JP2753267B2 - Carbonation curing method for compacts - Google Patents
Carbonation curing method for compactsInfo
- Publication number
- JP2753267B2 JP2753267B2 JP63165941A JP16594188A JP2753267B2 JP 2753267 B2 JP2753267 B2 JP 2753267B2 JP 63165941 A JP63165941 A JP 63165941A JP 16594188 A JP16594188 A JP 16594188A JP 2753267 B2 JP2753267 B2 JP 2753267B2
- Authority
- JP
- Japan
- Prior art keywords
- molded body
- carbon dioxide
- carbonation
- gas
- dioxide gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/40—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
- B28B7/44—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for treating with gases or degassing, e.g. for de-aerating
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は成形体の炭酸ガス養生法に関する。更にい
えば、炭酸化により硬化するバインダーを使用した成形
体の炭酸化を改善する方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for curing carbon dioxide in molded articles. More particularly, the present invention relates to a method for improving carbonation of a molded article using a binder which is cured by carbonation.
(従来の技術) 従来から消石灰、水酸化マグネシウム、珪酸カルシウ
ム等をバインダーとする成形体を炭酸化して硬化する技
術が広く研究されている。本出願人も、先にもγ型珪酸
二石灰をバインダーとする成形体の炭酸化養生法を、特
願昭60−194802号、特願昭61−55091号、特願昭61−852
70号などとして提案している。(Prior art) Conventionally, a technique of carbonizing and hardening a molded product using slaked lime, magnesium hydroxide, calcium silicate or the like as a binder has been widely studied. The present applicant has also previously described the carbonation curing method for molded articles using gamma-type dicalcium silicate as a binder, as disclosed in Japanese Patent Application Nos.
No. 70 is proposed.
炭酸化により硬化するバインダーを使用した成形体を
炭酸化する場合、その成形体中に含まれる水分量が炭酸
化に大きな影響を与え、かつ炭酸化に最適な水分量の存
在することが知られている。炭酸化により硬化するバイ
ンダーを使用した成形体を、炭酸化に適する水分量に調
整する方法としては、これまで次の3つの方法が考えら
れている。When carbonizing a molded body using a binder that cures by carbonation, it is known that the amount of water contained in the molded body has a large effect on carbonation, and that there is an optimal amount of water for carbonation. ing. The following three methods have been considered as methods for adjusting a molded body using a binder that is cured by carbonation to a water content suitable for carbonation.
その1は、あらかじめ最適な水分量で材料を混合して
成形体を作る方法である。これによれば、当然に得られ
た成形体は最適な水分量をもった成形体とすることが出
来る。The first is a method in which materials are mixed in advance with an optimum amount of water to form a molded body. According to this, the naturally obtained molded body can be made into a molded body having an optimum water content.
その2は、成形に適する多量の水分を使用して成形体
を作り、その後この成形体を低湿環境又は加熱等による
乾燥で最適な水分量に減量調整する方法である。The second method is a method in which a molded body is prepared using a large amount of water suitable for molding, and then the molded body is subjected to drying in a low-humidity environment or by heating or the like to reduce the amount of water to an optimal amount.
第3の方法は、第2の方法と同じく成形に適する多量
の水分を使用して成形体を作り、その後この成形体を真
空脱水して水分調整する方法である。The third method is a method in which a molded body is prepared using a large amount of water suitable for molding as in the second method, and then the molded body is subjected to vacuum dehydration to adjust the water content.
しかしながら、これら従来の水分調整方法は、いずれ
も問題点を有していた。However, these conventional methods for adjusting moisture all have problems.
即ち、第1の炭酸化に適する水分量の水を使用して成
形体をつくる方法は、成形時材料の流動性が悪く、成形
体の密度を均一とすることが困難という問題がある。ま
た、第2の成形後に乾燥する方法は、均一乾燥が難し
く、とくに短時間で乾燥すると表面と内部とで含水量の
不均一が不可避的に生じた。これを避けるためには長時
間乾燥を行なえばよいが、そうすると生産性が著しく低
下した。第3の成形後に真空脱水する方法は、脱水時の
収縮によるひび割れが生じ、全体を均一な含水量または
密度に調整することが困難であった。That is, the first method of forming a molded body using water having a water content suitable for carbonation has a problem that the fluidity of the material during molding is poor and it is difficult to make the density of the molded body uniform. Further, in the method of drying after the second molding, uniform drying is difficult, and especially when dried in a short time, unevenness of the water content between the surface and the inside inevitably occurs. To avoid this, drying may be carried out for a long time, but this significantly reduces productivity. In the method of performing vacuum dehydration after the third molding, cracks occur due to shrinkage during dehydration, and it was difficult to adjust the whole to a uniform water content or density.
