emitting cold electrons from an emitter by concentrating an electric field on the tip of the emitter; A surface oxide film removing step of immersing the formed silicon substrate in a surface oxide film removing solution; and placing the silicon substrate in a solution containing high-hardness fine powder and at least hardly physically and chemically damaging the silicon substrate. Dipping and vibrating the solution relative to the silicon substrate,
A scratching step of damaging the side surface of the inverted pyramid-shaped recess with the high-hardness fine powder; immersing the silicon substrate in a tetramethylammonium hydroxide solution to further anisotropically etch and sharpen the inverted pyramid-shaped recess An etching step for forming an inverted pyramid-shaped recess; an emitter material filling step for filling an emitter material in the sharpened inverted pyramid-shaped recess; and a step of removing the silicon substrate after filling the emitter material; A method for manufacturing a cold electron-emitting device comprising:
【請求項2】 請求項1記載の作製方法であって;上記
エッチング工程後で上記エミッタ材料充填工程前に上記
尖鋭化逆ピラミッド型凹部の形成された上記シリコン基
板を洗浄、乾燥する工程を含むこと;を特徴とする冷電
子放出素子の作製方法。
2. The method according to claim 1, further comprising a step of washing and drying the silicon substrate on which the sharpened inverted pyramid-shaped recess is formed after the etching step and before the emitter material filling step. A method for manufacturing a cold electron-emitting device.
【請求項3】 請求項1または2記載の作製方法であっ
て;上記表面酸化膜除去工程、上記傷付け処理工程、そ
して上記エッチング工程を単位連続工程群とし、該単位
連続工程群を複数回繰返すこと;を特徴とする冷電子放
出素子の作製方法。
3. The method according to claim 1, wherein the surface oxide film removing step, the scratching step, and the etching step are a unit continuous step group, and the unit continuous step group is repeated a plurality of times. A method for manufacturing a cold electron-emitting device.
【請求項4】 請求項1,2または3記載の作製方法で
あって;上記表面酸化膜除去溶液は弗酸溶液であるこ
と;を特徴とする冷電子放出素子の作製方法。
4. The method according to claim 1, wherein said surface oxide film removing solution is a hydrofluoric acid solution.
【請求項5】 請求項1,2または3記載の作製方法で
あって;上記高硬度微粉末はダイアモンド微粉末である
こと;を特徴とする冷電子放出素子の作製方法。
5. The method according to claim 1, wherein said high-hardness fine powder is diamond fine powder.
【請求項6】 請求項1,2または3記載の作製方法で
あって;上記高硬度微粉末の平均粒子径は 0.1μm から
0.5μm までであること;を特徴とする冷電子放出素子
の作製方法。
6. The method according to claim 1, wherein said fine powder of high hardness has an average particle diameter of 0.1 μm or less.
0.5 μm or less;
【請求項7】 請求項1,2または3記載の作製方法で
あって;上記高硬度微粉末を含有し、上記シリコン基板
を少なくとも物理的、化学的に損傷し難い溶液はアセト
ン溶液であること;を特徴とする冷電子放出素子の作製
方法。
7. The method according to claim 1, wherein the solution containing the high-hardness fine powder and hardly damaging the silicon substrate at least physically or chemically is an acetone solution. A method for manufacturing a cold electron-emitting device.
【請求項8】 請求項1,2または3記載の作製方法で
あって;上記傷付け処理工程において上記溶液を上記シ
リコン基板に対し相対的に振動させるために超音波振動
を用いること;を特徴とする冷電子放出素子の作製方
法。
8. The manufacturing method according to claim 1, wherein ultrasonic waves are used to vibrate the solution relative to the silicon substrate in the scratching step. Method for producing a cold electron emitting device.
【請求項9】 請求項1,2または3記載の作製方法で
あって;上記傷付け処理工程において上記溶液を上記シ
リコン基板に対し相対的に振動させるのに代え、該溶液
を撹拌すること;を特徴とする冷電子放出素子の作製方
法。
9. The manufacturing method according to claim 1, wherein the solution is agitated instead of being vibrated relative to the silicon substrate in the scratching step. A method for manufacturing a cold electron emission element.
【請求項10】 請求項1,2または3記載の作製方法
であって;上記尖鋭化逆ピラミッド型凹部中に充填され
るエミッタ材料は高融点金属であること;を特徴とする
冷電子放出素子の作製方法。
10. The cold electron-emitting device according to claim 1, wherein the emitter material filled in the sharpened inverted pyramid-shaped recess is a refractory metal. Method of manufacturing.
