JPH04203397A - Method for cooling intermediate gas in multi-state compressor and multi-stage compressor having intermediate gas cooler - Google Patents

Method for cooling intermediate gas in multi-state compressor and multi-stage compressor having intermediate gas cooler

Info

Publication number
JPH04203397A
JPH04203397A JP32925090A JP32925090A JPH04203397A JP H04203397 A JPH04203397 A JP H04203397A JP 32925090 A JP32925090 A JP 32925090A JP 32925090 A JP32925090 A JP 32925090A JP H04203397 A JPH04203397 A JP H04203397A
Authority
JP
Japan
Prior art keywords
gas
compressor
temperature
intermediate gas
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32925090A
Other languages
Japanese (ja)
Other versions
JP2753392B2 (en
Inventor
Yukihiro Satou
佐藤 之啓
Kazuo Takeda
和夫 武田
Haruo Miura
治雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2329250A priority Critical patent/JP2753392B2/en
Publication of JPH04203397A publication Critical patent/JPH04203397A/en
Application granted granted Critical
Publication of JP2753392B2 publication Critical patent/JP2753392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent the increasing of a tube wall surface temperature and liquefaction of handling gas by a method wherein intermediate gas cooled by an intermediate heat exchanger is heated up to such a temperature as one not liquefied even under an expansion at a labyrinth part and supplied to a compressor at a high pressure. CONSTITUTION:CO2 gas compressed by a compressor 1 is supplied by an intermediate heat exchanger 3, a part of this gas is mixed with gas bypassed through the intermediate heat exchanger 3 and cooled by it, adjusted to show a certain specified temperature and further sent to a high pressure side compressor 2. An amount of cooling water and an amount of bypassed gas are adjusted by a temperature controller 5 and a temperature controller 7 in such a way as a temperature of the cooling gas becomes a certain temperature. The temperature controller 5 sets CO2 temperature to a minimum temperature not generating any liquefaction and the temperature controller 7 sets its temperature to a minimum temperature not generating any liquefaction even if CO2 gas is expanded. With such an arrangement, it is possible to prevent any occurrence of stress corrosive cracking of the heat exchanger tube and further to extend a life of the tube.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前段側圧縮機から吐出ガスを冷却し、後段側
圧縮機へ導くようにした多段圧縮機における中間ガスの
冷却方法及び中間ガス冷却装置を備えた多段圧縮機に関
し、特に塩化物応力腐食割れが発生する要因を持つ等の
腐食環境下で使用される炭酸ガス圧縮機に通用して好適
なものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for cooling intermediate gas in a multi-stage compressor in which discharged gas from a front-stage compressor is cooled and guided to a rear-stage compressor, and a method for cooling intermediate gas. The present invention relates to a multi-stage compressor equipped with a cooling device, and is particularly suitable for use in carbon dioxide compressors used in corrosive environments where chloride stress corrosion cracking may occur.

〔従来の技術〕[Conventional technology]

従来のこの種技術としては、日立評論vO]960 N
o、3(1978年3月号)に記載されたものがある。
As a conventional technology of this kind, Hitachi Hyoron vO ] 960 N
3 (March 1978 issue).

この文献に記載されたものは炭酸ガス(以下CO2ガス
と言う)を圧縮する多段圧縮機であって前段側(低圧側
)圧縮機により圧縮機されたCO2ガスは中間熱交換器
(中間冷却器)により冷却された次の段側(後段側ある
いは高圧側)圧縮機へ送られる。
The device described in this document is a multi-stage compressor that compresses carbon dioxide gas (hereinafter referred to as CO2 gas). ) and sent to the next stage side (later stage side or high pressure side) compressor.

(発明が解決しようとする課題〕 一般に圧縮機でガスを圧縮する場合、駆動機からガスに
与えられる単位質量当りの仕事量(ヘッド)と、ガスの
状態変化の関係は(1)式のように表わされる。
(Problem to be solved by the invention) Generally, when compressing gas with a compressor, the relationship between the amount of work per unit mass (head) given to the gas by the drive machine and the change in the state of the gas is as shown in equation (1). is expressed in

ここで、Hth=理論揚程 η =ポリトロープ指数 R=気体定数 Ts−吸込温度 Pd=吐出圧力 Ps=吸込圧力 ηpal:ボリトロープ効率 (1)式で晃かなように、吸込温度Tsを下げれば同じ
圧力上昇(既ち圧力比P 、1/ P s)を得るのに
必要な単位質量当りの仕事量(Hth)が小さくてすむ
。従って、一般に熱交換器出口のガス温度は、低い方が
駆動機の軸動力(エネルギ)を低減できるるので望まし
い。このため、右グループの間には熱交換器が設けられ
ておりCO2ガスを冷却するようになっている。
Here, Hth = Theoretical head η = Polytropic index R = Gas constant Ts - Suction temperature Pd = Discharge pressure Ps = Suction pressure ηpal: Volitropic efficiency As shown in formula (1), the same pressure rise can be achieved by lowering the suction temperature Ts. (Pressure ratio P, 1/Ps) The amount of work (Hth) required per unit mass is small. Therefore, it is generally desirable that the gas temperature at the outlet of the heat exchanger be lower, since the shaft power (energy) of the drive machine can be reduced. For this reason, a heat exchanger is provided between the right groups to cool the CO2 gas.

一方、CO2ガスは常温以上の温度でも圧力が高ければ
液化する性質を持つので、熱交換器出口でのガス温度は
、この液化を生じない温度以上でなければならない。さ
らにC02ガスは圧縮機に吸込まれた後、一部は軸封部
から機外側へ漏れる。
On the other hand, since CO2 gas has the property of liquefying if the pressure is high even at a temperature above room temperature, the gas temperature at the outlet of the heat exchanger must be above a temperature at which this liquefaction does not occur. Furthermore, after the C02 gas is sucked into the compressor, a portion of it leaks from the shaft seal to the outside of the machine.

機外側の圧力は必ず圧縮機内部の圧力よりも低い。The pressure outside the machine is always lower than the pressure inside the compressor.

従って、機外側へ膨張しながらもれるCO2ガスが途中
で(例えば軸封ラビリンス内)液化すると、エロージョ
ンアタックを生じ圧縮機有害な損傷をきたすことになる
。吸込CO2ガス温度が低いと膨張して液化することに
なる。これらのことを考慮してCO□ガス熱交換器の出
口の温度制御がなされている。
Therefore, if the CO2 gas leaking while expanding to the outside of the machine liquefies during the process (for example, inside the shaft sealing labyrinth), an erosion attack will occur, causing harmful damage to the compressor. If the intake CO2 gas temperature is low, it will expand and liquefy. Taking these things into consideration, the temperature at the outlet of the CO□ gas heat exchanger is controlled.