上記1ないし3のような方法によって水分調整された
成形体は、その含水量及び密度の不均一さによって、そ
の後の炭酸化は、炭酸化方法を各種工夫しても均一に炭
酸化することは難しく、良好な硬化体とすることは困難
であった。Due to the non-uniformity of the water content and the density of the molded article whose water content has been adjusted by the above methods 1 to 3, the subsequent carbonation cannot be uniformly carbonated even if various carbonation methods are devised. It was difficult to obtain a good cured product.
一方、成形体に炭酸ガスを外部から供給して炭酸化を
行なう場合、炭酸化は、当然に成形体の外部から内部に
向けて進行しながら行なわれていく。そして、炭酸化が
膨脹反応であるために、炭酸化されるとその部分の空隙
は減少し、したがって以後炭酸ガスの内部への浸透は抑
制されるようになる。こうした現象のために、従来は短
時間で成形体の内部まで均一に炭酸化することは困難で
あった。これを解決するために、効率的な炭酸化法とし
て次のような提案がすでになされている。On the other hand, when carbonation is performed by supplying carbon dioxide to the molded body from the outside, the carbonation naturally proceeds while proceeding from the outside to the inside of the molded body. Then, since carbonation is an expansion reaction, when carbonation is performed, the voids in that portion are reduced, so that the permeation of carbon dioxide gas into the interior is suppressed thereafter. Due to such a phenomenon, it has been conventionally difficult to uniformly carbonate the inside of the molded body in a short time. In order to solve this, the following proposals have already been made as an efficient carbonation method.
即ち、予め必要な水分調整をした成形体を用意した上
で、ガスの圧力差を利用して、成形体中に炭酸ガスを透
過させる方法(特願昭50−12572号)、繊維を入れた成
形体を、上記と同様に予め水分調整してから載荷して圧
密とした後、炭酸ガス環境中で除荷し、成形体中の繊維
のリバウンドを利用して成形体中に強制的に炭酸ガスを
浸透させる方法(特願昭61−174180号)である。That is, after preparing a molded body in which the necessary water content has been adjusted in advance, a method of permeating carbon dioxide gas into the molded body by utilizing the pressure difference of gas (Japanese Patent Application No. 50-12572), and fibers were put in the molded body. The molded body is subjected to moisture adjustment in advance in the same manner as described above, then loaded and consolidated, then unloaded in a carbon dioxide gas environment, and forcibly carbonated into the molded body using the rebound of fibers in the molded body. This is a method of infiltrating gas (Japanese Patent Application No. 61-174180).
しかしながら、前者の方法による成形体の含水量調整
のままであると、成形体の製造に長い時間を要するばか
りでなく、その含水量の不均一のため、均一な硬化体を
得ることが出来ないという問題があった。また、炭酸化
の工程はこの方法で改善されても、その前の成形体の含
水量調整が従来のままであると、成形体の硬化工程の全
体が効率化されないという問題があった。後者の繊維の
リバウンドを利用する方法では、体積膨脹によって浸透
する炭酸ガスの量は、炭酸化して硬化するに充分な量で
なく、実用の強度発現は、その後の水和反応によってい
るのが実状である。However, if the water content of the molded article is still adjusted by the former method, not only does it take a long time to produce the molded article, but also because of its non-uniform water content, a uniform cured product cannot be obtained. There was a problem. Further, even if the carbonation step is improved by this method, there is a problem that if the adjustment of the water content of the molded body before that is the same as before, the entire curing step of the molded body is not efficient. In the latter method using fiber rebound, the amount of carbon dioxide gas that penetrates due to volume expansion is not sufficient to harden by carbonation, and the actual strength development depends on the subsequent hydration reaction. It is.
以上の如く、成形体の含水量の均一な調整が簡単に出
来て、しかも炭酸化の工程を短時間で行ない、均一で実
用的な強度を有する炭酸化硬化体を容易に得られるとい
う技術はいまだ確立されていないのが実状である。As described above, there is a technique in which uniform adjustment of the water content of a molded body can be easily performed, and a carbonation step can be performed in a short time to easily obtain a carbonated cured body having uniform and practical strength. The fact is that it has not been established yet.
(発明が解決しようとする課題) この発明は、均一に炭酸化されて良好な硬化体を能率
的に得ようとするもので、そのために成形体の均一な含
水量調整と炭酸化を短時間で行なおうとするものであ
る。(Problems to be Solved by the Invention) The present invention is intended to efficiently obtain a good cured product which is uniformly carbonated, and therefore, it is necessary to uniformly adjust the water content of the molded product and perform carbonation in a short time. And try to do it.
(課題を解決するための手段) この発明は、炭酸化により硬化するバインダーを含む
混合物の成形体を炭酸化して硬化するに当り、加圧ガス
で成形体を圧搾、脱水し、これと同時に又はひき続き成
形体中に炭酸ガスを含むガスを透過させることを特徴と
する成形体の炭酸化養生法である。以下に、この発明を
さらに説明する。(Means for Solving the Problems) In the present invention, when a molded body of a mixture containing a binder which is cured by carbonation is carbonated and cured, the molded body is squeezed and dewatered with a pressurized gas, and simultaneously or simultaneously. A carbonation curing method for a molded body, characterized in that a gas containing carbon dioxide gas is allowed to permeate the molded body. Hereinafter, the present invention will be further described.