【請求項11】 請求項1,2または3記載の作製方法
であって;上記尖鋭化逆ピラミッド型凹部中に充填され
るエミッタ材料はダイアモンドであること;を特徴とす
る冷電子放出素子の作製方法。
11. The method according to claim 1, wherein the emitter material filled in the sharpened inverted pyramid-shaped concave portion is diamond. Method.
【請求項12】 請求項1,2または3記載の作製方法
であって;上記尖鋭化逆ピラミッド型凹部中にエミッタ
材料を充填的に形成する工程は、該尖鋭化逆ピラミッド
型凹部中にエミッタ材料を化学気相成長させる工程であ
ること;を特徴とする冷電子放出素子の作製方法。
12. The manufacturing method according to claim 1, wherein the step of filling the emitter material in the sharpened inverted pyramid-shaped concave portion includes filling the emitter material in the sharpened inverted pyramid-shaped concave portion. A method for producing a cold electron-emitting device, wherein the method comprises a step of subjecting a material to chemical vapor deposition.
【請求項13】 請求項1,2または3記載の作製方法
であって;上記エミッタ材料の充填後、上記シリコン基
板を除去する工程は、該シリコン基板を水酸化カリウム
溶液に浸漬することで該シリコン基板を溶解、除去する
工程であること;を特徴とする冷電子放出素子の作製方
法。
13. The method according to claim 1, wherein after the filling of the emitter material, the step of removing the silicon substrate comprises immersing the silicon substrate in a potassium hydroxide solution. A method of dissolving and removing a silicon substrate;
【請求項14】 エミッタ先端に電界を集中させること
で該エミッタから冷電子を放出させる冷電子放出素子の
作製方法であって;予め (111)面方位の四つの側面から
成る逆ピラミッド型凹部の形成されたシリコン基板を弗
酸溶液中に浸漬し、表面酸化膜を除去する工程と;平均
粒子径 0.1μm から 0.5μm までのダイアモンド微粉末
を含有するアセトン溶液中に該シリコン基板を浸漬し、
該アセトン溶液を超音波振動により振動させ、該ダイア
モンド微粉末により上記逆ピラミッド型凹部の側面を傷
付ける傷付け処理工程と;溶液濃度15%、溶液温度90℃
のテトラメチルアンモニウムヒドロキシド溶液中に該シ
リコン基板を浸漬し、上記逆ピラミッド型凹部をさらに
異方性エッチングして尖鋭化逆ピラミッド型凹部を形成
するエッチング工程と;該尖鋭化逆ピラミッド型凹部の
形成された上記シリコン基板を純水及びアセトンを用い
て洗浄、乾燥する工程と;該尖鋭化逆ピラミッド型凹部
中にエミッタ材料としてのダイアモンドを化学気相成長
させる工程と;該ダイアモンドの充填後、上記シリコン
基板を水酸化カリウム溶液に浸漬し、該シリコン基板を
溶解、除去する工程と;を含んで成る冷電子放出素子の
作製方法。
14. A method of manufacturing a cold electron-emitting device for emitting cold electrons from an emitter by concentrating an electric field on the tip of the emitter; Dipping the formed silicon substrate in a hydrofluoric acid solution to remove the surface oxide film; dipping the silicon substrate in an acetone solution containing diamond fine powder having an average particle diameter of 0.1 μm to 0.5 μm;
A process in which the acetone solution is vibrated by ultrasonic vibration to damage the side surface of the inverted pyramid-shaped recess with the diamond fine powder; a solution concentration of 15% and a solution temperature of 90 ° C.
Dipping the silicon substrate in a tetramethylammonium hydroxide solution, and further anisotropically etching the inverted pyramid-shaped recess to form a sharpened inverted pyramid-shaped recess; Cleaning and drying the formed silicon substrate using pure water and acetone; and chemically vapor-depositing diamond as an emitter material in the sharpened inverted pyramid-shaped recess; and after filling the diamond, Dipping the silicon substrate in a potassium hydroxide solution to dissolve and remove the silicon substrate.
【請求項15】 請求項14記載の作製方法であって;
上記表面酸化膜除去工程、上記傷付け処理工程、そして
上記エッチング工程を単位連続工程群とし、該単位連続
工程群を複数回繰返すこと;を特徴とする冷電子放出素
子の作製方法。
15. The method according to claim 14, wherein:
A method for producing a cold electron-emitting device, comprising: the step of removing a surface oxide film, the step of scratching, and the step of etching as a unit continuous step group, and repeating the unit continuous step group a plurality of times.
JP6571495A 1995-03-24 1995-03-24 Manufacturing method of cold electron-emitting device Expired - Lifetime JP2754175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6571495A JP2754175B2 (en) 1995-03-24 1995-03-24 Manufacturing method of cold electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6571495A JP2754175B2 (en) 1995-03-24 1995-03-24 Manufacturing method of cold electron-emitting device

Publications (2)

Publication Number Publication Date
JPH08264111A JPH08264111A (en) 1996-10-11
JP2754175B2 true JP2754175B2 (en) 1998-05-20

Family

ID=13294972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6571495A Expired - Lifetime JP2754175B2 (en) 1995-03-24 1995-03-24 Manufacturing method of cold electron-emitting device

Country Status (1)

Country Link
JP (1) JP2754175B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480745B1 (en) * 1998-03-10 2005-05-16 삼성전자주식회사 Method of manufacturing of diamond field emitter
WO2005031781A1 (en) * 2003-09-30 2005-04-07 Sumitomo Electric Industries, Ltd. Process for producing diamond electron emission element and electron emission element
JP4851735B2 (en) * 2005-06-14 2012-01-11 株式会社東芝 Field emission cold cathode device

Also Published As

Publication number Publication date
JPH08264111A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
US6676845B2 (en) Coated beads and process utilizing such beads for forming an etch mask having a discontinuous regular pattern
JP2001283716A (en) Electric field discharge type cold cathode, its method for manufacturing and vacuum micro equipment
JP2001326999A (en) Method for machining piezoelectric structure, and production method of complex piezoelectric body
JP2754175B2 (en) Manufacturing method of cold electron-emitting device
JP2004297070A (en) Group iii-nitride layers with patterned surfaces
JP2002270085A (en) Field electron emission element and its manufacturing method
JPH0594762A (en) Field emission type electron source and manufacture thereof
JP2003045320A (en) Method of manufacturing tip part of small field emission device
JPH09185942A (en) Cold cathode element and its manufacture
JP2008023149A (en) Manufacture process of needle-like material
JP4936214B2 (en) Method for producing needle plate and method for producing needle
EP0539365A1 (en) Structures and processes for fabricating field emission cathodes.
JP4466019B2 (en) Diamond element and method for manufacturing diamond element
KR100819619B1 (en) Micro-field emitter device for flat panel display
JPH10307143A (en) Female substrate used for manufacturing minute short needle and method for manufacturing the female substrate, and method for manufacturing the minute short needle and probe using the female substrate
JP2009120929A (en) Seeding treatment method to substrate, diamond fine structure, and method for producing the same
Dziuban et al. Mold-type field-emission array fabrication by the use of fast silicon etching
JPH08306302A (en) Field emission type electron source and its manufacture
JP2002008522A (en) Manufacturing method and device of electron emitting element and electron emitting element forming negagive plate, electron emitting element forming negative plate and field emission display
JPH10261360A (en) Manufacture of vacuum micro element and vacuum micro element through the manufacture
JP3204778B2 (en) Method of manufacturing field emission cold cathode
JP2005135846A (en) Carbon processed body, manufacturing method of the same, and electron emitting element
JP3431414B2 (en) Manufacturing method of micro cold cathode
JPH0541152A (en) Manufacture of electric field emission cathode
JPH05205614A (en) Method of fabricating electric field emitting cathode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370