JP2753392B2 - Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device - Google Patents
Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling deviceInfo
- Publication number
- JP2753392B2 JP2753392B2 JP2329250A JP32925090A JP2753392B2 JP 2753392 B2 JP2753392 B2 JP 2753392B2 JP 2329250 A JP2329250 A JP 2329250A JP 32925090 A JP32925090 A JP 32925090A JP 2753392 B2 JP2753392 B2 JP 2753392B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- temperature
- stage compressor
- compressor
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/072—Intercoolers therefor
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前段側圧縮機から吐出ガスを冷却し、後段
側圧縮機へ導くようにした多段圧縮機における中間ガス
の冷却方法及び中間ガス冷却装置を備えた多段圧縮機に
関し、特に塩化物応力腐食割れが発生する要因を持つ等
の腐食環境下で使用される炭酸ガス圧縮機に適用して好
適なものである。The present invention relates to a method for cooling an intermediate gas in a multistage compressor in which a discharge gas is cooled from a first-stage compressor and is guided to a second-stage compressor. The present invention relates to a multi-stage compressor provided with a cooling device, and is particularly suitable for being applied to a carbon dioxide gas compressor used in a corrosive environment such as a factor causing chloride stress corrosion cracking.
従来のこの種技術としては、日立評論Vol.60 No.3(1
978年3月号)に記載されたものがある。この文献に記
載されたものは、炭酸ガス(以下CO2ガスと言う)を圧
縮する多段圧縮機であって、前段側(低圧側)圧縮機に
より圧縮されたCO2ガスは中間熱交換器(中間冷却器)
により冷却されて次の段側(後段側あるいは高圧側)圧
縮機へ送られる。As this kind of conventional technology, Hitachi Review Vol.60 No.3 (1
March 978). Those described in this document, a multistage compressor for compressing carbon dioxide gas (hereinafter referred to as CO 2 gas), front side (low pressure side) CO 2 gas compressed by the compressor is an intermediate heat exchanger ( Intercooler)
And is sent to the next stage (later stage or high pressure side) compressor.
一般に圧縮機でガスを圧縮する場合、駆動機からガス
に与えられる単位質量当りの仕事量(ヘッド)と、ガス
の状態変化の関係は(1)式のように表わされる。In general, when compressing a gas with a compressor, the relationship between the work per unit mass (head) given to the gas from the driver and the change in the state of the gas is expressed by equation (1).
ここで、Hth=理論揚程 m=ポリトロープ指数 R=気体定数 Ts=吸込温度 Pd=吐出圧力 Ps=吸込圧力 ηpol=ポリトロープ効率 (1)式で明らかなように、吸込温度Tsを下げれば同
じ圧力上昇(即ち圧力比Pd/Ps)を得るのに必要な単位
質量当りの仕事量(Hth)が小さくてすむ。従って、一
般に熱交換器出口のガス温度は、低い方が駆動機の軸動
力(エネルギ)を低減できるので望ましい。このため、
1段または数段ごとにグループ化された各グループの間
には熱交換器が設けられておりCO2ガスを冷却するよう
になっている。 Where H th = theoretical head m = polytropic index R = gas constant Ts = suction temperature Pd = discharge pressure Ps = suction pressure ηpol = polytropic efficiency As is clear from equation (1), the same pressure is obtained by reducing the suction temperature Ts. The work per unit mass (H th ) required to obtain a rise (ie, pressure ratio Pd / Ps) can be small. Therefore, in general, it is desirable that the gas temperature at the outlet of the heat exchanger be lower because the shaft power (energy) of the driving machine can be reduced. For this reason,
A heat exchanger is provided between the groups grouped by one or several stages to cool the CO 2 gas.
一方、CO2ガスは常温以上の温度でも圧力が高ければ
液化する性質を持つので、熱交換器出口でのガス温度
は、この液化を生じない温度以上でなければならない。
さらにCO2ガスは圧縮機に吸込まれた後、一部は軸封部
から機外側へ漏れる。機外側の圧力は必ず圧縮機内部の
圧力よりも低い。従って、機外側へ膨張しながらもれる
CO2ガスが途中で(例えば軸封部のラビリンスシール
内)液化すると、エロージョンアタックを生じ圧縮機に
有害な損傷をきたすことになる。また吸込CO2ガス温度
が低いと膨張して液化することになる。これらのことを
考慮して、CO2ガス熱交換器の出口の温度制御がなされ
ている。On the other hand, the CO 2 gas has the property of liquefying at a high pressure even at a temperature higher than ordinary temperature, so the gas temperature at the heat exchanger outlet must be higher than the temperature at which this liquefaction does not occur.
Further, after the CO 2 gas is sucked into the compressor, a part of the CO 2 gas leaks from the shaft seal portion to the outside of the machine. The pressure outside the machine is always lower than the pressure inside the compressor. Therefore, it leaks while expanding to the outside of the machine
If the CO 2 gas is liquefied on the way (for example, in the labyrinth seal of the shaft seal portion), it will cause an erosion attack and cause harmful damage to the compressor. If the temperature of the sucked CO 2 gas is low, it expands and liquefies. In consideration of these points, the temperature of the outlet of the CO 2 gas heat exchanger is controlled.