この発明で使用するバインダーは、炭酸化により硬化
するものであれば特に限定されない。例えば、ゾノトラ
イト、トバモライト、セメント水和物のような珪酸カル
シウム水和物の外、消石灰、水酸化マグネシウム、ポル
トランドセメントなどの珪酸カルシウムなどである。以
下に示す実施例では、γ−2CaO・SiO2(以下、γ−C2S
という)で示される珪酸二石灰と普通セメントを用い
た。これら炭酸化により硬化するバインダーは、それ単
独又は砂などの細骨材とともに水で混練されて型に流し
込まれ成形される。ここに使用される水は、使用材料10
0に対し15以上とし、材料の流動性をよくして密度が均
一な成形体が出来るようにする。混練物は成形型に流し
込むが、ここで使用する型は密閉型として、型の一方か
ら炭酸ガス及び(又は)その他の加圧ガスが導入され、
これが成形体中を通ってこれを炭化した後、成形体の反
対側に抜けて外部に排出される構成となっているものと
する。この1例を図示したもので説明する。The binder used in the present invention is not particularly limited as long as it is cured by carbonation. For example, in addition to calcium silicate hydrates such as zonotolite, tobermorite and cement hydrate, calcium silicate such as slaked lime, magnesium hydroxide, Portland cement and the like are used. In the examples shown below, γ-2CaO · SiO 2 (hereinafter γ-C 2 S
Disilicate and ordinary cement. These binders that are hardened by carbonation are kneaded with water alone or together with fine aggregate such as sand, poured into a mold and molded. The water used here is the material used 10
The ratio is set to 15 or more with respect to 0 so that the fluidity of the material is improved so that a molded article having a uniform density can be obtained. The kneaded material is poured into a mold, but the mold used here is a closed mold, and carbon dioxide gas and / or other pressurized gas is introduced from one of the molds.
After passing through the inside of the formed body and carbonizing it, it is configured to be discharged to the outside through the opposite side of the formed body. This example will be described with reference to the drawings.
図は下型1と上型2で構成された成形型である。下型
1は、(ロ)室を形成する部分と、その上にボルト3、
3で固定される混練物収納部4とで構成されている。下
型の上端部には、パンチグメタル、メッシュ、ろ紙で構
成されたろ過部5が形成されている。さらに、下型には
炭酸ガス導入管、成形体から絞り出された水などが排出
される排出管が、それぞれ図示のように設けられてい
る。上型は、下型とパッキン6を介して気密に嵌装され
ている。上型は、その上部に空所(イ)室を設けるとと
もに、その下端にも、下型に取り付けられているものと
同様なろ過部5′が装着されている。さらに、上型にも
炭酸ガス導入管が図示のように、排出管とともにブラン
チで取り付けられている。なお、上下の型に装着されて
いる管にはそれぞれ図示ようにバルブが取り付けられて
いる。こうした成形型は、図示しないプレスなどにより
型を上下から矢印の如く加圧するか、又は加圧後固定す
る構造になっている。The figure shows a molding die composed of a lower die 1 and an upper die 2. The lower mold 1 has a (b) part forming a chamber and a bolt 3 thereon.
And a kneaded material storage section 4 fixed at 3. At the upper end of the lower mold, there is formed a filtration unit 5 composed of punched metal, mesh, and filter paper. Further, the lower mold is provided with a carbon dioxide gas introduction pipe and a discharge pipe through which water squeezed out of the molded body is discharged, as shown in the figure. The upper die is airtightly fitted to the lower die via the packing 6. The upper mold is provided with a vacant space (a) at the upper part thereof, and a lower end thereof is provided with a filtering section 5 'similar to that attached to the lower mold. Further, a carbon dioxide gas introducing pipe is also attached to the upper mold by a branch together with the discharge pipe as shown in the figure. Note that valves are attached to the pipes mounted on the upper and lower molds, respectively, as shown in the figure. Such a mold has a structure in which the mold is pressed from above and below by a press (not shown) as shown by arrows, or is fixed after pressing.
上記のような成形型に流し込まれた混練物は、プレス
などを稼働して所定の厚さに成形する。この加圧操作で
成形体から一部分の水分が排出される。排出された水分
は、下型の(ロ)室に落ち、その下端の排出管から外部
に放出される。成形体が所定の厚さとなったところで、
プレスなどの稼働を止め、そのまま又は別の固定具に移
し、加圧ガスで成形体を圧搾、脱水する。図で説明する
と、まず下型の炭酸ガスの導入管のバルブを締め、排出
管のバルブを開放して(ロ)室を開放する。次に上型の
ブランチとなっている管の一方の排出管のバルブを閉
じ、いま一方の炭酸ガス導入管のバルブを開放してこれ
より炭酸ガスを(イ)室に導入する。この場合、炭酸ガ
スは加圧状態で導入される。導入されたガスは、成形体
を加圧するとともに、ろ過部から成形体の内部を貫通し
て(ロ)室に達し、(ロ)室の下部に設けられた排出管
から排出する。これによって、まず成形体の脱水が行な
われる。加圧された炭酸ガスで成形体を加圧することに
よって、成形体には無数の通気孔が形成され、ここを通
して中心部を含む成形体の全体が均一に脱水される。し
かも、この加圧を調整することによって、脱水後の成形
体の水分を適度に調節することが出来る。この成形体の
ガスによる加圧脱水による水分調整は、本発明によって
はじめて提案されたものであるが、この方法を採用する
と脱水が短時間で、しかも成形体の中心部まで均一に脱
水出来ることが特長である。なお、上記の説明では加圧
ガスに炭酸ガスを用いたが、成形体の加圧脱水には、も
ちろん炭酸ガスに限られるものではなく、空気でもよ
い。この場合は、図に示すガス導入管のブランチの他の
一方から炭酸ガス以外の気体を導入するようにすればよ
い。ただ、脱水にも炭酸ガスを使用すれば、成形体の脱
水につづいて或はそれと同時に成形体の炭酸化が行なわ
れるという、製造上の利点が得られる。The kneaded material poured into the above-mentioned mold is formed into a predetermined thickness by operating a press or the like. By this pressurizing operation, a part of water is discharged from the molded body. The discharged water falls into the lower chamber (b) and is discharged outside through a discharge pipe at the lower end thereof. When the molded body has reached the predetermined thickness,
The operation of the press or the like is stopped, and the molded body is squeezed and dewatered with a pressurized gas as it is or transferred to another fixture. Referring to the drawing, first, the valve of the lower carbon dioxide gas introduction pipe is closed, and the valve of the discharge pipe is opened to open the (b) chamber. Next, the valve of one discharge pipe of the pipe serving as the upper mold branch is closed, and the valve of the other carbon dioxide gas introduction pipe is opened to introduce carbon dioxide into the chamber (a). In this case, carbon dioxide gas is introduced in a pressurized state. The introduced gas pressurizes the molded body, penetrates through the inside of the molded body from the filtration unit, reaches the chamber (b), and is discharged from the discharge pipe provided at the lower part of the chamber (b). Thereby, the molded body is first dehydrated. By pressurizing the molded body with the pressurized carbon dioxide gas, countless air holes are formed in the molded body, and the entire molded body including the central portion is uniformly dehydrated through the vents. In addition, by adjusting the pressure, the water content of the molded article after dehydration can be appropriately adjusted. The moisture adjustment by pressurized dehydration of the molded article by gas is proposed for the first time by the present invention. However, when this method is employed, the dehydration can be performed in a short time, and even the central part of the molded article can be uniformly dehydrated. It is a feature. In the above description, carbon dioxide gas is used as the pressurized gas. However, the pressurized dehydration of the molded body is not limited to carbon dioxide gas, but may be air. In this case, a gas other than carbon dioxide may be introduced from the other one of the branches of the gas introduction pipe shown in the figure. However, if carbon dioxide gas is used for dehydration, there is an advantage in production that the molded product is carbonated following or simultaneously with the dehydration of the molded product.
成形体の脱水が出来て水分調整が終了したら、続いて
炭酸ガスを導入管から加圧状態で導入する。導入された
炭酸ガスは、成形体の中を貫通しつつ成形体をその中心
部まで均一に炭酸化して成形体の反対面に達し(ロ)室
に出て、その排出管から大気中に放出される。これらの
加圧気体による脱水と、それに続く炭酸化は、成形体の
厚さにもよるが、合せて5分程度で終わる。次に、炭酸
化をより能率的かつ確実に行なうため、今度は下型から
の炭酸ガスの吹き込みを行なう。これには例えば、下型
の排出管のバルブ、上型の炭酸ガス導入管の各バルブを
閉じ、下型の炭酸ガス導入管のバルブ、上型の排出管の
各バルブを開き、下型の炭酸ガス導入管から炭酸ガスを
加圧状態で下型の(ロ)室に送り込む。この炭酸ガスは
成形体の内部を炭酸化しつつその内部を貫通して上型の
(イ)室に抜け、排気管から大気中に出ていく。なお、
この下型からの炭酸ガスの吹き込みは、必要に応じて行
われるもので必ずしも不可欠のものではない。この下型
から炭酸ガスを送り込む時間は、上型からのガスの吹き
込み時間とほぼ同じでよい。こうした成形体へのガスの
吹込みで、成形体は短時間で炭酸化される。成形体が炭
酸化して硬化した後は、プレスから型枠を外し、脱型し
て製品とする。本発明において、炭酸化により硬化する
バインダーとしてγ−C2Sを使用した場合は炭酸化によ
り水を生成しないので、炭酸化に際してガスの浸透する
空隙を閉塞せず、有利に成形体の炭酸化を行なうことが
できる。After the dehydration of the molded body and the completion of the moisture adjustment, subsequently, carbon dioxide gas is introduced from the introduction pipe in a pressurized state. The introduced carbon dioxide gas uniformly penetrates the molded body to the center thereof while penetrating the molded body, reaches the opposite surface of the molded body, exits into the (b) chamber, and discharges it from the discharge pipe to the atmosphere. Is done. The dehydration by the pressurized gas and the subsequent carbonation are completed in about 5 minutes in total, depending on the thickness of the compact. Next, in order to perform carbonation more efficiently and surely, a carbon dioxide gas is blown from a lower mold. To do this, for example, close the valve of the lower mold discharge pipe, the valve of the upper mold carbon dioxide introduction pipe, open the valve of the lower mold carbon dioxide introduction pipe, the valve of the upper mold discharge pipe, The carbon dioxide gas is sent from the carbon dioxide gas introduction pipe to the lower (b) chamber in a pressurized state. The carbon dioxide gas passes through the inside of the molded body while carbonating the inside of the molded body, passes through the upper mold (a), and exits into the atmosphere through the exhaust pipe. In addition,
The blowing of the carbon dioxide gas from the lower mold is performed as needed and is not always essential. The time for feeding the carbon dioxide gas from the lower mold may be almost the same as the time for blowing the gas from the upper mold. By blowing gas into such a compact, the compact is carbonated in a short time. After the molded body is carbonated and hardened, the mold is removed from the press and removed from the mold to obtain a product. In the present invention, when γ-C 2 S is used as a binder that cures by carbonation, water is not generated by carbonation, so that pores through which gas permeates during carbonation are not closed, and carbonation of the molded body is advantageously performed. Can be performed.
原料混合物中には各種の複合材を添加することができ
る。例えば、パルプ等の気孔を有する繊維を混合する
と、炭酸ガスの浸透に有利である。また、ガラス、ビニ
ロン、カーボン、アラミド繊維などの補強繊維を混合す
ると、靭性に優れた硬化体を得ることが出来る。さら
に、混練水にメチルセルロースなどの増粘材を添加する
ことにより、脱水時間の調整、材料粒子に付着する水膜
の厚さをコントロール出来、これによって炭酸化を効率
よく行なうことが出来る。Various composite materials can be added to the raw material mixture. For example, if fibers having pores such as pulp are mixed, it is advantageous for permeation of carbon dioxide gas. When a reinforcing fiber such as glass, vinylon, carbon, and aramid fiber is mixed, a cured product having excellent toughness can be obtained. Further, by adding a thickening agent such as methyl cellulose to the kneading water, the dehydration time can be adjusted and the thickness of the water film adhered to the material particles can be controlled, whereby carbonation can be performed efficiently.
本発明で使用する炭酸ガスは、炭酸ガスの稀釈ガス、
燃焼排ガスなどの炭酸ガスを含む廃ガスでもよく、また
その圧力、ガス組成、成形体の厚さにもよるが、ほぼ2k
g/cm2〜25kg/cm2の範囲が好ましい。この範囲の下限未
満であると成形体中への炭酸ガスの浸透が充分でなく、
また上限を超える必要は通常はないためである。以下
に、実験例をあげてこの発明をさらに説明する。Carbon dioxide used in the present invention is a carbon dioxide dilution gas,
Waste gas containing carbon dioxide gas such as combustion exhaust gas may be used.Although it depends on the pressure, gas composition, and thickness of the molded product, approximately 2k
g / cm 2 range ~25kg / cm 2 is preferred. If it is less than the lower limit of this range, the penetration of carbon dioxide into the molded product is not sufficient,
It is not usually necessary to exceed the upper limit. Hereinafter, the present invention will be further described with reference to experimental examples.
実験例1. 含水調整及び炭酸化法を異にして炭酸化された硬化体
を製造し、得られた硬化体の曲げ強度を測定し、その平
均値、最大値、最少値及び変動係数を比較した。Experimental example 1. A carbonated cured product was produced using different water content adjustment and carbonation methods, the bending strength of the resulting cured product was measured, and the average value, maximum value, minimum value, and coefficient of variation were compared. did.
原料はγ−C2S及び普通セメントの2種を使用した。
成形される硬化体のサイズは、32×32×2(cm)とし、
これを4cm×16cm×2cmの16本に切り出し、それぞれにつ
いて曲げ強度を測定した。The raw materials used were γ-C 2 S and ordinary cement.
The size of the cured product to be molded is 32 x 32 x 2 (cm),
This was cut out into 16 pieces of 4 cm × 16 cm × 2 cm, and the bending strength was measured for each piece.
使用原料及び混練水の違いなどによって、AないしC
の各々を2つに分け、第1表の通りとした。A to C depending on the raw materials used and the mixing water
Was divided into two parts, as shown in Table 1.
各成形体の含水調整及び炭酸化は次のようにして行なっ
た。 Adjustment of water content and carbonation of each molded product were performed as follows.
(1) Aの配合材料を図に示す装置に流し込んだ後に
25kg/cm2でプレス加圧を行なった。この状態で(ロ)室
は開放し、(イ)室に9.9kg/cm2の圧力で炭酸ガスを供
給し、成形体の脱水と続いて炭酸化を5分間行なった。
その後(イ)室を開放し、(ロ)室に9.9kg/cm2の圧力
で炭酸ガスを供給し、引続き5分間炭酸化を行なった。
……本発明 (2) Aの配合材料を図に示す装置に流し込んだ後
に、25kg/cm2でプレス加圧成形を行なった後脱型し、乾
燥気で105℃に乾燥して成形体全体の含水量が成形体重
量に対して8%になるまで乾燥させた。このものを再び
図に示す装置に入れて(1)と同様なガス操作を行なっ
た。(1) After pouring the compounding material of A into the device shown in the figure
Press pressure was performed at 25 kg / cm 2 . In this state, the chamber (b) was opened, carbon dioxide gas was supplied to the chamber (a) at a pressure of 9.9 kg / cm 2 , and dehydration of the molded body and carbonation were performed for 5 minutes.
Thereafter, the chamber (a) was opened, and carbon dioxide gas was supplied to the chamber (b) at a pressure of 9.9 kg / cm 2 , followed by carbonation for 5 minutes.
…… The present invention (2) After the compounding material of A is poured into the apparatus shown in the figure, press-molding is performed at 25 kg / cm 2 , then demolded, and dried at 105 ° C. with dry air to form the entire molded body. Was dried until the water content became 8% based on the weight of the molded body. This was put into the apparatus shown in the figure again, and the same gas operation as in (1) was performed.
(3) Aの配合材料を図に示す装置に流し込んだ後
に、(ロ)室を真空ポンプで減圧し成形体全体の含水量
が成形体重量に対して8%となるまで真空脱水した。そ
の後(1)と同様なガス操作を行なった。(3) After the compounding material of A was poured into the apparatus shown in the figure, the pressure in the chamber (b) was reduced by a vacuum pump, and vacuum dehydration was performed until the water content of the entire molded body became 8% based on the weight of the molded body. Thereafter, the same gas operation as in (1) was performed.
(4) Bの配合材料を図に示す装置に均等に敷きなら
した後25kg/cm2でプレス加圧を行ない、その状態で
(イ)及び(ロ)室に炭酸ガスを充填した後除荷し、10
分間炭酸化を行なった。(4) Spread the compounding material of B evenly on the equipment shown in the figure, press it at 25 kg / cm 2 , and in that state, fill the chambers (a) and (b) with carbon dioxide and unload. Then 10
Carbonated for minutes.
(5) Cの配合材料を図に示す装置に均一に敷きなら
した後25kg/cm2でプレス加圧を行ない、その状態で
(イ)及び(ロ)室に炭酸ガスを充填した後除荷し、10
分間炭化を行なう。(5) Spread the compounding material of C evenly on the equipment shown in the figure, press it at 25 kg / cm 2 , press the carbon dioxide gas in chambers (a) and (b) and then unload. Then 10
Carburize for a minute.
(1)ないし(5)の実験結果を第2表に示す。 Table 2 shows the experimental results of (1) to (5).
実験例2 γ−C2S100、水50重量比の混合物を図に示す装置に流
し込み、25kg/cm2でプレス加圧して2cmとした。この状
態で(ロ)室を開放し、(イ)室を炭酸ガスで3分間加
圧した後(イ)室を開放し(ロ)室を炭酸ガスで3分間
加圧する。この場合におけるガス圧を2、5、10、20kg
/cm2にそれぞれ変えて硬化させ、その曲げ強度を測定し
た。ガス圧20kg/cm2のものには、水に対して0.5%のメ
チルセルロースを添加した。また、ガス圧2kg/cm2のも
のには、γ−C2Sに対して5%のパルプを添加した。結
果は第3表の通りであった。 Experimental Example 2 A mixture of γ-C 2 S100 and water at a weight ratio of 50 was poured into the apparatus shown in the figure, and pressed at 25 kg / cm 2 to 2 cm. In this state, the room (b) is opened, the room (a) is pressurized with carbon dioxide for 3 minutes, and then the room (a) is opened and the room (b) is pressurized with carbon dioxide for 3 minutes. Gas pressure in this case is 2,5,10,20kg
/ cm 2 and cured, and the flexural strength was measured. For those having a gas pressure of 20 kg / cm 2 , 0.5% of methylcellulose based on water was added. Further, to those having a gas pressure of 2 kg / cm 2 , 5% of pulp was added to γ-C 2 S. The results were as shown in Table 3.
実施例1. 重量比で、γ−C2S100、骨材(川砂)75、水50、及び
水に対して0.5%のメチルセルロースの混合物を図示し
た装置に流し込み、25kg/cm2でプレス加圧し、2cmとし
た。その状態で(ロ)室を開放し、(イ)室を9.9kg/cm
2の圧力の空気で5分間加圧した。その後つづいて
(イ)室に炭酸ガス濃度15%の混合気で、9.9kg/cm2の
圧力で20分間加圧した後、(イ)室を開放し(ロ)室を
炭酸ガス濃度15%の混合気で、9.9kg/cm2の圧力で20分
間加圧した。ここに得られたものは、曲げ強度142kg/cm
2、変動係数6.3%の硬化体であった。 Example 1. A mixture of γ-C 2 S100, aggregate (river sand) 75, water 50, and 0.5% of methylcellulose with respect to water in a weight ratio was poured into the apparatus shown in the drawing, and press-pressed at 25 kg / cm 2. , 2 cm. In that state, open the room (b) and open the room (a) at 9.9kg / cm.
It was pressurized with air at a pressure of 2 for 5 minutes. After that, the room (a) was pressurized with a mixture of 15% carbon dioxide at a pressure of 9.9 kg / cm 2 for 20 minutes, and then the room (a) was opened and the room (b) was filled with 15% carbon dioxide. Was pressurized at a pressure of 9.9 kg / cm 2 for 20 minutes. The one obtained here has a bending strength of 142 kg / cm
2. The cured product had a coefficient of variation of 6.3%.
実施例2. 重量比で、γ−C2S100、川砂75、水60でモルタルを混
練した。これをサイズが90×180(cm)で図と同様な形
式の型枠に、ガラス繊維(長さ3.5cm)をモルタル重量
に対し、5%にして吹き付けた。これを40kg/cm2でプレ
スし、その状態で下面空隙側を大気圧に開放し、上面よ
り7.5kg/cm2の圧力の炭酸ガスで5分間加圧、通気し
た。その後ガスの流れを入替えて、さらに3分間、加
圧、通気し、更に3分間、加圧、通気した。このように
して90×180×2(cm)の外装板を4枚/時間で生産し
た。この壁板は、曲げ強度280kg/cm2で表面のボロツキ
もなく内部まで均一な建材であった。Example 2. Mortar was kneaded with γ-C 2 S100, river sand 75, and water 60 by weight ratio. The glass fiber (3.5 cm in length) was sprayed onto a mold having a size of 90 × 180 (cm) having a size similar to that shown in FIG. This was pressed at 40 kg / cm 2 , and in this state, the lower gap side was opened to the atmospheric pressure, and pressurized and ventilated with carbon dioxide gas at a pressure of 7.5 kg / cm 2 from the upper surface for 5 minutes. Thereafter, the gas flow was changed, and pressurization and ventilation were performed for an additional 3 minutes, and pressurization and ventilation were performed for an additional 3 minutes. In this way, 90 × 180 × 2 (cm) exterior plates were produced at 4 sheets / hour. The wallboard was a uniform building material with a bending strength of 280 kg / cm 2 and no unevenness on the surface to the inside.
図はこの発明の実施に用いられる成形型の一実施例を示
した説明図である。 1……下型、2……上型、4……混練物収納部、5,5′
……ろ過部。FIG. 1 is an explanatory view showing one embodiment of a molding die used for carrying out the present invention. 1 lower mold 2 upper mold 4 kneaded material storage section 5,5 '
... Filtering section.
Claims (1)
合物の成形体を炭酸化して硬化するに当り、加圧ガスで
成形体を圧搾、脱水し、これと同時に又はひき続き成形
体中に炭酸ガスを含むガスを透過させることを特徴とす
る成形体の炭酸化養生法。When a carbonized hardening of a mixture of a mixture containing a binder which is hardened by carbonation is performed, the formed body is squeezed and dewatered with a pressurized gas, and simultaneously or successively, carbon dioxide gas is added to the formed body. A carbonation curing method for a molded article, characterized by allowing a gas containing nitrogen to pass therethrough.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63165941A JP2753267B2 (en) | 1988-07-05 | 1988-07-05 | Carbonation curing method for compacts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63165941A JP2753267B2 (en) | 1988-07-05 | 1988-07-05 | Carbonation curing method for compacts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0218368A JPH0218368A (en) | 1990-01-22 |
JP2753267B2 true JP2753267B2 (en) | 1998-05-18 |
Family
ID=15821925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63165941A Expired - Lifetime JP2753267B2 (en) | 1988-07-05 | 1988-07-05 | Carbonation curing method for compacts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2753267B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3579560B2 (en) * | 1996-12-27 | 2004-10-20 | 電気化学工業株式会社 | Carbonated Vegetable Concrete Cement, Carbonated Vegetable Concrete, and Method for Producing the Same |
JP3579559B2 (en) * | 1996-12-27 | 2004-10-20 | 電気化学工業株式会社 | Carbonated cement, hardened cement and its production method |
US9028607B2 (en) | 2005-02-24 | 2015-05-12 | Wisconsin Electric Power Company | Carbon dioxide sequestration in foamed controlled low strength materials |
US7390444B2 (en) | 2005-02-24 | 2008-06-24 | Wisconsin Electric Power Company | Carbon dioxide sequestration in foamed controlled low strength materials |
US8845940B2 (en) | 2012-10-25 | 2014-09-30 | Carboncure Technologies Inc. | Carbon dioxide treatment of concrete upstream from product mold |
EP2951122B1 (en) | 2013-02-04 | 2020-05-27 | Carboncure Technologies Inc. | System and method of applying carbon dioxide during the production of concrete |
US10781140B2 (en) | 2013-03-14 | 2020-09-22 | Solidia Technologies, Inc. | Method and apparatus for the curing of composite material by control over rate limiting steps in water removal |
US9388072B2 (en) | 2013-06-25 | 2016-07-12 | Carboncure Technologies Inc. | Methods and compositions for concrete production |
US9108883B2 (en) | 2013-06-25 | 2015-08-18 | Carboncure Technologies, Inc. | Apparatus for carbonation of a cement mix |
US9376345B2 (en) | 2013-06-25 | 2016-06-28 | Carboncure Technologies Inc. | Methods for delivery of carbon dioxide to a flowable concrete mix |
US10927042B2 (en) | 2013-06-25 | 2021-02-23 | Carboncure Technologies, Inc. | Methods and compositions for concrete production |
US20160107939A1 (en) | 2014-04-09 | 2016-04-21 | Carboncure Technologies Inc. | Methods and compositions for concrete production |
CA2937822C (en) * | 2014-01-22 | 2023-05-16 | Solidia Technologies, Inc. | Method and apparatus for curing co2 composite material objects at near ambient temperature and pressure |
WO2015123769A1 (en) | 2014-02-18 | 2015-08-27 | Carboncure Technologies, Inc. | Carbonation of cement mixes |
CA2943791C (en) | 2014-04-07 | 2023-09-05 | Carboncure Technologies Inc. | Integrated carbon dioxide capture |
EA201790161A1 (en) * | 2014-08-05 | 2017-11-30 | Солидиа Текнолоджиз, Инк. | METHOD AND DEVICE FOR CURING COMPOSITE MATERIAL BY REGULATING RESTRICTIVE SPEED STEPS IN WATER REMOVAL |
EP3442761A4 (en) | 2016-04-11 | 2019-12-11 | Carboncure Technologies Inc. | Methods and compositions for treatment of concrete wash water |
EP3642170A4 (en) | 2017-06-20 | 2021-03-10 | Carboncure Technologies Inc. | Methods and compositions for treatment of concrete wash water |
-
1988
- 1988-07-05 JP JP63165941A patent/JP2753267B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0218368A (en) | 1990-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2753267B2 (en) | Carbonation curing method for compacts | |
SU1664116A3 (en) | Method for manufacture of slabs and profiles | |
CN100537469C (en) | Fibre-reinforced cement compound external wall panel and method of producing the same | |
JP2022529415A (en) | Carbonated curing method for manufacturing wet cast slag concrete products | |
CN113956000A (en) | Cement kiln tail gas carbonization building prefabricated product and preparation method thereof | |
CN114409320B (en) | Carbon mineralized fiber cement board and secondary compression molding preparation method and application thereof | |
JPH06316453A (en) | Preparation of hydrated calcium silicate bound molded body | |
US11427510B1 (en) | Method and article for improving the strength of carbonated calcium hydroxide compacts | |
JP3618001B2 (en) | Porous open cell concrete molded body and method for producing the same composite | |
JPH10230506A (en) | Manufacture of cement-based plate material | |
JP2574212B2 (en) | Method and apparatus for producing inorganic plate | |
JP4180870B2 (en) | Inorganic board and method for producing the same | |
JPH09156987A (en) | Production of wooden cement plate | |
JP2652774B2 (en) | Manufacturing method of inorganic plate | |
JP2000044316A (en) | Production of inorganic plate | |
JP4290855B2 (en) | Manufacturing method of wood cement board | |
JP3090805B2 (en) | Method for producing hydraulic inorganic molded article | |
JP3231161B2 (en) | Method for producing hydraulic inorganic molded article | |
SU1599193A1 (en) | Method of producing laminated asbestos-cement articles | |
JPS6225081B2 (en) | ||
JPS63288706A (en) | Manufacture of fiber reinforced concrete product | |
JPH068215A (en) | Production of fiber composite, especially two-floor plate, and plate produced by said method | |
JP3009538B2 (en) | Method for producing hydraulic inorganic molded article | |
JP2003154510A (en) | Method for manufacturing inorganic plate | |
WO1988006083A1 (en) | Process for forming cement moldings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |