JP4290855B2 - Manufacturing method of wood cement board - Google Patents

Manufacturing method of wood cement board Download PDF

Info

Publication number
JP4290855B2
JP4290855B2 JP2000162841A JP2000162841A JP4290855B2 JP 4290855 B2 JP4290855 B2 JP 4290855B2 JP 2000162841 A JP2000162841 A JP 2000162841A JP 2000162841 A JP2000162841 A JP 2000162841A JP 4290855 B2 JP4290855 B2 JP 4290855B2
Authority
JP
Japan
Prior art keywords
wood
mat
cement
carbon dioxide
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000162841A
Other languages
Japanese (ja)
Other versions
JP2001342083A (en
Inventor
康雄 黒木
辨 永富
真一 金子
秀一 川井
俊充 畑
ヘルマワン デデ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2000162841A priority Critical patent/JP4290855B2/en
Publication of JP2001342083A publication Critical patent/JP2001342083A/en
Application granted granted Critical
Publication of JP4290855B2 publication Critical patent/JP4290855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【産業上の利用分野】
本発明は主として建築用板材として使用される木質セメント板に関するものである。
【0002】
【発明の背景】
この種の木質セメント板は例えば木片、木毛、木質パルプ等の木質補強材をセメント系無機粉体に添加混合した原料混合物を板上に散布してマットをフォーミングし、該マットを板と共に圧締状態で一次養生を行なって該マットを予備硬化せしめ、更に該予備硬化体を二次養生して完全硬化せしめる方法によって製造される。
【0003】
しかしながら製造された木質セメント板に未反応セメント成分が残存すると、該木質セメント板には吸湿による寸法変化や反りが発生し易くなると云う問題点が起きる。特に木質補強材がリグニン、ヘミセルロース、糖類等のセメント硬化阻害物質が含まれている樹種からなるものである場合には、セメント硬化不良が起こり未反応セメント成分が多く残存する結果、製品である木質セメント板の寸法安定性は顕著に悪くなる。
【0004】
【従来の技術】
木質セメント板の寸法安定性を改良するために、該木質セメント板を炭酸ガスで処理する方法が提案されている。該木質セメント板を炭酸ガスで処理すると、セメントの硬化が促進されるばかりでなく、セメントの水和反応によって生成した水酸化カルシウムが炭酸カルシウムに変化し、該炭酸カルシウムが木質セメント板内部に存在する空隙に充填して、該木質セメント板の内部構造を緻密化することによって寸法安定性が改良される。
このような木質セメント板の炭酸ガス処理方法は例えば特開2000−07466号公報において提供されている。
【0005】
【発明が解決しようとする課題】
従来の炭酸ガス処理方法は原料混合物のマットを加熱プレス硬化させて木質セメント板を製造した後に行われていたので、マットの加熱プレス硬化時にはまだ水酸化カルシウムがマット内に残存しており、該水酸化カルシウムの強アルカリ性によって木質補強材が劣化し、また木質セメント板の内部にまで炭酸ガスが浸透しにくいので、木質セメント板の強度が低下するしまた内部構造の緻密化が充分行われず、寸法安定性の改良が充分行われないと云う問題点があった。
【0006】
【課題を解決するための手段】
本発明は上記従来の課題を解決するための手段として、セメント系無機粉体と木質補強材とを含有する原料混合物を板上に散布してマットをフォーミングする工程1、
該マットを板と共に圧締して一次養生を行ない、該マットを予備硬化する工程2、
該予備硬化体を脱板して加圧炭酸ガス雰囲気中で養生する工程3、
更に該予備硬化体を加圧水蒸気雰囲気中で二次養生する工程4、
以上の工程1、2、3、4からなる木質セメント板の製造方法を提供するものである。
以下、本発明を詳細に説明する。
【0007】
【発明の実施の形態】
〔セメント系無機粉体〕
本発明に使用されるセメント系無機粉体とは、ケイ酸カルシウムを主成分とした水硬性の無機粉体であり、このような無機粉体としては、例えばポルトランドセメント、あるいはポルトランドセメントに高炉スラグを混合した高炉セメント、フライアッシュを混合したフライアッシュセメント、火山灰や白土等のシリカ物質を混合したシリカセメント、アルミナセメント、高炉スラグ等がある。
【0008】
〔木質補強材〕
本発明に用いられる木質補強材としては、木粉、木毛、木片、木質繊維、木質パルプ、木質繊維束等があるが、該木質補強材には竹繊維、麻繊維、バカス、モミガラ、稲わら等のリグノセルロースを主成分とする材料を混合してもよい。好ましい木質補強材としては、巾0.5〜2.0mm、長さ1〜20mm、アスペクト比(長さ/厚み)20〜30の木片や、直径0.1〜2.0mm、長さ2〜35mmの分枝及び/又は彎曲及び/又は折曲した木質繊維束がある。上記木質補強材は、絶乾状態に換算して通常セメント系無機粉体に対して5〜100重量%程度混合される。
【0009】
〔骨材〕
上記セメント系無機粉体及び木質補強材以外に、本発明においては骨材、特に軽量骨材を混合してもよい。上記骨材としては、例えばケイ砂、ケイ石粉等が使用され、上記軽量骨材としてはパーライト、シラスバルーン、膨張頁岩、膨張粘土、焼成ケイ藻土、フライアッシュ、ガラスバルーン等が使用される。
上記骨材は、通常混合物の全固形粉に対して5〜15重量%程度混合される。
【0010】
〔第三成分〕
上記混合物には、所望なれば更に硫酸アルミニウム、硫酸マグネシウム、アルミン酸塩類、水ガラス等の硬化促進剤やロウ、ワックス、パラフィン、界面活性剤、シリコン等の防水剤や撥水剤等が混合されてもよい。
【0011】
〔木質セメント板の製造〕
本発明においては、木質セメント板は生産性の良好な乾式法によって製造することが好ましい。
乾式法の場合、工程1においては、上記セメント系無機粉体及び木質補強材、そして所望により骨材、第三成分を含有する混合物からなる成形材料をポジ柄模様の型板あるいは搬送板等の板上に散布してマットをフォーミングし、該マットに水を添加するか、あるいは上記セメント系無機粉体及び木質補強材、そして所望により骨材、第三成分を含有する混合物に水を添加混合し、得られた成形材料を型板あるいは搬送板等の板上に散布してマットをフォーミングする。いずれの方法においても、該水は該マット又は混合物の水分含有率が30〜50重量%となるように添加するのが好ましい。
【0012】
工程2においては、板上にフォーミングされたマットを、板と共に通常3〜5MPa の圧力で圧締した状態で40〜50℃程度の温度で5〜10時間程度加熱して一次養生を行ない予備硬化させる。
【0013】
工程3においては、該予備硬化体を板からはずして脱板し、通常はオートクレーブ内に収容し、加圧炭酸ガス雰囲気中で養生する。この場合、通常炭酸ガス濃度は10〜100容量%、圧力は2〜10気圧に設定され、養生時間は10〜120分程度とされる。
上記加圧炭酸ガス処理は予備硬化体に対して行われるので、予備硬化体内部にまで炭酸ガスが浸透し、その結果予備硬化体内部に残存する水酸化カルシウムも略完全に炭酸化される。
【0014】
工程4においては、上記加圧炭酸ガス処理された予備硬化体を例えばオートクレーブ中で加圧水蒸気雰囲気中で二次養生する。この場合、通常水蒸気としては飽和水蒸気が使用され、圧力は2〜10気圧に設定され、養生時間は6〜12時間程度とされる。
【0015】
上記加圧炭酸ガス処理工程(工程3)と加圧水蒸気養生工程(工程4)とは一つのオートクレーブ内で連続して行なうことが出来る。またこの場合、二次養生工程としては加圧炭酸ガス処理工程における炭酸ガス雰囲気の中へ水蒸気を吹込んで行なうことが出来る。
上記加圧水蒸気養生では前もって予備硬化体中の水酸化カルシウムが炭酸化されているので、高温高圧下におけるアルカリによる予備硬化体内の木質補強材の劣化は殆んど起らず、したがって得られる木質セメント板の強度は劣化しない。
【0016】
二次養生後、得られた木質セメント板は所望なれば、乾燥、トリミング、塗装等を行なって製品とする。
以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0017】
〔実施例1〜9〕ポルトランドセメント60重量%と、ケイ砂20重量%と、木材フレーク20重量%との原料混合物に、水30〜50重量%混合し、更に硬化促進剤として塩化マグネシウムをセメント対比0.5〜3.0重量%外添し攪拌混合してマット原料とした。該マット原料を板上に散布してマットにフォーミングし、該フォーミングマットを該板と共に複数層重ね、クランプした状態で40〜50℃、8時間一次養生した。一次養生後脱板し予備硬化体となし、該予備硬化体を養生釜中で表1に示す各条件でまず加圧炭酸ガスを注入し、次いで飽和水蒸気を圧入して165℃、10時間の二次養生を行った。それぞれの条件下における試料の物性値は表1に示す。
【0018】
【表1】

Figure 0004290855
【0019】
〔比較例1〜7〕
表2に示すように比較例1は実施例と原料配合等を同条件で成形し、一次養生した予備硬化体を二次養生(165℃、10時間)し、その後に加圧炭酸ガス処理を行った例であり、比較例2は該予備硬化体の二次養生後にも加圧炭酸ガス処理を全く行なわなかった例である。比較例3〜7は一次養生後の該予備硬化体に加圧炭酸ガスを種々の条件で注入処理したが飽和水蒸気の圧入を行なわない例である。
なお表1,表2中の物性試験はJIS A 5905に準拠して測定した。
【0020】
【表2】
Figure 0004290855
【0021】
表1および表2を参照すれば、二次養生後に加圧炭酸ガス処理を行った比較例1は、一次養生後二次養生前に加圧炭酸ガス処理および二次養生として加圧水蒸気処理を行った実施例3に比して曲げ強度、特に剥離強度と吸水膨潤率とが劣っており、二次養生中に木質補強材の劣化が起こり、かつ水酸化カルシウムの炭酸化が不充分であったことをうかがわせる。
また一次硬化体の二次養生後にも加圧炭酸ガス処理を行わない比較例2は比較例1よりも更に曲げ強度、吸水膨張率、剥離強度が劣り、また一次養生後に加圧炭酸ガス処理のみを行ない加圧水蒸気処理を行わない比較例3〜7も実施例1〜5に比べると物性値がいずれも劣っていることが分かる。更に、加圧炭酸ガス処理条件を異ならせた実施例6、7、9においては他の実施例に比して少なくとも吸水膨張率が向上していることが分かる。
【0022】
【発明の効果】
本発明では加圧炭酸ガス処理をマットの一次養生後二次養生前に行なうので、炭酸ガスが予備硬化体内に充分に浸透して水酸化カルシウムの炭酸化が充分行われ、木質補強材の劣化も起こらず、高強度で寸法安定性の良い木質セメント板が得られる。[0001]
[Industrial application fields]
The present invention mainly relates to a wood cement board used as a building board material.
[0002]
BACKGROUND OF THE INVENTION
This type of wood cement board is formed by spreading a raw material mixture in which a wood reinforcing material such as wood chips, wood wool, wood pulp and the like is added to a cementitious inorganic powder on the board, forming the mat, and pressing the mat together with the board. The mat is preliminarily cured by performing primary curing in a clamped state, and is further manufactured by a method in which the precured body is secondarily cured and completely cured.
[0003]
However, when an unreacted cement component remains in the manufactured wood cement board, there arises a problem that the wood cement board is likely to undergo dimensional changes and warping due to moisture absorption. In particular, if the wood reinforcement is made of a tree species that contains cement hardening inhibitors such as lignin, hemicellulose, saccharides, etc., as a result of poor cement hardening and a large amount of unreacted cement components remaining, The dimensional stability of the cement board is significantly worse.
[0004]
[Prior art]
In order to improve the dimensional stability of the wood cement board, a method of treating the wood cement board with carbon dioxide gas has been proposed. When the wood cement board is treated with carbon dioxide, not only is the hardening of the cement accelerated, but the calcium hydroxide produced by the hydration reaction of the cement is changed to calcium carbonate, and the calcium carbonate is present inside the wood cement board. Dimensional stability is improved by filling the voids to be densified and densifying the internal structure of the wood cement board.
Such a method of treating a carbon cement board with carbon dioxide gas is provided in, for example, Japanese Patent Application Laid-Open No. 2000-07466.
[0005]
[Problems to be solved by the invention]
Since the conventional carbon dioxide treatment method was performed after the mat of the raw material mixture was heated and press cured to produce a wood cement board, calcium hydroxide still remains in the mat when the mat was heated and cured. Due to the strong alkalinity of calcium hydroxide, the wood reinforcing material deteriorates, and carbon dioxide gas hardly penetrates into the inside of the wood cement board, so the strength of the wood cement board is lowered and the internal structure is not sufficiently densified, There was a problem that the dimensional stability was not sufficiently improved.
[0006]
[Means for Solving the Problems]
As a means for solving the above-mentioned conventional problems, the present invention is a process 1 for forming a mat by spreading a raw material mixture containing a cement-based inorganic powder and a wood reinforcing material on a plate,
A step 2 in which the mat is pressed together with a plate to perform primary curing, and the mat is pre-cured;
Step 3 of removing the precured body and curing in a pressurized carbon dioxide atmosphere,
Further, the step 4 of secondary curing the precured body in a pressurized steam atmosphere,
The manufacturing method of the wood cement board which consists of the above processes 1, 2, 3, and 4 is provided.
Hereinafter, the present invention will be described in detail.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[Cement-based inorganic powder]
The cement-based inorganic powder used in the present invention is a hydraulic inorganic powder mainly composed of calcium silicate. Examples of such inorganic powder include Portland cement, or Portland cement and blast furnace slag. Blast furnace cement mixed with ash, fly ash cement mixed with fly ash, silica cement mixed with silica materials such as volcanic ash and clay, alumina cement, blast furnace slag and the like.
[0008]
[Wood reinforcement]
Examples of the wood reinforcing material used in the present invention include wood flour, wood wool, wood fragments, wood fiber, wood pulp, wood fiber bundle, etc., and the wood reinforcement material includes bamboo fiber, hemp fiber, bacus, rice bran, rice A material mainly composed of lignocellulose such as straw may be mixed. Preferable wood reinforcing material is a wood piece having a width of 0.5 to 2.0 mm, a length of 1 to 20 mm, an aspect ratio (length / thickness) of 20 to 30, a diameter of 0.1 to 2.0 mm, and a length of 2 to 2. There are 35 mm branches and / or folded and / or folded wood fiber bundles. The wood reinforcing material is usually mixed in an amount of about 5 to 100% by weight with respect to the cementitious inorganic powder in terms of a dry state.
[0009]
〔aggregate〕
In addition to the cement-based inorganic powder and the wood reinforcing material, an aggregate, particularly a lightweight aggregate may be mixed in the present invention. Examples of the aggregate include quartz sand and quartzite powder, and examples of the lightweight aggregate include pearlite, shirasu balloon, expanded shale, expanded clay, calcined diatomaceous earth, fly ash, and glass balloon.
The aggregate is usually mixed in an amount of about 5 to 15% by weight based on the total solid powder of the mixture.
[0010]
[Third component]
If desired, the above mixture is further mixed with a hardening accelerator such as aluminum sulfate, magnesium sulfate, aluminates, water glass, or a waterproofing or water repellent such as wax, wax, paraffin, surfactant, or silicon. May be.
[0011]
[Manufacture of wood cement board]
In the present invention, the wood cement board is preferably produced by a dry method with good productivity.
In the case of the dry method, in step 1, a molding material composed of a mixture containing the cement-based inorganic powder and the wood reinforcing material, and, if desired, an aggregate and a third component, is used as a positive pattern template or a conveying plate. Sprinkle on a board to form a mat and add water to the mat, or add water to the mixture containing the above cementitious inorganic powder and wood reinforcing material, and optionally aggregate and third component Then, the obtained molding material is spread on a plate such as a template or a conveying plate to form a mat. In any method, the water is preferably added so that the water content of the mat or mixture is 30 to 50% by weight.
[0012]
In step 2, the mat formed on the plate is heated for about 5 to 10 hours at a temperature of about 40 to 50 ° C. in a state where the mat is pressed together with the plate at a pressure of usually 3 to 5 MPa, and precured. Let
[0013]
In step 3, the pre-cured product is removed from the plate and removed, and usually stored in an autoclave and cured in a pressurized carbon dioxide atmosphere. In this case, the carbon dioxide concentration is usually set to 10 to 100% by volume, the pressure is set to 2 to 10 atm, and the curing time is about 10 to 120 minutes.
Since the pressurized carbon dioxide treatment is performed on the precured body, the carbon dioxide gas penetrates into the precured body, and as a result, the calcium hydroxide remaining in the precured body is also almost completely carbonated.
[0014]
In step 4, the precured body treated with the pressurized carbon dioxide gas is secondarily cured in a pressurized steam atmosphere in an autoclave, for example. In this case, saturated water vapor is usually used as water vapor, the pressure is set to 2 to 10 atmospheres, and the curing time is about 6 to 12 hours.
[0015]
The pressurized carbon dioxide treatment step (Step 3) and the pressurized steam curing step (Step 4) can be performed continuously in one autoclave. In this case, the secondary curing step can be performed by blowing water vapor into the carbon dioxide atmosphere in the pressurized carbon dioxide treatment step.
In the above-mentioned pressurized steam curing, calcium hydroxide in the pre-cured body is carbonated in advance, so that there is little deterioration of the wood reinforcing material in the pre-cured body due to alkali under high temperature and high pressure, and thus the obtained wood cement The strength of the plate does not deteriorate.
[0016]
After the secondary curing, the obtained wood cement board is dried, trimmed, painted, etc. to obtain a product if desired.
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
[0017]
And Example 1-9] Portland cement 6 0 by weight%, and silica sand 2 0 by weight%, the raw material mixture of 2 0 by weight% wood flakes, mixed water 30-50 wt%, further curing accelerator As an agent, magnesium chloride was externally added in an amount of 0.5 to 3.0% by weight with respect to the cement, and mixed with stirring to obtain a mat raw material. The mat raw material was sprayed on a plate to form a mat, and the forming mat was overlaid with a plurality of layers together with the plate, followed by primary curing at 40 to 50 ° C. for 8 hours. After primary curing, the plate was removed to form a pre-cured body. The pre-cured body was first injected with pressurized carbon dioxide gas in a curing kettle under the conditions shown in Table 1 and then injected with saturated water vapor at 165 ° C. for 10 hours. Secondary curing was performed. Table 1 shows the physical property values of the samples under each condition.
[0018]
[Table 1]
Figure 0004290855
[0019]
[Comparative Examples 1-7]
As shown in Table 2, in Comparative Example 1, the examples and raw material blends were molded under the same conditions, and the precured precured body was secondarily cured (165 ° C., 10 hours), and then subjected to pressurized carbon dioxide treatment. Comparative Example 2 is an example in which no pressurized carbon dioxide treatment was performed even after secondary curing of the precured body. Comparative Examples 3 to 7 are examples in which pressurized carbon dioxide gas was injected into the precured body after the primary curing under various conditions, but saturated water vapor was not injected.
The physical property tests in Tables 1 and 2 were measured according to JIS A 5905.
[0020]
[Table 2]
Figure 0004290855
[0021]
Referring to Table 1 and Table 2, in Comparative Example 1 in which the pressurized carbon dioxide treatment was performed after the secondary curing, the pressurized carbon dioxide treatment and the pressurized steam treatment as the secondary curing were performed after the primary curing and before the secondary curing. In comparison with Example 3, the bending strength, particularly the peel strength and the water absorption swelling rate, were inferior, the wood reinforcing material was deteriorated during secondary curing, and the carbonation of calcium hydroxide was insufficient. I can see that.
Further, Comparative Example 2 in which the pressurized carbon dioxide treatment is not performed even after the secondary curing of the primary cured body is inferior to Comparative Example 1 in bending strength, water absorption expansion rate, peel strength, and only the pressurized carbon dioxide treatment after the primary curing. It can be seen that Comparative Examples 3 to 7 where the pressurized steam treatment is performed and the physical property values are inferior to those of Examples 1 to 5. Furthermore, in Examples 6, 7, and 9 in which the pressurized carbon dioxide treatment conditions are different, it can be seen that at least the water absorption expansion coefficient is improved as compared with the other examples.
[0022]
【The invention's effect】
In the present invention, the pressurized carbon dioxide treatment is performed after the primary curing of the mat and before the secondary curing, so that the carbon dioxide sufficiently penetrates into the pre-cured body and the calcium hydroxide is sufficiently carbonated, and the wood reinforcing material is deteriorated. The wood cement board with high strength and good dimensional stability can be obtained.

Claims (1)

セメント系無機粉体と木質補強材とを含有する原料混合物を板上に散布してマットをフォーミングする工程1、
該マットを板と共に圧締して一次養生を行ない、該マットを予備硬化する工程2、
該予備硬化体を脱板して加圧炭酸ガス雰囲気中で養生する工程3、
更に該予備硬化体を加圧水蒸気雰囲気中で二次養生する工程4、
以上の工程1、2、3、4からなることを特徴とする木質セメント板の製造方法。
Step 1 of forming a mat by spreading a raw material mixture containing a cement-based inorganic powder and a wood reinforcing material on a plate,
A step 2 in which the mat is pressed together with a plate to perform primary curing, and the mat is pre-cured;
Step 3 of removing the precured body and curing in a pressurized carbon dioxide atmosphere,
Further, the step 4 of secondary curing the precured body in a pressurized steam atmosphere,
A method for producing a wood cement board, comprising the above steps 1, 2, 3, and 4.
JP2000162841A 2000-05-31 2000-05-31 Manufacturing method of wood cement board Expired - Lifetime JP4290855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162841A JP4290855B2 (en) 2000-05-31 2000-05-31 Manufacturing method of wood cement board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162841A JP4290855B2 (en) 2000-05-31 2000-05-31 Manufacturing method of wood cement board

Publications (2)

Publication Number Publication Date
JP2001342083A JP2001342083A (en) 2001-12-11
JP4290855B2 true JP4290855B2 (en) 2009-07-08

Family

ID=18666690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162841A Expired - Lifetime JP4290855B2 (en) 2000-05-31 2000-05-31 Manufacturing method of wood cement board

Country Status (1)

Country Link
JP (1) JP4290855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623581A (en) * 2022-10-21 2024-04-24 Adaptavate Ltd Construction product

Also Published As

Publication number Publication date
JP2001342083A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
US5744078A (en) Accelerated processing of cement-bonded particleboard and fiberboard
US5935317A (en) Accelerated curing of cement-based materials
CN110436847A (en) A kind of high-strength anti-crack concrete and preparation method thereof
JPS632849A (en) Mixture composition for manufacturing fiber-containing hydraulic formed body and manufacture of same body
EP0305209A1 (en) Fibre composite materials
JPH07291707A (en) Production of fiber reinforced cement plate
JP3374515B2 (en) Manufacturing method of inorganic plate
JPH10231161A (en) Heat-curing type cement composition and production of wood-based cement board using the same composition
JP4290855B2 (en) Manufacturing method of wood cement board
US20080282937A1 (en) Compositions of and methods for making of a concrete-like material containing cellulosic derivatives
JP3211204B2 (en) Wood cement board manufacturing method
JP4348001B2 (en) Wood cement board and manufacturing method thereof
JP2000128663A (en) Production of wooden cement board
JPH082954A (en) Method for treating woody reinforcing material and production of inorganic board
JP3980182B2 (en) Manufacturing method of wood cement board
JP3328258B2 (en) Method of promoting cement hardening
JPH0867547A (en) Woody cement board
JPH08259302A (en) Production of inorganic plate
JP4226805B2 (en) Wood cement board and manufacturing method thereof
RU2772284C1 (en) Carbonation of fiber cement products
JP4262393B2 (en) Manufacturing method for ceramics exterior materials
JP4163367B2 (en) Wood cement board
JP2004091231A (en) Woody cement board and production method therefor
JP2000044316A (en) Production of inorganic plate
JP2004203710A (en) Woody cement plate, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5