さらに熱交換器の製作に当っては、冷却水は塩素イオン
のような腐食因子を含むので、熱交換器のチューブ材質
、チューブ温度、冷却水速度など腐食に対して十分考慮
されて設計がなされている。
Furthermore, when manufacturing a heat exchanger, since cooling water contains corrosive factors such as chlorine ions, the heat exchanger tube material, tube temperature, and cooling water speed must be carefully considered when designing the heat exchanger. ing.

また、チューブ熱伝達能力は、運転中の冷却水による汚
れを考慮して、熱交換容量に予め余裕を持って製作がな
されている。
In addition, the tube heat transfer capacity is designed with a margin in advance for heat exchange capacity in consideration of contamination caused by cooling water during operation.

既ち、長期連続運転にも熱交換器量が不足しないように
製作されている。
The heat exchanger is already manufactured in such a way that there is no shortage of heat exchangers even for long-term continuous operation.

一般に熱交換器の熱通過率には(2)式で表わされる。Generally, the heat transfer rate of a heat exchanger is expressed by equation (2).

] ここで、 K=熱通過率 α□=ガス側(チューブ側)熱伝達率 α2=水側(シェル側)熱伝達率 f、=汚れ係数 (2)式において、汚れ係数fvは初期の運転時には0
.0001以下であるが、製作においては長期運転によ
る冷却水側の汚れを考慮して、−般に0.0004程度
としている。
] Here, K = heat transfer coefficient α □ = gas side (tube side) heat transfer coefficient α2 = water side (shell side) heat transfer coefficient f, = fouling coefficient In formula (2), the fouling coefficient fv is the initial operating value. sometimes 0
.. 0001 or less, but in manufacturing, taking into consideration contamination on the cooling water side due to long-term operation, it is generally set to about 0.0004.

一方、伝熱量Qは(3)、(4)、(5)式で表わされ
る。
On the other hand, the amount of heat transfer Q is expressed by equations (3), (4), and (5).

Q=KXAXΔTm  −・旧= (3)Q=G、jX
Cp%、XATw  ++++++ (4)Q=GりX
C,、XΔTI+ ・・・・・・(5)ここで、Q=伝
熱量 A=熱交換面積 ΔTm=対数平均温度差 G=流量 ひいては熱交換器チューブの温度が上昇することになる
。即ち、熱交換器出口の被冷却ガスの温度が一定になる
ような冷却水量を調節する従来システムでは、運転初期
において冷却水過少となり熱交換器チューブの温度上昇
を引き起こし、冷却水流速源によるスケールの付着やチ
ューブ壁面温度の上昇を引き起こすことになり、塩化物
応力腐食割れが発生する危険性があった。
Q=KXAXΔTm - Old= (3) Q=G, jX
Cp%, XATw ++++++++ (4) Q=GriX
C,,XΔTI+ (5) Here, Q=heat transfer amount A=heat exchange area ΔTm=logarithmic average temperature difference G=flow rate and thus the temperature of the heat exchanger tube increases. In other words, in the conventional system that adjusts the amount of cooling water so that the temperature of the cooled gas at the heat exchanger outlet is constant, there is insufficient cooling water at the beginning of operation, causing a rise in the temperature of the heat exchanger tubes, and scaling due to the cooling water flow rate source. There was a risk of chloride stress corrosion cracking due to adhesion of chloride and an increase in tube wall temperature.

本発明の目的は、チューブ壁面温度の上昇を起こさず、
かつ、取扱いガスの液化も生じないような多段圧縮機に
おける中間ガスの冷却方法及び中間ガス冷却装置を備え
た多段圧縮機を得ることにある。
The purpose of the present invention is to prevent the tube wall temperature from increasing.
Another object of the present invention is to provide a method for cooling an intermediate gas in a multi-stage compressor that does not cause liquefaction of the handled gas, and a multi-stage compressor equipped with an intermediate gas cooling device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の第1の特徴は、低圧
側の圧縮機で圧縮機された中間ガスを中間熱交換器にお
いて冷却水と熱交換させることにより冷却し、しかる後
、この冷却されたガスがラビリンス部が膨張しても液化
しない温度まで該ガス加熱して高圧側の圧縮機へ供給す
る多段圧縮機における中間ガスの冷却方法にある。
The first feature of the present invention for achieving the above object is to cool the intermediate gas compressed by the low-pressure side compressor by exchanging heat with cooling water in an intermediate heat exchanger, and then to The present invention provides a method for cooling an intermediate gas in a multistage compressor in which the gas is heated to a temperature at which it does not liquefy even if the labyrinth portion expands and is supplied to a high-pressure compressor.

本発明の第2の特徴は、低圧側の圧縮機から吐出された
中間ガスの一部をバイパスさせ、前記中間ガスの残りを
中間冷却器において冷却流体と熱交換させて冷却し、し
かる後、この冷却されたガスが次段圧縮機のラビリンス
部で膨張しても液化しない温度まで加熱するため前記バ
イパスさせた中間ガスと混合し、次段圧縮機へ供給する
多段圧縮機における中間ガスの冷却方式にある。
A second feature of the present invention is to bypass a portion of the intermediate gas discharged from the low-pressure side compressor, cool the remainder of the intermediate gas by exchanging heat with a cooling fluid in an intercooler, and then, In order to heat this cooled gas to a temperature at which it does not liquefy even if it expands in the labyrinth part of the next-stage compressor, it is mixed with the bypassed intermediate gas and supplied to the next-stage compressor. Cooling of the intermediate gas in the multi-stage compressor It's in the method.

本発明の第3の特徴は、前段圧縮機から吐出された中間
ガスの一部をバイパスさせ、前記中間ガスの残りを中間
冷却器において冷却水と熱交換器チューブを介して熱交
換させてそのガスの気液臨界点近くまで冷却し、しかる
後、この冷却されたガスの一部が次段圧縮機のラビリン
スシール部に流入して膨張しても液化しない温度まで前
記気液臨界点近くまで冷却したガスを加熱するため、前
記バイパスさせた中間ガスを混合し、次段圧縮機へ供給
するようにした多段圧縮機における中間ガスの冷却方法
にある。
The third feature of the present invention is to bypass a part of the intermediate gas discharged from the pre-stage compressor, and heat exchange the remaining intermediate gas with the cooling water in the intercooler through the heat exchanger tube. The gas is cooled to near the gas-liquid critical point, and then a part of the cooled gas flows into the labyrinth seal portion of the next stage compressor and is cooled to a temperature near the vapor-liquid critical point at which it does not liquefy even if it expands. In order to heat the cooled gas, the bypassed intermediate gas is mixed and supplied to the next stage compressor.

本発明の第4の特徴は、低圧側圧縮機、と高圧側圧縮機
と、前記低圧側圧縮機から吐出された中間ガスを高圧側
圧縮機へ導くガスラインと、この中間ガスラインに設け
られ前記中間ガスを熱交換器チューブを介して冷却水に
より冷却するようにした中間冷却器とを備えた多段圧縮
機において前記中間ガスラインに前記中間冷却器をバイ
パスラインと、このバスパスラインに設けられバイパス
ガス量を制御するコントロール弁と、前記中間ガスライ
ンと前記バイパスラインの合流後ガスが高圧側圧縮機の
ラビリンス部で膨張しても液化しない温度となるように
前記コントロール弁の開度を制御する制御手段とを備え
ている中間ガス冷却装置を備えた多段圧縮機にある6 本発明の第5の特徴は、前段側圧縮機と、後段側圧縮機
から吐出された中間ガスを後段側圧縮機へ導く中間ガス
ラインと、この中間ガスラインに設けられ前記中間ガス
を冷却流体により冷却するようにした中間冷却器とを備
えた多段圧縮機において、前記中間冷却器に冷却流体を
送る管路に設けられ該冷却流体の流量を制御するコント
ロール弁と、前記中間冷却器の出口側に設けられ中間冷
却器から出たガスの温度を検出する第1の温度検出手段
と、該温度検出手段で検知された温度に基づいて前記コ
ントロール弁を制御する第1の制御手段と、前記第1の
温度検出手段よりも下流側の中間ガスを加熱するための
手段と、該加熱手段によって加熱された後のガス温度を
検知する第2の温度検出手段と、前記加熱後のガスがラ
ビリンス部で膨張しても液化しないように前記第2温度
検出手段に基づいて前記加熱手段を制御する第2の制御
手段とを備えている中間ガス冷却装置を備えた多段圧縮
機にある。
A fourth feature of the present invention is a low-pressure side compressor, a high-pressure side compressor, a gas line that guides intermediate gas discharged from the low-pressure side compressor to the high-pressure side compressor, and a gas line provided in this intermediate gas line. In a multi-stage compressor equipped with an intercooler for cooling the intermediate gas with cooling water via a heat exchanger tube, the intermediate gas line is provided with a bypass line for the intercooler, and the bus pass line is provided with the intercooler. A control valve that controls the amount of bypass gas, and controls the opening degree of the control valve so that the temperature is such that the gas after the merging of the intermediate gas line and the bypass line does not liquefy even if it expands in a labyrinth part of the high-pressure side compressor. A fifth feature of the present invention resides in a multi-stage compressor equipped with an intermediate gas cooling device having a control means for controlling the intermediate gas discharged from the former stage compressor and the latter stage compressor. In a multi-stage compressor equipped with an intermediate gas line leading to a compressor, and an intercooler provided in the intermediate gas line to cool the intermediate gas with a cooling fluid, a pipe line for sending cooling fluid to the intercooler. a control valve provided on the outlet side of the intercooler to control the flow rate of the cooling fluid; a first temperature detection means provided on the outlet side of the intercooler for detecting the temperature of the gas discharged from the intercooler; a first control means for controlling the control valve based on the detected temperature; a means for heating intermediate gas downstream of the first temperature detection means; a second temperature detection means for detecting the gas temperature; and a second control for controlling the heating means based on the second temperature detection means so that the heated gas does not liquefy even if it expands in the labyrinth part. and a multi-stage compressor with an intermediate gas cooling device.

本発明の第6の特徴は、前段側圧縮機と、後段側圧縮機
と、前記前記側圧縮機から吐出された中間ガスを後段側
圧縮機へ導く中間ガスラインと、この中間ガスラインと
、この中間ガスラインに設けられ前記中間ガスを熱交換
器チューブを介して冷却水により冷却するようにした中
間冷却器とを備えた多段圧縮機において、前記中間冷却
器に冷動水を送る管路に設けられ該冷却水の流量を制御
する第1のコントロール弁と、前記中間冷却器の出口側
に設けられ中間冷却器から出たガスの温度を検出する第
1の温度検出手段と、該温度検出手段で検知された温度
に基づいて中間ガスをその帰依器臨界点近くまで冷却す
るように前記コントロール弁を制御する第1の制御手段
と、前記中間ガスラインに前記中間冷却器をバイパスし
前記第1温度検出手段下流で合流するように設けられた
バイパスガスラインと、このバイパスガスラインに設け
られバイパスガス量を制御する第2のコントロール弁と
、前記中間ガスラインと前記バイパスラインの合流側の
ガスの温度を検出するする第2の温度検出手段と、前記
合流後のガスが後段側圧縮気のラビリンスシール部に流
入して膨張しても液化しない温度となるように前記第2
温度検出手段に基づいて前記第2コントロール弁の開度
を制御する第2の制御手段とを備えている中間ガス冷却
装置を備えた多段圧縮機にある。
A sixth feature of the present invention is that the first stage compressor, the second stage compressor, an intermediate gas line that guides intermediate gas discharged from the first stage compressor to the second stage compressor, and this intermediate gas line, In a multi-stage compressor equipped with an intercooler installed in the intermediate gas line and configured to cool the intermediate gas with cooling water via a heat exchanger tube, a pipe line for sending chilled water to the intercooler. a first control valve provided on the outlet side of the intercooler to control the flow rate of the cooling water; a first temperature detection means provided on the outlet side of the intercooler for detecting the temperature of the gas discharged from the intercooler; a first control means for controlling the control valve to cool the intermediate gas to a temperature close to the critical point of the intermediate gas based on the temperature detected by the detection means; a bypass gas line provided to join downstream of the first temperature detection means; a second control valve provided in the bypass gas line for controlling the amount of bypass gas; and a joining side of the intermediate gas line and the bypass line. a second temperature detection means for detecting the temperature of the gas;
The present invention provides a multi-stage compressor equipped with an intermediate gas cooling device and a second control means for controlling the opening degree of the second control valve based on the temperature detection means.

本発明の第7の特徴は、上記各特徴を有する多膜圧縮機
における取扱いガスは炭酸ガス(CO2ガス)である点
にある。
A seventh feature of the present invention is that the gas handled in the multi-film compressor having each of the above features is carbon dioxide gas (CO2 gas).

〔作用〕[Effect]

上記構成とすることにより、熱交換器初期の運転におい
ても冷却流体の流量を少なくする必要はなく、気液臨界
点に極く近接しない範囲であればよい。過冷却分は、加
熱手段あるいはバイパスさせたホットガスと混合させる
ことにより、後段側圧縮機に吸入されるガスの温度をラ
ビリンス部膨張時に液化しない程度まで上昇させること
ができる。
With the above configuration, there is no need to reduce the flow rate of the cooling fluid even in the initial operation of the heat exchanger, as long as it is not close to the gas-liquid critical point. By mixing the supercooled portion with the heating means or bypassed hot gas, the temperature of the gas taken into the downstream compressor can be raised to a level that does not liquefy when the labyrinth portion expands.

したがって、中間冷却器の熱交換器チューブが応力腐食
割れを起こさない程度の温度に常時体てるように十分な
冷却流体を常に流すことができる。
Therefore, sufficient cooling fluid can always flow so that the heat exchanger tubes of the intercooler are always kept at a temperature that does not cause stress corrosion cracking.

〔実施例〕〔Example〕

第2図は、炭酸ガス圧縮機の全体構成を示す図である。 FIG. 2 is a diagram showing the overall configuration of the carbon dioxide compressor.

一般に圧縮機は、用と」二、大気圧から約260気圧ま
で昇圧される。はぼ大気圧で吸込まれたCO2ガスは、
例えば第1グループで約5気圧、第2グループで約25
気圧、第3グループで約90気圧、最後の第4グループ
で吐出し圧力約260気圧まで昇圧される。
Generally, compressors are pressurized from atmospheric pressure to approximately 260 atmospheres. CO2 gas inhaled at atmospheric pressure is
For example, the first group is about 5 atm, the second group is about 25 atm.
The pressure is increased to approximately 90 atmospheres in the third group, and the discharge pressure is increased to approximately 260 atmospheres in the fourth and final group.

第3図はCO2ガスの状態線図を示す。第3図において
、例えばCO2圧縮機の第2グループ出口圧力が25気
圧の場合、液相線との交点は約−11℃となり、この温
度以下にならなければCO□ガスは液化しない。一般に
、水クーラにおいては0℃以下に冷却されることはない
ため、第1、第2クーラはいくら冷却しても液化するこ
とはない。しかし第3グループ出ロ圧力90気圧の場合
、気液臨界線との交点は約40℃となり、この温度以下
になると液化するため、この温度以上(例えば4.0 
’C以上)としなければならない。
FIG. 3 shows a state diagram of CO2 gas. In FIG. 3, for example, when the second group outlet pressure of the CO2 compressor is 25 atm, the point of intersection with the liquidus line is approximately -11°C, and the CO□ gas will not liquefy unless the temperature falls below this temperature. Generally, water coolers are not cooled below 0° C., so no matter how much the first and second coolers are cooled, they will not liquefy. However, if the third group outlet pressure is 90 atm, the intersection with the gas-liquid critical line will be approximately 40 degrees Celsius, and if the temperature drops below this temperature, it will liquefy.
'C or higher).

さらに45℃以上の場合でも圧縮器外へもれる時の膨張
により液化を生ずる。(例えば45℃の場合、膨張によ
り液相線と交わり液化する。このためCO2ガスが膨張
した場合でも液相線と交差しない温度(例えば68°C
)に圧縮機第4グループ入口温度を制御する必要がある
。このように、エネルギの低減過冷却及び膨張による液
化防止を考慮してCO2ガス熱交換器の出口の温度制御
がなされている。
Furthermore, even at temperatures above 45°C, liquefaction occurs due to expansion when leaking out of the compressor. (For example, in the case of 45°C, it crosses the liquidus line due to expansion and liquefies. Therefore, even if CO2 gas expands, it does not cross the liquidus line (for example, 68°C
) It is necessary to control the compressor group 4 inlet temperature. In this way, the temperature at the outlet of the CO2 gas heat exchanger is controlled in consideration of energy reduction, supercooling, and prevention of liquefaction due to expansion.

また、CO2ガス以外のガスにおいても、液相線または
気液臨界線付近において取扱う場合には、CO2ガスと
同様のことが言える。
Further, the same applies to gases other than CO2 gas when they are handled near the liquidus line or the gas-liquid critical line.

本発明の具体的実施例を炭酸ガス(CO2)圧縮機に適
用した場合を例にとり第1図により説明する。前段側(
低圧側)圧縮機1により圧縮機されたCO2ガスは中間
ガスライン10を通り、中間熱交換器、中間冷却器3に
より冷却されると同時に、一部のガスは中間ガスライン
1−1により中間熱交換器3をバイパスして前記冷却さ
れたガスと混合し、ある任意の一定温度になるように調
節されて次段の高圧側(後段側)圧縮機2へ送られる。
A specific embodiment of the present invention will be described with reference to FIG. 1, taking as an example a case in which it is applied to a carbon dioxide (CO2) compressor. Front side (
(Low pressure side) The CO2 gas compressed by the compressor 1 passes through the intermediate gas line 10 and is cooled by the intermediate heat exchanger and the intermediate cooler 3. At the same time, some gas is transferred to the intermediate gas line 1-1. It bypasses the heat exchanger 3, mixes with the cooled gas, adjusts it to a certain arbitrary constant temperature, and sends it to the next stage high pressure side (second stage side) compressor 2.

熱交換器3内では中間ガスが冷却水により熱交換器チュ
ーブ3aを介して冷却される。
In the heat exchanger 3, the intermediate gas is cooled by cooling water via the heat exchanger tubes 3a.

冷却ガスの温度は、熱交換器3下流の第1の温度検出器
5aで検出され温度コントローラ(第1の制御手段)5
により、ある一定の温度になるようにコントロール弁4
を制御し、冷却水量を調節している。
The temperature of the cooling gas is detected by a first temperature detector 5a downstream of the heat exchanger 3, and a temperature controller (first control means) 5 detects the temperature of the cooling gas.
control valve 4 to maintain a certain temperature.
control and adjust the amount of cooling water.

次に、バイパスガス量は、混合後のガス温度を第2の検
出器7aで検出し、温度コントローラ(第2の制御手段
)7により前記混合後のガスがある一定の温度になるよ
うにバイパスコン)〜ロール弁9を制御する。温度コン
トローラ5の設定温度は、温度コントローラ7の設定温
度より低くする。温度コントローラ5,7の設定温度を
第3図を参照説明する。温度コントローラ5は第3図に
おいてCO□ガスが液化を生じない最低の温度(例えば
CO2ガスが9o気圧の場合は約45℃)に設定する。
Next, the amount of bypass gas is determined by detecting the gas temperature after mixing with a second detector 7a, and controlling the temperature of the mixed gas by a temperature controller (second control means) 7 so that the temperature of the mixed gas reaches a certain constant temperature. control) to the roll valve 9. The set temperature of the temperature controller 5 is set lower than the set temperature of the temperature controller 7. The set temperatures of the temperature controllers 5 and 7 will be explained with reference to FIG. The temperature controller 5 is set to the lowest temperature at which the CO□ gas does not liquefy (for example, about 45° C. when the CO2 gas is at 9 degrees atmospheric pressure) in FIG.

又、温度コントローラ7の設定温度は、CO2ガスが膨
張しても液化を生じない最低の温度(例えばCO□ガス
が90気圧の場合は約98℃)に設定する。
Further, the set temperature of the temperature controller 7 is set to the lowest temperature at which liquefaction does not occur even if the CO2 gas expands (for example, about 98° C. when the CO□ gas is at 90 atmospheres).

本実施例によれば、ホットガスバイパスライン11を設
けたことにより、冷却水量を該バイパスがないときより
も十分多くすることができる。このことを次に説明する
According to this embodiment, by providing the hot gas bypass line 11, the amount of cooling water can be made sufficiently larger than when the bypass is not provided. This will be explained next.

熱交換器3出口のガス温度を、混合後のガス温度よりも
低くなるように制御しているので、かならずホットガス
バイパスを行う必要がある。従って、熱交換器3の通過
ガス量が減る。そうすると、流量の約0.8乗に比例し
てガス側の熱伝達率α1が減少することになる。一方、
ホットガスバイパスは行なっても、総合的にガス側と水
側の熱交換量は該バイパスがない場合と変わらない6つ
まり、熱交換器の熱通過率にもほとんど変わらない。ガ
ス側熱伝達率α1が小さくなっても、熱通過率Kを同じ
にするためには、水側の熱伝達率α2を大きくするか、
熱交換器チューブの汚れを除去する必要がある。すなわ
ち、長期連続運転を考慮しである汚れ係数で設計され熱
交換器が初期の汚れなしで運転される時、ホットガスバ
イパスを用いればα2を小さくしなくてもよいというこ
とになる。
Since the gas temperature at the outlet of the heat exchanger 3 is controlled to be lower than the gas temperature after mixing, it is necessary to perform a hot gas bypass. Therefore, the amount of gas passing through the heat exchanger 3 is reduced. In this case, the heat transfer coefficient α1 on the gas side decreases in proportion to about the 0.8th power of the flow rate. on the other hand,
Even if a hot gas bypass is performed, the overall amount of heat exchange between the gas side and the water side is the same as when there is no such bypass6, that is, there is almost no change in the heat transfer rate of the heat exchanger. Even if the gas side heat transfer coefficient α1 becomes smaller, in order to keep the heat transfer coefficient K the same, either increase the water side heat transfer coefficient α2 or
It is necessary to remove dirt from the heat exchanger tubes. That is, when the heat exchanger is designed with a certain fouling coefficient in consideration of long-term continuous operation and is operated without initial fouling, it is not necessary to reduce α2 by using the hot gas bypass.

水側の熱伝達率α2は冷却水量の約0.6乗に比例して
変わるので、このα2は小さくすることは流量を小さく
することになり、このため冷却水の出口温度が高くなり
、熱交換器チューブ3aの出口側の温度が高くなり、冷
却水に腐食因子が含まれる場合(この冷却水として通常
の水を用いた場合)には腐食が促進されて応力腐食割れ
を引き起こす原因となる。本発明のシステムによれば、
水側の熱伝達率α2を小さくして応力腐食割れを引き起
こすのを防止できる。
The heat transfer coefficient α2 on the water side changes in proportion to the amount of cooling water to the 0.6th power, so reducing α2 means reducing the flow rate, which increases the outlet temperature of the cooling water and heats up. If the temperature on the outlet side of the exchanger tube 3a increases and the cooling water contains corrosive factors (if normal water is used as the cooling water), corrosion will be accelerated and cause stress corrosion cracking. . According to the system of the present invention,
By reducing the heat transfer coefficient α2 on the water side, it is possible to prevent stress corrosion cracking from occurring.

本発明の作用を第4図、第5図を用いて更に詳しく説明
する。
The operation of the present invention will be explained in more detail using FIGS. 4 and 5.

本発明のようにホットガスバイパスライン1〕−を設け
ても熱交換器8の必要熱交換熱量は、該バイパスライン
11がない場合と変わらない。第4図はバイパスライン
がない場合の概略構成図、第5図は本発明の概略構成図
である。熱の授受部分を検査空間8,9で囲んでみると
、ガスと水との熱の授受の量は、総合的には従来も本発
明も同じである。また、目的のガス温度にするにはホッ
トガスバイパスが必要となるが、ホン1〜ガスバイパス
をした量だけ熱交換器を通過する量が減る。そうすると
、熱交換器チューブのガス側根伝達率α□は流量の約0
.8乗に比例するのでα1は小さくなる。
Even if the hot gas bypass line 1]- is provided as in the present invention, the required amount of heat exchanged by the heat exchanger 8 is the same as when the bypass line 11 is not provided. FIG. 4 is a schematic configuration diagram in the case where there is no bypass line, and FIG. 5 is a schematic configuration diagram of the present invention. When the heat exchange portion is surrounded by the inspection spaces 8 and 9, the amount of heat exchange between the gas and water is generally the same in both the conventional method and the present invention. In addition, hot gas bypass is required to reach the target gas temperature, but the amount passing through the heat exchanger is reduced by the amount of gas bypass. Then, the gas side root transfer coefficient α□ of the heat exchanger tube is approximately 0 of the flow rate.
.. Since it is proportional to the eighth power, α1 becomes smaller.

交換熱量を同じにするには、上記(3)式で示した熱通
過率Kをほぼ同じにする必要がある。従って」1記(2
)式より明らかなように、ガス側熱伝達率α、が小さく
なれば、それに見合って水側熱伝達率α2を大きくする
ことになる。α2を大きくするためには、上述したよう
に冷却水量Glを多くする必要がある。交換熱量が同じ
で冷却水量を多くできるということは、(4)式から明
らかなように冷却水の温度差を小さくできるということ
であり冷却水の出口温度を下げるということであり、こ
のように熱交換器3のチューブ3a内の冷却水温度を下
げることができることにより、チューブ3aの温度を下
げることができる。
In order to make the amount of heat exchanged the same, it is necessary to make the heat transfer rate K shown in the above equation (3) almost the same. Therefore,” No. 1 (2
), as the gas side heat transfer coefficient α becomes smaller, the water side heat transfer coefficient α2 increases accordingly. In order to increase α2, it is necessary to increase the amount of cooling water Gl as described above. The fact that the amount of cooling water can be increased with the same amount of heat exchanged means that the temperature difference of the cooling water can be reduced, as is clear from equation (4), and the outlet temperature of the cooling water can be lowered. By being able to lower the temperature of the cooling water in the tubes 3a of the heat exchanger 3, the temperature of the tubes 3a can be lowered.

尚、上記実施例では、バイパスガスライン11を設けて
中間熱交換器3で冷却されたガスとホットガスとを合流
させて、冷却ガスが後段側圧縮機のラビリンスシール部
に流入して膨張しても液化しない温度となるように所定
の温度まで前記冷却ガスを加熱するようにしているが、
バイパスガスラインを設ける代りに、別の中間ガスの加
熱手段を段けて中間熱交換器3から出てきたガスを前記
所定の温度まで加熱するようにしてもよい。
In the above embodiment, the bypass gas line 11 is provided to allow the gas cooled by the intermediate heat exchanger 3 to join the hot gas, so that the cooled gas flows into the labyrinth seal of the downstream compressor and expands. The cooling gas is heated to a predetermined temperature so that it does not liquefy even when
Instead of providing the bypass gas line, another intermediate gas heating means may be provided to heat the gas coming out of the intermediate heat exchanger 3 to the predetermined temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器のチューブ壁面温度を低く保
てると同時に取扱いガスの液化も生じないようにしてい
るので、熱交換器チューブの応力腐食割れの発生を防止
できると共に、チューブの寿命を延ばすことのできる多
段圧縮器における中間ガスの冷却方法及び中間ガス冷却
装置を備えた多段圧縮器が得られるという効果がある。
According to the present invention, the temperature of the tube wall surface of the heat exchanger can be kept low and at the same time the handled gas is prevented from liquefying, so that it is possible to prevent the occurrence of stress corrosion cracking in the heat exchanger tubes and to extend the life of the tubes. The advantage is that a method for cooling intermediate gas in a multi-stage compressor that can be extended and a multi-stage compressor equipped with an intermediate gas cooling device are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図はCO
2ガス圧縮機の全体システムを示す構成図、第3図はC
O2ガスの温度とエントロピにおける変化の関係を示す
状態図、第4図及び第5図は本発明の詳細な説明する要
部の構成図で、第4図はバイパスラインがないもの、第
5図はバイパスラインを設けたものを示す図である。 1・・・低圧側(前段側)圧縮機、2・・高圧側(後段
側)圧縮機、3・・・中間熱交換器(中間冷却器)、4
・・第1コントロール弁、5・・・温度コントローラ(
第1の制御手段)、5a・・第1の温度検出器、6・・
・第2コントロール弁、7・温度コントローラ(第2の
制御手段)、7a・・・第2の温度検出器、10・・中
間ガスライン、11・・・バイパスガスライン。 =23=
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a CO
A configuration diagram showing the entire system of a two-gas compressor, Figure 3 is C
A state diagram showing the relationship between the temperature of O2 gas and changes in entropy, FIGS. 4 and 5 are configuration diagrams of main parts explaining the present invention in detail, FIG. 4 is a diagram without a bypass line, and FIG. 2 is a diagram showing a device provided with a bypass line. 1...Low pressure side (previous stage side) compressor, 2...High pressure side (later stage side) compressor, 3...Intermediate heat exchanger (intercooler), 4
... 1st control valve, 5 ... temperature controller (
first control means), 5a... first temperature detector, 6...
- Second control valve, 7. Temperature controller (second control means), 7a... Second temperature detector, 10.. Intermediate gas line, 11.. Bypass gas line. =23=

Claims (1)

【特許請求の範囲】 1、低圧側の圧縮機で圧縮機された中間ガスを中間熱交
換器において冷却水と熱交換させることにより冷却し、
しかる後、この冷却されたガスがラビリンス部で膨張し
ても液化しない温度まで該ガスを加熱して高圧側の圧縮
機へ供給することを特徴とする多段圧縮機における中間
ガスの冷却方法。 2、低圧側の圧縮機から吐出された中間ガスの一部をバ
イパスさせ、前記中間ガスの残りを中間冷却器において
冷却流体と熱交換させて冷却し、しかる後、この冷却さ
れたガスが次段圧縮機のラビリンス部で膨張しても液化
しない温度まで加熱するため前記バイパスさせた中間ガ
スと混合し、次段圧縮機へ供給することを特徴とする多
段圧縮機における中間ガスの冷却方法。 3、前段圧縮機から吐出された中間ガスの一部をバイパ
スさせ、前記中間ガスの残りを中間冷却器において冷却
水と熱交換器チューブを介して熱交換させてそのガスの
気液臨界点近くまで冷却し、しかる後、この冷却された
ガスの一部が次段圧縮機のラビリンスシール部に流入し
て膨張しても液化しない温度まで前記帰依機臨界点近く
まで冷却したガスを加熱するため、前記バイパスさせた
中間ガスを混合し、次段圧縮機へ供給するようにしたこ
とを特徴とする多段圧縮機における中間ガスの冷却方法
。 4、低圧側圧縮機と、高圧側圧縮機と、前記低圧側圧縮
機から吐出された中間ガスを高圧側圧縮機へ導くガスラ
インと、この中間ガスラインに設けられ前記中間ガスを
熱交換器チューブを介して冷却水により冷却するように
した中間冷却器とを備えた多段圧縮機において、前記中
間ガスラインに前記中間冷却器をバイパスするように設
けられた中間ガスのバイパスラインと、このバイパスラ
インに設けられバイパスガス量を制御するコントロール
弁と、前記中間ガスラインと前記バイパスラインの合流
後のガスが高圧側圧縮機のラビリンス部で膨張しても液
化しない温度となるように前記コントロール弁の開度を
制御する制御手段とを備えていることを特徴とする中間
ガス冷却装置を備えた多段圧縮機。 5、前段側圧縮機と、後段側圧縮機と、前記前段側圧縮
機から吐出された中間ガスを後段側圧縮機へ導く中間ガ
スラインと、この中間ガスラインに設けられ前記中間ガ
スを冷却流体により冷却するようにした中間冷却器とを
備えた多段圧縮機において、前記中間冷却器に冷却流体
を送る管路に該冷却流体の流量を制御するコントロール
弁と、前記中間冷却器の出口側に設けられ中間冷却器か
ら出たガスの温度を検出する第1の温度検出手段と、該
温度検出手段で見地された温度に基づいて前記コントロ
ール弁を制御する第1の制御手段と、前記第1の温度検
出手段よりも下流側の中間ガスを加熱するための手段と
、該加熱手段によって加熱された後のガス温度を検知す
る第2の温度検出手段と、前記加熱のガスがラビリンス
部で膨張しても液化しないように前記第2温度検出手段
に基づいて前記加熱手段を制御する第2の制御手段とを
備えていることを特徴とする中間ガス冷却装置に備えた
多段圧縮機。 6、前段側圧縮機と、後段側圧縮機と、前記前段側圧縮
機から吐出れさた中間ガスを後段側圧縮機へ導く中間ガ
スラインと、この中間ガスラインに設けられ前記中間ガ
スを熱交換器チューブを介して冷却水により冷却するよ
うにした中間冷却とを備えた多段圧縮機において、前記
中間冷却器に冷却水を送る管路に設けられ該冷却水の流
量を制御する第1のコントロール弁と、前記中間冷却器
の出口側に設けられ中間冷却器から出たガスの温度を検
出する第1の温度検出手段と、該温度検出手段で検知さ
れた温度に基づいて中間ガスをその気液臨界点近くまで
冷却するように前記コントロール弁を制御する第1の制
御手段と、前記中間ガスラインに前記中間冷却器をバイ
パスし前記第1温度検出手段下流で合流するように設け
られたバイパスガスラインと、このバイパスガスライン
に設けられバイパスガス量を制御する第2のコントロー
ル弁と、前記中間ガスラインと前記バイパスラインの合
流後のガスの温度を検出する第2の温度検出手段と、前
記合流後のガスが後段側圧縮機のラビリンスシール部に
流入して膨張しても液化しない温度となるように前記第
2温度検出手段に基づいて前記第2コントロール弁の開
度を制御する第2の制御手段とを備えていることを特徴
とする中間ガス冷却装置を備えた多段圧縮機。 7、請求項4〜6のいずれかにおいて、圧縮される取扱
いガスは炭酸ガス(CO_2ガス)であることを特徴と
する中間ガス冷却装置を備えた多段圧縮機。
[Claims] 1. Cooling intermediate gas compressed by a low-pressure side compressor by exchanging heat with cooling water in an intermediate heat exchanger,
A method for cooling an intermediate gas in a multi-stage compressor, characterized in that the cooled gas is then heated to a temperature at which it does not liquefy even if it expands in a labyrinth section, and is then supplied to a high-pressure side compressor. 2. A part of the intermediate gas discharged from the low-pressure side compressor is bypassed, and the remaining intermediate gas is cooled by exchanging heat with the cooling fluid in the intercooler, and then this cooled gas is transferred to the next A method for cooling an intermediate gas in a multi-stage compressor, characterized in that the intermediate gas is heated to a temperature at which it does not liquefy even if expanded in a labyrinth portion of the stage compressor, and is mixed with the bypassed intermediate gas and then supplied to the next stage compressor. 3. A part of the intermediate gas discharged from the pre-stage compressor is bypassed, and the remainder of the intermediate gas is heat exchanged with cooling water in the intercooler through a heat exchanger tube to cool the gas near the gas-liquid critical point. After that, a part of this cooled gas flows into the labyrinth seal part of the next stage compressor and heats the cooled gas close to the critical point of the compressor to a temperature at which it does not liquefy even if it expands. A method for cooling intermediate gas in a multistage compressor, characterized in that the bypassed intermediate gas is mixed and supplied to a next stage compressor. 4. A low-pressure side compressor, a high-pressure side compressor, a gas line that guides the intermediate gas discharged from the low-pressure side compressor to the high-pressure side compressor, and a heat exchanger installed in this intermediate gas line to transfer the intermediate gas. In a multi-stage compressor equipped with an intercooler cooled by cooling water via a tube, an intermediate gas bypass line provided in the intermediate gas line so as to bypass the intercooler, and this bypass a control valve provided in the line to control the amount of bypass gas; and a control valve configured to maintain a temperature at which the gas after the merging of the intermediate gas line and the bypass line does not liquefy even if it expands in the labyrinth portion of the high-pressure side compressor. 1. A multistage compressor equipped with an intermediate gas cooling device, characterized in that the compressor is equipped with a control means for controlling the opening degree of the intermediate gas cooling device. 5. A front-stage compressor, a rear-stage compressor, an intermediate gas line that guides the intermediate gas discharged from the front-stage compressor to the rear-stage compressor, and a cooling fluid provided in the intermediate gas line to direct the intermediate gas to the rear-stage compressor. In a multi-stage compressor equipped with an intercooler configured to perform cooling, a control valve for controlling the flow rate of the cooling fluid is provided in a pipe line for sending cooling fluid to the intercooler, and a control valve is provided on the outlet side of the intercooler. a first temperature detection means for detecting the temperature of the gas discharged from the provided intercooler; a first control means for controlling the control valve based on the temperature detected by the temperature detection means; means for heating intermediate gas downstream of the temperature detection means; second temperature detection means for detecting the temperature of the gas after being heated by the heating means; and a second temperature detection means for detecting the temperature of the gas heated by the heating means; and second control means for controlling the heating means based on the second temperature detection means so as not to liquefy the compressor even if the gas is heated. 6. An upstream compressor, a downstream compressor, an intermediate gas line that guides the intermediate gas discharged from the upstream compressor to the downstream compressor, and an intermediate gas line installed in the intermediate gas line that heats the intermediate gas. In a multi-stage compressor equipped with an intercooler that is cooled by cooling water via an exchanger tube, a first compressor is provided in a pipe line that supplies cooling water to the intercooler and controls the flow rate of the cooling water. a control valve; a first temperature detection means provided on the outlet side of the intercooler for detecting the temperature of the gas discharged from the intercooler; a first control means for controlling the control valve so as to cool the gas to near the critical point; and a first control means provided in the intermediate gas line so as to bypass the intercooler and join downstream of the first temperature detection means. a bypass gas line, a second control valve provided in the bypass gas line to control the amount of bypass gas, and a second temperature detection means to detect the temperature of the gas after the intermediate gas line and the bypass line merge. , controlling the opening degree of the second control valve based on the second temperature detection means so that the gas after the merging flows into the labyrinth seal portion of the downstream compressor and is at a temperature at which it does not liquefy even if it expands; A multi-stage compressor equipped with an intermediate gas cooling device, characterized in that it is equipped with a second control means. 7. A multistage compressor equipped with an intermediate gas cooling device according to any one of claims 4 to 6, wherein the gas to be compressed is carbon dioxide gas (CO_2 gas).
JP2329250A 1990-11-30 1990-11-30 Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device Expired - Lifetime JP2753392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329250A JP2753392B2 (en) 1990-11-30 1990-11-30 Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329250A JP2753392B2 (en) 1990-11-30 1990-11-30 Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device

Publications (2)

Publication Number Publication Date
JPH04203397A true JPH04203397A (en) 1992-07-23
JP2753392B2 JP2753392B2 (en) 1998-05-20

Family

ID=18219342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329250A Expired - Lifetime JP2753392B2 (en) 1990-11-30 1990-11-30 Method for cooling intermediate gas in multi-stage compressor for carbon dioxide and multi-stage compressor for carbon dioxide provided with intermediate gas cooling device

Country Status (1)

Country Link
JP (1) JP2753392B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814260A2 (en) * 1996-06-03 1997-12-29 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
US7168264B2 (en) * 2002-08-30 2007-01-30 Sanyo Electric Co., Ltd. Refrigerant cycling device
JP2012202336A (en) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd Multi-stage compressor
ITFI20110262A1 (en) * 2011-12-06 2013-06-07 Nuovo Pignone Spa "HEAT RECOVERY IN CARBON DIOXIDE COMPRESSION AND COMPRESSION AND LIQUEFACTION SYSTEMS"
CN103443466A (en) * 2011-02-10 2013-12-11 英格索尔-兰德公司 Compressor system including gear integrated screw expander
JP2015057550A (en) * 2014-12-19 2015-03-26 三菱重工業株式会社 Multistage compressor
WO2017138486A1 (en) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 Pressurizing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362208A (en) * 1976-11-13 1978-06-03 Kawasaki Heavy Ind Ltd Control method for compressor with intermediate cooler
JPS61184899U (en) * 1985-05-11 1986-11-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362208A (en) * 1976-11-13 1978-06-03 Kawasaki Heavy Ind Ltd Control method for compressor with intermediate cooler
JPS61184899U (en) * 1985-05-11 1986-11-18

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814260A2 (en) * 1996-06-03 1997-12-29 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
EP0814260A3 (en) * 1996-06-03 1999-07-07 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
US7168264B2 (en) * 2002-08-30 2007-01-30 Sanyo Electric Co., Ltd. Refrigerant cycling device
CN103443466A (en) * 2011-02-10 2013-12-11 英格索尔-兰德公司 Compressor system including gear integrated screw expander
CN103443466B (en) * 2011-02-10 2016-04-13 英格索尔-兰德公司 In conjunction with the compressor assembly comprising gear of spiral expansion machine
JP2012202336A (en) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd Multi-stage compressor
ITFI20110262A1 (en) * 2011-12-06 2013-06-07 Nuovo Pignone Spa "HEAT RECOVERY IN CARBON DIOXIDE COMPRESSION AND COMPRESSION AND LIQUEFACTION SYSTEMS"
EP2602445A1 (en) * 2011-12-06 2013-06-12 Nuovo Pignone S.p.A. Heat recovery in carbon dioxide compression and compression and liquefaction systems
US10487697B2 (en) 2011-12-06 2019-11-26 Nuovo Pignone S.P.S. Heat recovery in carbon dioxide compression and compression and liquefaction systems
JP2015057550A (en) * 2014-12-19 2015-03-26 三菱重工業株式会社 Multistage compressor
WO2017138486A1 (en) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 Pressurizing system

Also Published As

Publication number Publication date
JP2753392B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
EP2182304B1 (en) Refrigerating cycle apparatus operation control method
CN1120970C (en) Refrigerating apparatus
CN104848587B (en) Frequency conversion multi-connected type heat pump system and control method of bypass electronic expansion valve
US8381538B2 (en) Heat pump with intercooler
CN106801954A (en) A kind of Gas-supplying enthalpy-increasing system and its control method, air-conditioner
US9897359B2 (en) Air-conditioning apparatus
CN104220821B (en) Aircondition
CN208635259U (en) A kind of refrigeration system and air-conditioning
AU2019456022B2 (en) Cooling system
CN103842743B (en) Heat pump
CN105987535A (en) High-capacity multi-split air-condition heat pump unit for ultra-long-distance conveying of refrigerant
JPH04203397A (en) Method for cooling intermediate gas in multi-state compressor and multi-stage compressor having intermediate gas cooler
CN104848598A (en) Water source heat pump system wide in water inlet temperature range
WO2008013105A1 (en) Air conditioner
EP1553365A2 (en) Air conditioning system
CN107014019A (en) A kind of air-cooled single cooler group under low temperature environment
CN105546736A (en) Method for solving accumulated liquid of indoor heat exchanger of multi-split air conditioner during heating
CN210218031U (en) One-stage heat recovery system of air compressor
CN113028668B (en) Micro-channel near-isothermal compression type transcritical carbon dioxide circulating system and method
KR101065501B1 (en) Compressor and air conditioner including the same
WO2019021406A1 (en) Air conditioning system and heat transfer medium inclusion method
CN107504706A (en) Air conditioner and its fast-refrigerating method
CN206755456U (en) A kind of air-cooled single cooler group under low temperature environment
CN110242540B (en) Primary heat recovery system of air compressor
CN219433915U (en) Back-flushing device of main heat exchanger in air separation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13