さらに熱交換器の製作に当っては、冷却水は塩素イオ
ンのような腐食因子を含むので、熱交換器のチューブ材
質,チューブ温度,冷却水速度など、腐食に対して十分
考慮されて設計がなされている。また、チューブ熱伝達
能力は、運転中の冷却水による汚れを考慮して、熱交換
容量に予め余裕を持って製作がされている。Furthermore, when manufacturing the heat exchanger, the cooling water contains corrosive factors such as chlorine ions, so the design must be made with due consideration to corrosion, such as the heat exchanger tube material, tube temperature, and cooling water speed. It has been done. In addition, the tube heat transfer capacity is manufactured with a margin for heat exchange capacity in advance in consideration of contamination by cooling water during operation.
即ち、長期連続運転にも熱交換容量が不足しないよう
に製作されている。That is, it is manufactured so that the heat exchange capacity does not become insufficient even during long-term continuous operation.
一般に熱交換器の熱通過率Kは(2)式で表わされ
る。Generally, the heat transfer rate K of the heat exchanger is represented by the following equation (2).
ここで、K=熱通過率 α1=ガス側(チューブ側)熱伝達率 α2=水側(シェル側)熱伝達率 fW=汚れ係数 (2)式において、汚れ係数fWは初期の運転時には0.
0001以下であるが、製作においては長期運転による冷却
水側の汚れを考慮して、一般に0.0004程度としている。 Here, K = heat transfer rate α 1 = heat transfer coefficient on the gas side (tube side) α 2 = heat transfer coefficient on the water side (shell side) f W = dirt coefficient In the equation (2), the dirt coefficient f W is the initial value. 0 when driving.
Although it is 0001 or less, in production, it is generally set to about 0.0004 in consideration of contamination on the cooling water side due to long-term operation.
一方、伝熱量Qは(3),(4),(5)式で表わさ
れる。On the other hand, the heat transfer amount Q is represented by the equations (3), (4), and (5).
Q=K×A×ΔTm …(3) Q=Gw×Cpw×ΔTw …(4) Q=Gg×Cpg×ΔTg …(5) ここで、Q=伝熱量 A=熱交換面積 ΔTm=対数平均温度差 G=流量 Cp=比熱 ΔT=熱交換器出入口の温度差 添字:w=冷却水,g=ガスである。Q = K × A × ΔTm (3) Q = G w × C pw × ΔT w (4) Q = G g × C pg × ΔT g (5) where Q = heat transfer amount A = heat exchange area? Tm = logarithmic mean temperature difference G = flow rate C p = specific heat [Delta] T = heat exchanger inlet and outlet temperature difference index: w = coolant is g = gas.
今、ある任意の運転状態において、(5)式で示され
る交換熱量Qが必要であるとする。熱交換器のチューブ
を通過する熱量は(3)式で表わされるQである。
(3)式の熱交換器の熱通過率Kは(2)式に示した
が、チューブの汚れが異なる場合には、一定のKを得る
ために水側の熱伝熱率α2を調節する必要がある。即
ち、熱交換器の初期の運転ではfWが小さいのでα2を小
さくする必要がある。Now, it is assumed that the exchanged heat quantity Q shown by the equation (5) is required in a certain operation state. The amount of heat passing through the tubes of the heat exchanger is Q represented by the equation (3).
(3) the heat transfer coefficient K of the heat exchanger is shown in equation (2), when the contamination of the tubes are different, adjusting the thermal heat transfer rate alpha 2 in the water side in order to obtain a constant K There is a need to. That is, in the initial operation of the heat exchanger it is necessary to reduce the alpha 2 because f W is small.
例えば、fW=0.0004m2h℃/kcalのとき、α2=5000kc
al/m2h℃に設計された熱交換器を、fW=0.001m2h℃/kca
lで運転する場合、α2は約2000kcal/m2h℃にしないと
同等のK値にならない。α2は冷却水量のほぼ0.6乗に
比例することから、従来はα2を小さくするため冷却水
量を絞った。冷却水量を絞ることは(4)式から明らか
なように温度差ΔTWが大きくなることになる。即ち、冷
却水出口温度が上昇することとなり、ひいては熱交換器
チューブの温度が上昇することになる。即ち、熱交換器
出口の被冷却ガスの温度が一定になるような冷却水量を
調節する従来システムでは、運転初期において冷却水過
少となり熱交換器チューブの温度上昇を引き起こし、冷
却水流速域によるスケールの付着やチューブ壁面温度の
上昇を引き起こすことになり、塩化物応力腐食割れが発
生する危険性があった。For example, when f W = 0.0004m 2 h ° C / kcal, α 2 = 5000kc
heat exchanger designed at al / m 2 h ° C, f W = 0.001 m 2 h ° C / kca
When operating at l, alpha 2 is not a comparable K value unless about 2000kcal / m 2 h ℃. Since α 2 is approximately proportional to the power of 0.6 of the cooling water amount, conventionally, the cooling water amount was reduced to reduce α 2 . Reducing the amount of cooling water increases the temperature difference ΔT W as is apparent from equation (4). That is, the temperature of the cooling water outlet rises, and as a result, the temperature of the heat exchanger tube rises. That is, in the conventional system for adjusting the amount of cooling water such that the temperature of the gas to be cooled at the heat exchanger outlet becomes constant, the amount of cooling water becomes insufficient in the initial stage of operation, causing the temperature of the heat exchanger tube to rise, and the scale by the cooling water flow velocity range. Therefore, there is a risk that chloride stress corrosion cracking may occur due to the adhesion of water and an increase in tube wall temperature.
本発明の目的は、チューブ壁面温度の上昇を起こさ
ず、かつ、取扱いガスの液化も生じないような多段圧縮
機における中間ガスの冷却方法及び中間ガス冷却装置を
備えた多段圧縮機を得ることにある。An object of the present invention is to provide a method for cooling an intermediate gas in a multi-stage compressor and a multi-stage compressor equipped with an intermediate gas cooling device that does not cause an increase in tube wall temperature and does not cause liquefaction of a handled gas. is there.
上記目的を達成するための本発明の第1の特徴は、低
圧側の圧縮機で圧縮された中ガスを中間熱交換器におい
て冷却水と熱交換して冷却し、その後、この冷却された
ガスを後段側の圧縮機に供給する多段圧縮機における中
間ガスの冷却方法において、前段圧縮機から吐出された
中間ガスの一部は前記中間冷却器をバイパスし、前記中
間ガスの残りは、中間冷却器において中間冷却器出口で
あって前記冷却されたガスとバイパスされたガスの混合
点より上流側の位置のガス温度に基づいて流入する水量
が制御された冷却水と熱交換してそのガスの気液臨界点
近くまで冷却され、前記冷却されたガスとバイパスされ
たガスが混合して得られたガスの一部が後段側圧縮機の
ラビリンスシール部に流入して膨張しても液化しない温
度まで、前記混合後のガスの温度に基づいて前記バイパ
スさせた中間ガスの流量を制御し、前記パイパスされた
ガス量が増加したときには前記冷却水の水量を増やすこ
とにある。A first feature of the present invention to achieve the above object is that an intermediate gas compressed by a low-pressure side compressor is cooled by exchanging heat with cooling water in an intermediate heat exchanger, and then the cooled gas is cooled. In the method of cooling the intermediate gas in the multi-stage compressor that supplies the intermediate gas to the downstream compressor, part of the intermediate gas discharged from the upstream compressor bypasses the intermediate cooler, and the rest of the intermediate gas passes through the intermediate cooling. In the heat exchanger, the amount of water flowing in based on the gas temperature at the outlet of the intercooler and located upstream of the mixed point of the cooled gas and the bypassed gas is exchanged with the controlled cooling water to exchange heat with the gas. The temperature at which the gas cooled to near the gas-liquid critical point and a part of the gas obtained by mixing the cooled gas and the bypassed gas flows into the labyrinth seal portion of the subsequent compressor and does not liquefy even when expanded. Until after the mixing Controlling the flow rate of the intermediate gas obtained by the bypass based on the temperature of the gas is to increase the amount of water of the cooling water when the bypass gas amount is increased.
本発明の第2の特徴は、前段側圧縮機と、後段側圧縮
機と、前記前段側圧縮機から吐出された中間ガスを後段
側圧縮機へ導く中間ガスラインと、この中間ガスライン
に設けられ前記中間ガスを冷却水と熱交換して冷却する
中間冷却器とを備えた多段圧縮機において、前記中間冷
却器に冷却水を送る管路に設けられこの冷却水の流量を
制御する第1のコントロール弁と、前記中間冷却器の出
口側に設けられ中間冷却器から出たガスの温度を検出す
る第1の温度検出手段と、この温度検出手段で検出され
た温度に基づいて中間ガスをその気液臨界点近くまで冷
却するように前記第1のコントロール弁を制御する第1
の制御手段と、前記中間ガスラインから分岐して前記中
間冷却器をバイパスし、前記第1温度検出手段の下流で
合流するように設けられたバイパスガスラインと、この
バイパスガスラインに設けられバイパスガス量を制御す
る第2のコントロール弁と、前記中間ガスラインと前記
バイパスガスラインの合流後のガスの温度を検出する第
2の温度検出手段と、前記合流後のガスが後段側圧縮機
のラビリンスシール部に流入して膨張しても液化しない
温度となるように前記第2の温度検出手段が検出した温
度に基づいて前記第2のコントロール弁を制御する第2
の制御手段とを設け、前記第1の制御手段が前記第1の
コントロール弁を開くときに前記第2の制御手段は前記
第2のコントロール弁を開くように制御することにあ
る。A second feature of the present invention is that a front-stage compressor, a rear-stage compressor, an intermediate gas line that guides an intermediate gas discharged from the front-stage compressor to a rear-stage compressor, and an intermediate gas line provided in the intermediate gas line. A multi-stage compressor having an intermediate cooler for cooling the intermediate gas by exchanging heat with the cooling water to cool the intermediate gas. Control valve, first temperature detecting means provided at the outlet side of the intercooler for detecting the temperature of the gas discharged from the intercooler, and the intermediate gas is detected based on the temperature detected by the temperature detecting means. A first control valve for controlling the first control valve so as to cool the gas to near the gas-liquid critical point;
A bypass gas line provided so as to branch off from the intermediate gas line, bypass the intermediate cooler, and merge downstream of the first temperature detecting means; and a bypass provided in the bypass gas line. A second control valve for controlling a gas amount, a second temperature detecting means for detecting a temperature of the gas after the merge of the intermediate gas line and the bypass gas line, and a gas for the post-stage compressor, A second control valve for controlling the second control valve based on the temperature detected by the second temperature detecting means so that the temperature does not liquefy even when the second control valve flows into the labyrinth seal portion and expands.
And the second control means controls to open the second control valve when the first control means opens the first control valve.
そして好ましくは、前記圧縮される取扱いガスを炭酸
ガス(CO2ガス)としたものである。Preferably, the gas to be compressed is carbon dioxide (CO 2 gas).
上記構成とすることにより、熱交換器初期の運転にお
いても冷却流体の流量を少なくする必要はなく、気液臨
界点に極く近接しない範囲であればよい。過冷却分は、
加熱手段あるいはバイパスさせたホットガスと混合させ
ることにより、後段側圧縮機に吸入されるガスが圧縮機
のラビリンスシール部で膨張した時に液化しない程度ま
でガスの温度を上昇させることができる。With the above configuration, it is not necessary to reduce the flow rate of the cooling fluid even in the initial operation of the heat exchanger, and it is sufficient that the flow rate is within a range that is not very close to the gas-liquid critical point. The amount of supercooling is
By mixing with the heating means or the bypassed hot gas, it is possible to raise the temperature of the gas to such an extent that the gas sucked into the downstream compressor does not liquefy when expanded in the labyrinth seal portion of the compressor.
したがって、中間冷却器の熱交換器チューブが応力腐
食割れを起こさない程度の温度に常時保つのに十分な冷
却流体を常に流すことができる。Therefore, it is possible to always supply sufficient cooling fluid to keep the temperature of the heat exchanger tube of the intercooler such that stress corrosion cracking does not occur.
第2図は、炭酸ガスの圧縮機の全体構成を示す図であ
る。一般にこの種の圧縮機は、用途上、大気圧から約26
0気圧まで昇圧される。ほぼ大気圧で吸込まれたCO2ガス
は、例えば第1グループで約5気圧、第2グループで約
25気圧、第3グループで約90気圧、最後の第4グループ
で吐出圧力である約260気圧まで昇圧される。FIG. 2 is a diagram showing an overall configuration of a carbon dioxide gas compressor. In general, this type of compressor is used for pressure
The pressure is increased to 0 atm. The CO 2 gas sucked at approximately atmospheric pressure is, for example, about 5 atm in the first group and about 5 atm in the second group.
The pressure is increased to 25 atm, about 90 atm in the third group, and about 260 atm which is the discharge pressure in the last fourth group.
第3図にCO2ガスの状態線図を示す。第3図におい
て、例えばCO2圧縮機の第2グループ出口圧力が25気圧
の場合、液相線との交点は約−11℃となり、この温度以
下にならなければCO2ガスは液化しない。一般に、水ク
ーラにおいては0℃以下に冷却されることはないため、
第1,第2クーラはいくら冷却しても液化することはな
い。しかし第3グループ出口圧力90気圧の場合、気液臨
界線との交点は約40℃(図中左上X点)となり、この温
度以下になると液化するため、この温度以上(例えば40
℃以上)としなければならない。FIG. 3 shows a state diagram of the CO 2 gas. In FIG. 3, for example, when the outlet pressure of the second group of the CO 2 compressor is 25 atm, the intersection with the liquidus line is about −11 ° C. If the temperature does not fall below this temperature, the CO 2 gas does not liquefy. In general, water coolers are not cooled below 0 ° C,
No matter how much the first and second coolers are cooled, they do not liquefy. However, when the outlet pressure of the third group is 90 atm, the intersection with the gas-liquid critical line is about 40 ° C. (point X in the upper left in the figure).
℃ or more).
さらに、45℃以上の場合でも圧縮機外へ漏れる時には
膨張により液化を生ずる。例えば45℃の場合、膨張によ
り液相線と交わり液化する(図中右下X点)。このため
CO2ガスが膨張した場合でも液相線と交差しない温度
(例えば68℃)に圧縮機第4グループ入口温度を制御す
る必要がある。このように、エネルギの低減,過冷却及
び膨張による液化防止を考慮してCO2ガス熱交換器の出
口の温度制御がなされている。Furthermore, even if the temperature is 45 ° C. or higher, liquefaction occurs due to expansion when leaking out of the compressor. For example, in the case of 45 ° C., it intersects with the liquidus line due to expansion and liquefies (point X at the lower right in the figure). For this reason
Even when the CO 2 gas expands, it is necessary to control the inlet temperature of the fourth group of the compressor to a temperature (for example, 68 ° C.) that does not cross the liquidus line. As described above, the temperature control at the outlet of the CO 2 gas heat exchanger is performed in consideration of energy reduction, liquefaction prevention due to supercooling and expansion.
また、CO2ガス以外のガスにおいても、液相線または
気液臨界線付近において取扱う場合には、上記CO2ガス
の例と同様のことが言える。In addition, when a gas other than the CO 2 gas is handled in the vicinity of the liquidus line or the gas-liquid critical line, the same can be said for the above-described example of the CO 2 gas.
本発明の具体的実施例を炭酸ガス(CO2)圧縮機に適
用した場合を例にとり第1図により説明する。前段側
(低圧側)圧縮機1により圧縮されたCO2ガスは中間ガ
スライン10を通り、中間熱交換器または中間冷却器3に
より冷却されると同時に、一部のガスは中間ガスライン
11により中間熱交換器3をバイパスして前記冷却された
ガスと混合し、ある任意の一定温度になるように調節さ
れて次段の高圧側(後段側)圧縮機2へ送られる。熱交
換器3内では中間ガスが冷却水により熱交換器チューブ
3aを介して冷却される。FIG. 1 shows a specific example of the present invention applied to a carbon dioxide (CO 2 ) compressor. The CO 2 gas compressed by the former-stage (low-pressure side) compressor 1 passes through the intermediate gas line 10 and is cooled by the intermediate heat exchanger or the intercooler 3, and at the same time, some of the gas is intermediate gas line.
The mixture is mixed with the cooled gas by bypassing the intermediate heat exchanger 3 by 11, adjusted to a certain constant temperature, and sent to the high pressure side (secondary stage) compressor 2 of the next stage. In the heat exchanger 3, the intermediate gas is cooled by the cooling water
Cooled through 3a.
冷却ガスの温度は、熱交換器3の下流に設けた第1の
温度検出器5aで検出され、温度コントローラ(第1の制
御手段)5によりある一定の温度になるようにコントロ
ール弁4を制御し、冷却水量を調節している。The temperature of the cooling gas is detected by a first temperature detector 5a provided downstream of the heat exchanger 3, and the temperature of the control valve 4 is controlled by a temperature controller (first control means) 5 to a certain temperature. And the amount of cooling water is adjusted.
次に、バイパスガス量は、混合後のガス温度を第2の
検出器7aで検出し、温度コントローラ(第2の制御手
段)7により前記混合後のガスがある一定の温度になる
ようにバイパスコントロール弁9を制御する。温度コン
トローラ5の設定温度は、温度コントローラ7の設定温
度より低くする。温度コントローラ5,7の設定温度を第
3図を参照して説明する。温度コントローラ5は第3図
においてCO2ガスが液化を生じない最低の温度近傍(例
えばCO2ガスが90気圧の場合は約45℃)に設定する。
又、温度コントローラ7の設定温度は、CO2ガスが膨張
しても液化を生じない最低の温度近傍(例えばCO2)ガ
スが90気圧の場合は約68℃)に設定する。Next, the bypass gas amount is determined by detecting the gas temperature after mixing by the second detector 7a, and by the temperature controller (second control means) 7 so that the mixed gas becomes a certain temperature. The control valve 9 is controlled. The set temperature of the temperature controller 5 is set lower than the set temperature of the temperature controller 7. The set temperatures of the temperature controllers 5 and 7 will be described with reference to FIG. The temperature controller 5 sets the temperature near the minimum temperature at which the CO 2 gas does not liquefy in FIG. 3 (for example, about 45 ° C. when the CO 2 gas is 90 atm).
The temperature set by the temperature controller 7 is set to a temperature near the lowest temperature at which liquefaction does not occur even when the CO 2 gas expands (for example, about 68 ° C. when the CO 2 gas is 90 atm).
本実施例によれば、ホットガスバイパスライン11を設
けたことにより、冷却水量をバイパスラインがないとき
よりも十分多くすることができる。このことを次に説明
する。According to the present embodiment, the provision of the hot gas bypass line 11 allows the amount of cooling water to be sufficiently larger than when there is no bypass line. This will be described below.
熱交換器3出口のガス温度は、混合後のガス温度より
も低くなるように制御されているので、必ずホットガス
バイパスを行う必要がある。従って、熱交換器3の通過
ガス量が減る。そうすると、流量の約0.8乗に比例して
ガス側の熱伝達率α1が減少することになる。一方、ホ
ットガスバイパスを行っても、総合的にガス側と水側の
必要熱交換量はバイパスがない場合と変わらない。つま
り、熱交換器の熱通過率Kもほとんど変わらない。ガス
側熱伝達率α1が小さくなっても、熱通過率Kを同じに
するためには、水側の熱伝達率α2を大きくするか、熱
交換器チューブの汚れを除去する必要がある。すなわ
ち、長期連続運転が考慮して、ある汚れ係数で設定され
た熱交換器が初期の汚れなしで運転される場合には、ホ
ットガスバイパスを用いればα2を小さくしなくてもよ
いということになる。水側の熱伝達率α2は冷却水量の
約0.6乗に比例して変わるので、このα2を小さくする
ことは流量を小さくすることになる。このため冷却水の
出口温度が高くなり、熱交換器チューブ3aの出口側の温
度が高くなり、冷却水に腐食因子が含まれる場合(この
冷却水として通常の水を用いた場合)には腐食が促進さ
れて応力腐食割れを引き起こす原因となる。本発明で
は、水側の熱伝達率α2を小さくしなくてもよく、応力
腐食割れを引き起こすのを防止できる。Since the gas temperature at the outlet of the heat exchanger 3 is controlled to be lower than the gas temperature after mixing, it is necessary to always perform hot gas bypass. Therefore, the amount of gas passing through the heat exchanger 3 is reduced. Then, the heat transfer coefficient alpha 1 of the gas side will be reduced in proportion to the approximately 0.8 square of flow rate. On the other hand, even when the hot gas bypass is performed, the required heat exchange amounts on the gas side and the water side are not different from those without the bypass. That is, the heat transfer coefficient K of the heat exchanger hardly changes. Even smaller gas side heat transfer coefficient alpha 1, in order to equalize the heat transfer coefficient K, increase the heat transfer coefficient alpha 2 of the water side, it is necessary to remove dirt of the heat exchanger tubes . In other words, long-term continuous operation in consideration, when the heat exchanger is set at a certain dirt factor is operated without an initial stains, that may not reduce the alpha 2 by using the hot gas bypass become. Since the heat transfer coefficient alpha 2 of the water side varies in proportion to the approximately 0.6 squares of the cooling water, reducing the alpha 2 would reduce the flow rate. For this reason, the outlet temperature of the cooling water increases, the temperature of the outlet side of the heat exchanger tube 3a increases, and when the cooling water contains a corrosive factor (when ordinary water is used as the cooling water), corrosion occurs. Promotes stress corrosion cracking. In the present invention, it is not necessary to reduce the heat transfer coefficient alpha 2 of the water side, a cause of stress corrosion cracking can be prevented.
本発明の作用を第4図,第5図を用いて更に詳しく説
明する。The operation of the present invention will be described in more detail with reference to FIGS.
本発明のようにホットガスバイパスライン11を設けて
も熱交換器3の必要熱交換量は、該バイパスライン11が
ない場合と変わらない。第4図はバイパスラインがない
場合の概略構成図、第5図は本発明の概略構成図であ
る。熱の授受部分を検査空間8,9で囲んでみると、ガス
と水との熱の授受の量は、総合的には従来も本発明も同
じである。また、目的のガス温度にするには本発明の場
合はホットガスバイパスが必要となるが、ホットガスバ
イパスをした量だけ熱交換器を通過する量が減る。そう
すると、熱交換器チューブのガス側熱伝達率α1は流量
の約0.8乗に比例するのでα1は小さくなる。Even if the hot gas bypass line 11 is provided as in the present invention, the required heat exchange amount of the heat exchanger 3 is not different from the case where the bypass line 11 is not provided. FIG. 4 is a schematic configuration diagram when there is no bypass line, and FIG. 5 is a schematic configuration diagram of the present invention. When the heat transfer part is surrounded by the inspection spaces 8 and 9, the amount of heat transfer between gas and water is generally the same in the conventional and the present invention. Further, in the case of the present invention, a hot gas bypass is required to reach the target gas temperature, but the amount of gas passing through the heat exchanger is reduced by the amount of the hot gas bypass. Then, alpha 1 the gas-side heat transfer coefficient alpha 1 of the heat exchanger tubes is proportional to approximately 0.8 square of the flow rate is reduced.
熱交換熱量を同じにするには、上記(3)式で示した
熱通過率Kをほぼ同じにする必要がある。つまり、上記
(2)式より明らかなように、ガス側熱伝達率α1が小
さくなれば、それに見合って水側熱伝達率α2を大きく
することになる。α2を大きくするためには、上述した
ように冷却水量GWを多くする必要がある。交換熱量が同
じで冷却水量を多くできるということは、(4)式から
明らかなように冷却水の温度差を小さくできるというこ
とであり冷却水の出口温度を下げるということであり、
このように熱交換器3のチューブ3a内の冷却水温度を下
げることができることにより、チューブ3a自体の温度を
下げることができる。In order to make the heat exchange heat amounts the same, it is necessary to make the heat transmittance K shown in the above equation (3) substantially the same. That is, the (2) As is apparent from equation smaller the gas-side heat transfer coefficient alpha 1, it will increase the water side heat transfer coefficient alpha 2 commensurate therewith. In order to increase the alpha 2, it is necessary to increase the amount of cooling water G W as described above. The fact that the amount of cooling water can be increased while the amount of heat exchanged is the same means that the temperature difference of the cooling water can be reduced as is apparent from the equation (4), and that the temperature of the outlet of the cooling water is reduced.
Since the temperature of the cooling water in the tube 3a of the heat exchanger 3 can be reduced in this way, the temperature of the tube 3a itself can be reduced.
なお、上記実施例では、バイパスガスライン11を設け
て中間熱交換器3で冷却されたガスとホットガスとを合
流させて、冷却ガスが後段側圧縮機のラビリンスシール
部に流入して膨張しても液化しない温度となるように所
定の温度まで前記冷却ガスを加熱するようにしている
が、バイパスガスラインを設ける代りに、別の中間ガス
の加熱手段を設けて中間熱交換器3から出てきたガスを
前記所定の温度まで加熱するようにしてもよい。In the above embodiment, the bypass gas line 11 is provided, the gas cooled by the intermediate heat exchanger 3 and the hot gas are merged, and the cooling gas flows into the labyrinth seal portion of the downstream-side compressor and expands. Although the cooling gas is heated to a predetermined temperature so as not to be liquefied even though it is not liquefied, instead of providing a bypass gas line, another intermediate gas heating means is provided and the cooling gas is discharged from the intermediate heat exchanger 3. The incoming gas may be heated to the predetermined temperature.
本発明によれば、熱交換器のチューブ壁面温度を低く
保てると同時に取扱いガスの液化も生じないようにして
いるので、熱交換器チューブの応力腐食割れの発生を防
止できると共に、チューブの寿命を延ばすことができる
多段圧縮機における中間ガスの冷却方法及び中間ガス冷
却装置を備えた多段圧縮機が得られるという効果があ
る。According to the present invention, since the tube wall temperature of the heat exchanger can be kept low and the liquefaction of the handled gas does not occur, the occurrence of stress corrosion cracking of the heat exchanger tube can be prevented and the life of the tube can be reduced. There is an effect that a method of cooling an intermediate gas in a multistage compressor that can be extended and a multistage compressor equipped with an intermediate gas cooling device are obtained.
第1図は本発明の一実施例を示す構成図、第2図はCO2
ガス圧縮機の全体システムを示す構成図、第3図はCO2
ガスの状態図であり、温度とエントロピの関係を示す
図、第4図及び第5図は本発明の作用を説明する要部の
構成図で、第4図はバイパスラインがないもの、第5図
はバイパスラインを設けたものを示す図である。 1…低圧側(前段側)圧縮機、2…高圧側(後段側)圧
縮機、3…中間熱交換器(中間冷却器)、4…第1コン
トロール弁、5…温度コントローラ(第1の制御手
段)、5a…第1の温度検出器、6…第2コントロール
弁、7…温度コントローラ(第2の制御手段)、7a…第
2の温度検出器、10…中間ガスライン、11…バイパスガ
スライン。Figure 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 CO 2
Configuration diagram showing the overall system of the gas compressor, and FIG. 3 shows CO 2
FIG. 4 is a diagram showing the relationship between temperature and entropy. FIG. 4 and FIG. 5 are configuration diagrams of a main part for explaining the operation of the present invention. FIG. The figure is a diagram showing a device provided with a bypass line. DESCRIPTION OF SYMBOLS 1 ... Low pressure side (front stage) compressor, 2 ... High pressure side (back stage) compressor, 3 ... Intermediate heat exchanger (intercooler), 4 ... First control valve, 5 ... Temperature controller (First control) Means), 5a: first temperature detector, 6: second control valve, 7: temperature controller (second control means), 7a: second temperature detector, 10: intermediate gas line, 11: bypass gas line.
Claims (2)
間熱交換器において冷却水と熱交換して冷却し、その
後、この冷却されたガスを後段側の圧縮機に供給する炭
酸ガス用の多段圧縮機における中間ガスの冷却方法にお
いて、 前段圧縮機から吐出された中間ガスの一部は前記中間冷
却器をバイパスし、前記中間ガスの残りは、中間冷却器
において中間冷却器出口であって前記冷却されたガスと
バイパスされたガスの混合点より上流側の位置のガス温
度に基づいて流入する水量が制御された冷却水と熱交換
してそのガスの気液臨界点近くまで冷却され、前記冷却
されたガスとバイパスされたガスが混合して得られたガ
スの一部が後段側圧縮機のラビリンスシール部に流入し
て膨張しても液化しない温度まで、前記混合後のガスの
温度に基づいて前記バイパスさせた中間ガスの流量を制
御し、前記バイパスされたガス量が増加したときには前
記冷却水の水量を増やすことを特徴とする炭酸ガス用の
多段圧縮機における中間ガスの冷却方法。An intermediate gas compressed by a low-pressure side compressor is cooled by exchanging heat with cooling water in an intermediate heat exchanger, and thereafter, the cooled gas is supplied to a subsequent-stage compressor. In the method for cooling an intermediate gas in a multi-stage compressor for use, a part of the intermediate gas discharged from the pre-stage compressor bypasses the intermediate cooler, and the rest of the intermediate gas passes through an intermediate cooler outlet in the intermediate cooler. The amount of water flowing in based on the gas temperature at a position upstream of the mixed point of the cooled gas and the bypassed gas exchanges heat with the controlled cooling water to cool the gas to near the gas-liquid critical point. The mixed gas is cooled to a temperature at which a part of the gas obtained by mixing the cooled gas and the bypassed gas flows into the labyrinth seal portion of the subsequent compressor and does not liquefy even when expanded. Based on the temperature of Controlling the flow rate of the bypassed intermediate gas, and increasing the amount of the cooling water when the bypassed gas amount increases, in the multistage compressor for carbon dioxide gas.
段側圧縮機から吐出された中間ガスを後段側圧縮機へ導
く中間ガスラインと、この中間ガスラインに設けられ前
記中間ガスを冷却水と熱交換して冷却する中間冷却器と
を備えた炭酸ガス用の多段圧縮機において、 前記中間冷却器に冷却水を送る管路に設けられこの冷却
水の流量を制御する第1のコントロール弁と、前記中間
冷却器の出口側に設けられ中間冷却器から出たガスの温
度を検出する第1の温度検出手段と、この温度検出手段
で検出された温度に基づいて中間ガスをその気液臨界点
近くまで冷却するように前記第1のコントロール弁を制
御する第1の制御手段と、前記中間ガスラインから分岐
して前記中間冷却器をバイパスし、前記第1の温度検出
手段の下流で合流するように設けられたバイパスガスラ
インと、このバイパスガスラインに設けられバイパスガ
ス量を制御する第2のコントロール弁と、前記中間ガス
ラインと前記バイパスガスラインの合流後のガスの温度
を検出する第2の温度検出手段と、前記合流後のガスが
後段側圧縮機のラビリンスシール部に流入して膨張して
も液化しない温度となるように前記第2の温度検出手段
が検出した温度に基づいて前記第2のコントロール弁を
制御する第2の制御手段とを設け、前記第1の制御手段
が前記第1のコントロール弁を開くときに前記第2の制
御手段は前記第2のコントロール弁を開くように制御す
ることを特徴とする中間ガス冷却装置を備えた炭酸ガス
用の多段圧縮機。2. A pre-stage compressor, a post-stage compressor, an intermediate gas line for guiding an intermediate gas discharged from the pre-stage compressor to a post-stage compressor, and the intermediate gas line provided in the intermediate gas line. A multi-stage compressor for carbon dioxide gas, comprising: an intercooler for cooling by exchanging heat with cooling water, wherein the first compressor is provided in a pipe for sending cooling water to the intercooler, and controls a flow rate of the cooling water. Control valve, first temperature detecting means provided at the outlet side of the intercooler for detecting the temperature of the gas discharged from the intercooler, and the intermediate gas is detected based on the temperature detected by the temperature detecting means. A first control means for controlling the first control valve so as to cool the gas to a temperature near the gas-liquid critical point; and a first temperature detection means for branching off from the intermediate gas line and bypassing the intermediate cooler. To join downstream A bypass gas line provided, a second control valve provided in the bypass gas line for controlling the amount of bypass gas, and a second control valve for detecting a temperature of the gas after the merge of the intermediate gas line and the bypass gas line. Temperature detecting means, based on the temperature detected by the second temperature detecting means such that the combined gas flows into the labyrinth seal portion of the subsequent-stage compressor and does not liquefy even when expanded. And second control means for controlling the second control valve, wherein the second control means opens the second control valve when the first control means opens the first control valve. A multi-stage compressor for carbon dioxide equipped with an intermediate gas cooling device, characterized by being controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329250A JP2753392B2 (en) | 1990-11-30 | 1990-11-30 | Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329250A JP2753392B2 (en) | 1990-11-30 | 1990-11-30 | Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04203397A JPH04203397A (en) | 1992-07-23 |
JP2753392B2 true JP2753392B2 (en) | 1998-05-20 |
Family
ID=18219342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2329250A Expired - Lifetime JP2753392B2 (en) | 1990-11-30 | 1990-11-30 | Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2753392B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885060A (en) * | 1996-06-03 | 1999-03-23 | Westinghouse Air Brake Company | Thermostatically controlled intercooler system for a multiple stage compressor and method |
TWI301188B (en) * | 2002-08-30 | 2008-09-21 | Sanyo Electric Co | Refrigeant cycling device and compressor using the same |
CN103443466B (en) * | 2011-02-10 | 2016-04-13 | 英格索尔-兰德公司 | In conjunction with the compressor assembly comprising gear of spiral expansion machine |
JP5773697B2 (en) * | 2011-03-25 | 2015-09-02 | 三菱重工業株式会社 | Multistage compressor |
ITFI20110262A1 (en) * | 2011-12-06 | 2013-06-07 | Nuovo Pignone Spa | "HEAT RECOVERY IN CARBON DIOXIDE COMPRESSION AND COMPRESSION AND LIQUEFACTION SYSTEMS" |
JP5995949B2 (en) * | 2014-12-19 | 2016-09-21 | 三菱重工業株式会社 | Multistage compressor |
JP6570457B2 (en) * | 2016-02-08 | 2019-09-04 | 三菱重工コンプレッサ株式会社 | Booster system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5362208A (en) * | 1976-11-13 | 1978-06-03 | Kawasaki Heavy Ind Ltd | Control method for compressor with intermediate cooler |
JPS61184899U (en) * | 1985-05-11 | 1986-11-18 |
-
1990
- 1990-11-30 JP JP2329250A patent/JP2753392B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04203397A (en) | 1992-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2147265B1 (en) | Refrigerating device and method for circulating a refrigerating fluid associated with it | |
JP2005315558A (en) | Heat pump water heater | |
JP2753392B2 (en) | Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device | |
CN106801954A (en) | A kind of Gas-supplying enthalpy-increasing system and its control method, air-conditioner | |
CN103842743A (en) | Heat pump | |
JP2009052880A (en) | Heat pump water heater | |
US10641132B2 (en) | Supercritical CO2 power generating system for preventing cold-end corrosion | |
US10774721B2 (en) | Waste heat recovery apparatus and control method therefor | |
US4279574A (en) | Energy recovery system | |
WO1996010156A3 (en) | Method and device for cooling gases | |
JPH0886528A (en) | Refrigerating device | |
JP2005195265A (en) | Compression exhaust heat using system and compression exhaust heat using method of multi-stage air compressor | |
CN210218031U (en) | One-stage heat recovery system of air compressor | |
JPH08218811A (en) | Cooling method for steam turbine and device therefor | |
EP3671049B1 (en) | Heat pump system | |
JPS5833364Y2 (en) | Exhaust heat recovery equipment such as compressors | |
US11384768B2 (en) | Compression device and method and refrigeration machine | |
JPH07317562A (en) | Gas turbine | |
JPH06265230A (en) | Method and device for controlling operation of liquefaction-refrigerating device | |
JP3847924B2 (en) | Operation control device for helium refrigerating machine | |
KR101995114B1 (en) | Supercritical CO2 power generating system for cold-end corrosion | |
KR101938521B1 (en) | Supercritical CO2 power generating system for cold-end corrosion | |
JP2000146357A (en) | Cooling system | |
CN215277217U (en) | Online scale removal ethylene cooling system | |
CN202734338U (en) | High-temperature heat pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |