JPH0218368A - Carbonization curing method of molding - Google Patents

Carbonization curing method of molding

Info

Publication number
JPH0218368A
JPH0218368A JP63165941A JP16594188A JPH0218368A JP H0218368 A JPH0218368 A JP H0218368A JP 63165941 A JP63165941 A JP 63165941A JP 16594188 A JP16594188 A JP 16594188A JP H0218368 A JPH0218368 A JP H0218368A
Authority
JP
Japan
Prior art keywords
carbon dioxide
molding
molded body
carbonation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63165941A
Other languages
Japanese (ja)
Other versions
JP2753267B2 (en
Inventor
Akira Oshio
大塩 明
Hideji Nakamura
秀二 中村
Toshiyuki Hosobane
細羽 利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP63165941A priority Critical patent/JP2753267B2/en
Publication of JPH0218368A publication Critical patent/JPH0218368A/en
Application granted granted Critical
Publication of JP2753267B2 publication Critical patent/JP2753267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/44Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for treating with gases or degassing, e.g. for de-aerating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To efficiently obtain a good cured body which is uniformly carbonized by subjecting a molding of a mixture contg. a binder to be cured by carbonatation to compression and dehydration with a pressurized gas, then permeating a pressurized carbon dioxide into the molding. CONSTITUTION:The molding 4 of the mixture contg. the binder to be cured by the carbonatation is subjected to the compression and dehydration with the pressurized gas [e.g.: pressurized air or pressurized carbon dioxide is introduced from an upper (a) chamber] and the gas contg. the carbon dioxide is permeated through the molding 4 simultaneously therewith or in succession thereto at the time of carbonating and curing the above-mentioned molding. Since the compression and dehydration of the molding is executed by the pressurized gas according to the above-mentioned method, the molding is adjusted to a uniform moisture content and the efficiency of the carbonatation of the molding is improved. The binder is exemplified by, for example, xonotlite, tobermorite, cement hydrate, slaked lime, magnesium hydroxide, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は成形体の炭酸ガス養生法に関する。[Detailed description of the invention] (Industrial application field) This invention relates to a carbon dioxide gas curing method for molded bodies.

更にいえば、炭酸化により硬化するバインダーを使用し
た成形体の炭酸化を改善する方法に関するものである。
More specifically, the present invention relates to a method of improving carbonation of a molded article using a binder that hardens by carbonation.

(従来の技術) 従来から消石灰、水酸化マグネシウム、珪酸カルシウム
等をバインダーとする成形体を炭酸化して硬化する技術
が広く研究されている。本出願人も、先にもγ型理酸二
石灰をバインダーとする成形体の炭酸化養生法を、特願
昭80−194802号、特願昭61−55091号、
特願昭61−85270号などとして提案している。
(Prior Art) Techniques for carbonating and hardening molded bodies using binders such as slaked lime, magnesium hydroxide, and calcium silicate have been widely studied. The present applicant has also previously published a carbonation curing method for molded bodies using γ-type dicalcium oxide as a binder, in Japanese Patent Application Nos. 80-194802 and 61-55091.
It has been proposed in Japanese Patent Application No. 85270/1983.

炭酸化により硬化するバインダーを使用した成形体を炭
酸化する場合、その成形体中に含まれる水分量が炭酸化
に大きな影響を与え、かつ炭酸化に最適な水分量の存在
することが知られている。
When carbonating a molded body using a binder that hardens through carbonation, it is known that the amount of water contained in the molded body has a great effect on carbonation, and that there is an optimum amount of water for carbonation. ing.

炭酸化により硬化するバインダーを使用した成形体を、
炭酸化に適する水分量に調整する方法としては、これま
で次の3つの方法が考えられている。
A molded body using a binder that hardens through carbonation,
The following three methods have been considered so far to adjust the water content to a level suitable for carbonation.

その1は、あらかじめ最適な水分量で材料を混合して成
形体を作る方法である。これによれば、当然に得られた
成形体は最適な水分量をもった成形体とすることが出来
る。
The first method is to prepare a molded body by mixing materials with an optimal moisture content in advance. According to this, the obtained molded product can naturally have an optimal moisture content.

その2は、成形に適する多量の水分を使用して成形体を
作り、その後この成形体を低湿環境又は加熱等による乾
燥で最適な水分量に減量調整する方法である。
The second method is to make a molded body using a large amount of moisture suitable for molding, and then dry the molded body in a low humidity environment or by heating to adjust the moisture content to an optimum level.

′Jt&3の方法は、第2の方法と同じく成形に適する
多量の水分を使用して成形体を作り、その後この成形体
を真空脱水して水分調整する方法である。
The method 'Jt & 3, like the second method, is a method in which a molded body is made using a large amount of water suitable for molding, and then the molded body is vacuum dehydrated to adjust the moisture content.

しかしながら、これら従来の水分調整方法は、いずれも
問題点を有していた。
However, all of these conventional moisture adjustment methods have problems.

即ち、第1の炭酸化に適する水分量の水を使用して成形
体をつくる方法は、成形特材料の流動性が悪く、成形体
の密度を均一とすることが困難という問題がある。また
、第2の成形後に乾燥する方法は、均一乾燥が難しく、
とくに短時間で乾燥すると表面と内部とで含水量の不均
一が不可避的に生じた。これを避けるためには長時間乾
燥を行なえばよいが、そうすると生産性が著しく低下し
た。第3の成形後に真空脱水する方法は、脱水時の収縮
によるひび割れが生じ、全体を均一な含水量または密度
に調整することが困難であった。
That is, the method of producing a molded body using water with a moisture content suitable for the first carbonation has a problem in that the molding material has poor fluidity and it is difficult to make the density of the molded body uniform. In addition, the method of drying after the second molding is difficult to dry uniformly.
In particular, when dried in a short period of time, uneven moisture content inevitably occurred between the surface and the interior. To avoid this, drying could be carried out for a long time, but this resulted in a significant drop in productivity. In the third method of vacuum dehydration after molding, cracks occur due to shrinkage during dehydration, and it is difficult to adjust the overall moisture content or density to be uniform.

上記1ないし3のような方法によって水分調整された成
形体は、その含水量゛及び密度の不均一さによって、そ
の後の炭酸化は、炭酸化方法を各種工夫しても均一に炭
酸化することは難しく、良好な硬化体とすることは困難
であった。
Due to the non-uniformity of the moisture content and density of the molded body whose water content has been adjusted by methods 1 to 3 above, subsequent carbonation may not be uniform even if various carbonation methods are devised. It was difficult to obtain a good cured product.

一方、成形体に炭酸ガスを外部から供給して炭酸化を行
なう場合、炭酸化は、当然に成形体の外部から内部に向
けて進行しながら行なわれていく。
On the other hand, when carbonation is carried out by supplying carbon dioxide gas to the molded body from the outside, carbonation naturally proceeds from the outside of the molded body to the inside.

そして、炭酸化が膨脂反応であるために、炭酸化される
とその部分の空隙は減少し、したがって以後炭酸ガスの
内部への浸透は抑制されるようになる。こうした現象の
ために、従来は短時間で成形体の内部まで均一に炭酸化
することは困難であった。これを解決するために、効率
的な炭酸化法として次のような提案がすでになされてい
る。
Since carbonation is a fat-swelling reaction, when carbonation occurs, the voids in that area are reduced, and therefore, subsequent penetration of carbon dioxide gas into the interior is suppressed. Because of this phenomenon, it has conventionally been difficult to uniformly carbonate the inside of a molded article in a short period of time. To solve this problem, the following proposals have already been made as efficient carbonation methods.

即ち、予め必要な水分調整をした成形体を用意した上で
、ガスの圧力差を利用して、成形体中に炭酸ガスを透過
させる方法(特願昭50−12572号)、繊維を入れ
た成形体を、上記と同様に予め水分調整してから載荷し
て圧密とした後、炭酸ガス環境中で除荷し、成形体中の
繊維のリバウンドを利用して成形体中に強制的に炭酸ガ
スを浸透させる方法(特願昭81−174180号)で
ある。
That is, after preparing a molded body with the necessary moisture content adjusted in advance, carbon dioxide gas is permeated into the molded body using the gas pressure difference (Japanese Patent Application No. 12572/1982), and fibers are inserted. After adjusting the moisture content in advance in the same manner as above, the compact is loaded and compacted, then unloaded in a carbon dioxide environment, and the rebound of the fibers in the compact is used to forcibly carbonate the compact. This is a method of permeating gas (Japanese Patent Application No. 174180/1981).

しかしながら、前者の方法による成形体の含水量調整の
ままであると、成形体の製造に長い時間を要するばかり
でなく、その含水量の不均一のため、均一な硬化体を得
ることが出来ないという問題があった。また、炭酸化の
工程はこの方法で改善されても、その前の成形体の含水
量調整が従来のままであると、成形体の硬化工程の全体
が効率化されないという問題があった。後者の繊維のリ
バウン゛ドを利用する方法では、体積膨脂によって浸透
する炭酸ガスの量は、炭酸化して硬化するに充分な量で
なく、実用の強度発現は、その後の水和反応によってい
るのが実状である。
However, if the moisture content of the molded body is adjusted using the former method, not only will it take a long time to manufacture the molded body, but also it will not be possible to obtain a uniformly cured body due to the uneven moisture content. There was a problem. Further, even if the carbonation process is improved by this method, if the moisture content adjustment of the molded body before carbonation remains the same as before, there is a problem that the overall curing process of the molded body cannot be made efficient. In the latter method, which utilizes fiber rebound, the amount of carbon dioxide that permeates through volume expansion is not sufficient to cause carbonation and hardening, and practical strength development depends on the subsequent hydration reaction. This is the actual situation.

以上の如く、成形体の含水量の均一な調整が簡単に出来
て、しかも炭酸化の工程を短時間で行ない、均一で実用
的な強度を有する炭酸化硬化体を容易に得られるという
技術はいまだ確立されていないのが実状である。
As described above, there is a technology that can easily adjust the water content of a molded product to be uniform, perform the carbonation process in a short time, and easily obtain a carbonated hardened product with uniform and practical strength. The reality is that this has not yet been established.

(発明が解決しようとする課題) この発明は、均一に炭酸化されて良好な硬化体を能率的
に得よう゛とするもので、そのために成形体の均一な含
水量調整と炭酸化を短時間で行なおうとするものである
(Problems to be Solved by the Invention) This invention aims to efficiently obtain a good hardened body that is uniformly carbonated, and for this purpose, it is possible to uniformly adjust the water content of the molded body and shorten carbonation. This is what I try to do in time.

(課題を解決するための手段) この発明は、炭酸化により硬化するバインダーを含む混
合物の成形体を炭酸化して硬化するに当り、加圧ガスで
成形体を圧搾、脱水し、これと同時に又はひき続き成形
体中に炭酸ガスを含むガスを透過させることを特徴とす
る成形体の炭酸化養生法である。以下に、この発明をさ
らに説明する。
(Means for Solving the Problems) In carbonating and curing a molded body of a mixture containing a binder that hardens by carbonation, the molded body is compressed and dehydrated with pressurized gas, and at the same time or This is a carbonation curing method for a molded body, which is characterized by subsequently permeating a gas containing carbon dioxide into the molded body. This invention will be further explained below.

この発明で使用するバインダーは、炭酸化により硬化す
るものであれば特に限定されない。例えば、ゾノトライ
ト、トバモライト、セメント水和物のような珪酸カルシ
ウム水和物の外、消石灰、水酸化マグネシウム、ポルト
ランドセメントなどの珪酸カルシウムなどである。以下
に示す実施例では、7−2CaO・5i02  (以下
、γ−C2Sという)で示される珪酸二石灰と普通セメ
ントを用いた。これら炭酸化により硬化するバインダー
は、それ単独又は砂などの細骨材とともに水で混練され
て型に流し込まれ成形される。ここに使用される水は、
使用材料100に対し15以上とし、材料の流動性をよ
くして密度が均一な成形体が出来るようにする。混練物
は成形型に流し込むが、ここで使用する型は密閉型とし
て、型の一方から炭酸ガス及び(又は)その他の加圧ガ
スが導入され、これが成形体中を通ってこれを炭化した
後、成形体の反対側に抜けて外部に排出される構成とな
っているものとする。その1例を図示したもので説明す
る。
The binder used in this invention is not particularly limited as long as it is hardened by carbonation. Examples include calcium silicate hydrates such as xonotrite, tobermorite, and cement hydrate, as well as calcium silicates such as slaked lime, magnesium hydroxide, and Portland cement. In the examples shown below, dicalcium silicate represented by 7-2CaO.5i02 (hereinafter referred to as γ-C2S) and ordinary cement were used. These binders that harden through carbonation are mixed with water alone or together with fine aggregate such as sand, and then poured into molds and shaped. The water used here is
The ratio should be 15 or more per 100 parts of the material used to improve the fluidity of the material and produce a molded product with uniform density. The kneaded material is poured into a mold, and the mold used here is a closed mold. Carbon dioxide gas and/or other pressurized gas is introduced from one side of the mold, and after passing through the mold and carbonizing it. , it is assumed that the structure is such that it passes through to the opposite side of the molded body and is discharged to the outside. One example will be explained using a diagram.

図は下型1と上型2で構成された成形型である。The figure shows a mold consisting of a lower mold 1 and an upper mold 2.

下型1は、(ロ)室を形成する部分と、その上にボルト
3.3で固定される混練物収納部4とで構成されている
。下型の上端部には、パンチグメタル、メツシュ、ろ紙
で構成されたろ退部5が形成されている。さらに、下型
には炭酸ガス導入管、成形体から絞り出された水などが
排出される排出管が、それぞれ図示のように設けられて
いる。上型は、下型とパツキン6を介して気密に嵌装さ
れている。上型は、その上部に空所(イ)室を設けると
ともに、その下端にも、下型に取り付けられているもの
と同様なろ退部5′が装着されている。
The lower mold 1 is composed of (b) a part forming a chamber, and a kneaded material storage part 4 fixed thereon with bolts 3.3. A filtering part 5 made of punched metal, mesh, and filter paper is formed at the upper end of the lower die. Furthermore, the lower mold is provided with a carbon dioxide gas introduction pipe and a discharge pipe through which water squeezed out of the molded body is discharged, as shown in the figure. The upper mold is airtightly fitted to the lower mold through a packing 6. The upper mold has a cavity (a) in its upper part, and a filter recess 5' similar to that attached to the lower mold is also attached to its lower end.

さらに、上型にも炭酸ガス導入管が図示のように、排出
管とともにブランチで取り付けられている。
Furthermore, as shown in the figure, a carbon dioxide gas inlet pipe is also attached to the upper mold by a branch together with a discharge pipe.

なお、上下の型に装着されている管にはそれぞれ図示よ
うにバルブが取り付けられている。こうした成形型は、
図示しないプレスなどにより型を上下から矢印の如く加
圧するか、又は加圧後固定する構造になっている。
Note that valves are attached to the tubes attached to the upper and lower molds, respectively, as shown in the figure. These molds are
The structure is such that the mold is pressurized from above and below as shown by the arrows using a press (not shown), or it is fixed after being pressurized.

上記のような成形型に流し込まれた混練物は、プレスな
どを稼働して所定の厚さに成形する。この加圧操作で成
形体から一部分の水分が排出される。排出された水分は
、下型の(ロ)室に落ち、その下端の排出管から外部に
放出される。成形体が所定の厚さとなったところで、プ
レスなどの稼働を止め、そのまま又は別の固定具に移し
、加圧ガスで成形体を圧搾、脱水する。図で説明すると
、まず下型の炭酸ガスの導入管のバルブを締め、排出管
のバルブを開放して(ロ)室を開放する。次に上型のブ
ランチとなっている管の一方の排出管のバルブを閉じ、
いま一方の炭酸ガス導入管のバルブを開放してこれより
炭酸ガスを(イ)室に導入する。この場合、炭酸ガスは
加圧状態で導入される。導入されたガスは、成形体を加
圧するとともに、ろ退部から成形体の内部を貫通して(
ロ)室に達し、(ロ)室の下部に設けられた排出管から
排出する。これによって、まず成形体の脱水が行なわれ
る。加圧された炭酸ガスで成形体を加圧することによっ
て、成形体には無数の通気孔が形成され、ここを通して
中心部を含む成形体の全体が均一に脱水される。しかも
、この加圧を調整することによって、脱水後の成形体の
水分を適度に調節することが出来る。この成形体のガス
による加圧脱水による水分調整は、本発明によってはじ
めて提案されたものであるが、この方法を採用すると脱
水が短時間で、しかも成形体の中心部まで均一に脱水出
来ることが特長である。なお、上記の説明では加圧ガス
に炭酸ガスを用いたが、成形体の加圧脱水には、もちろ
ん炭酸ガスに限られるものではなく、空気でもよい。こ
の場合は、図に示すガス導入管のブランチの他の一方か
ら炭酸ガス以外の気体を導入するようにすればよい。た
だ、脱水にも炭酸ガスを使用すれば、成形体の脱水につ
づいて或はそれと同時に成形体の炭酸化が行なわれると
いう、製造上の利点が得られる。
The kneaded material poured into the mold as described above is molded into a predetermined thickness by operating a press or the like. Through this pressurizing operation, a portion of the moisture is discharged from the molded body. The discharged water falls into the (b) chamber of the lower mold and is discharged to the outside from the discharge pipe at the lower end. When the molded body reaches a predetermined thickness, the operation of the press or the like is stopped, and the molded body is compressed with pressurized gas and dehydrated, either as it is or transferred to another fixture. To explain with a diagram, first, close the valve of the carbon dioxide gas introduction pipe in the lower mold, open the valve of the discharge pipe, and (b) open the chamber. Next, close the valve of the discharge pipe on one side of the pipe that is the branch of the upper mold,
Now open the valve of one carbon dioxide gas introduction pipe and introduce carbon dioxide gas into the chamber (a). In this case, carbon dioxide gas is introduced under pressure. The introduced gas pressurizes the molded body and passes through the inside of the molded body from the filtration part (
(b) It reaches the chamber and (b) is discharged from the discharge pipe installed at the bottom of the chamber. As a result, the molded body is first dehydrated. By pressurizing the molded body with pressurized carbon dioxide gas, numerous ventilation holes are formed in the molded body, through which the entire molded body including the center portion is uniformly dehydrated. Furthermore, by adjusting this pressure, the moisture content of the molded product after dehydration can be adjusted appropriately. The present invention is the first to propose moisture control of molded bodies through pressurized dehydration using gas, but when this method is adopted, it is possible to dehydrate the molded body in a short time and evenly to the center of the molded body. This is a feature. In the above description, carbon dioxide gas was used as the pressurized gas, but the pressurized dehydration of the molded body is of course not limited to carbon dioxide gas, and air may also be used. In this case, a gas other than carbon dioxide gas may be introduced from the other branch of the gas introduction pipe shown in the figure. However, if carbon dioxide gas is used for dehydration, there is an advantage in manufacturing that carbonation of the molded body can be carried out subsequent to or simultaneously with the dehydration of the molded body.

成形体の脱水が出来て水分調整が終了したら、続いて炭
酸ガスを導入管から加圧状態で導入する。
After the molded body has been dehydrated and the moisture adjustment has been completed, carbon dioxide gas is then introduced under pressure from the introduction pipe.

導入された炭酸ガスは、成形体の中を貫通しつつ成形体
をその中心部まで均一に炭酸化して成形体の反対面に達
しく口)室に出て、その排出管から大気中に放出される
。これらの加圧気体による脱水と、それに続く炭酸化は
、成形体の厚さにもよるが、合せて5分程度で終わる。
The introduced carbon dioxide gas passes through the molded body, carbonates the molded body uniformly to the center, reaches the opposite side of the molded body, exits the chamber, and is released into the atmosphere from the exhaust pipe. be done. Dehydration using pressurized gas and subsequent carbonation can be completed in about 5 minutes in total, depending on the thickness of the compact.

次に、炭酸化をより能率的かつ確実に行なうため、今度
は下型からの炭酸ガスの吹き込みを行なう。これには例
えば、下型の排出管のバルブ、上型の炭酸ガス導入管の
各バルブを閉じ、下型の炭酸ガス導入管のバルブ、上型
の排出管の各バルブを開き、下型の炭酸ガス導入管から
炭酸ガスを加圧状態で下型の(ロ)室に送り込む。この
炭酸ガスは成形体の内部を炭酸化しつつその内部を貫通
して上型の(イ)室に抜け、排気管から大気中に出てい
く。なお、この下型からの炭酸ガスの吹き込みは、必要
に応じて行われるもので必ずしも不可欠のものではない
。この下型から炭酸ガスを送り込む時間は、上型からの
ガスの吹き込み時間とほぼ同じでよい。
Next, in order to perform carbonation more efficiently and reliably, carbon dioxide gas is blown from the lower mold. For example, close the lower mold discharge pipe valve and the upper mold carbon dioxide gas introduction pipe valve, open the lower mold carbon dioxide gas introduction pipe valve and the upper mold discharge pipe valve, and then open the lower mold carbon dioxide gas introduction pipe valve and the upper mold discharge pipe valve. Carbon dioxide gas is sent under pressure from the carbon dioxide gas introduction pipe into the (b) chamber of the lower mold. This carbon dioxide gas passes through the inside of the molded body while carbonating it, escapes into the chamber (a) of the upper mold, and exits into the atmosphere through the exhaust pipe. Note that this blowing of carbon dioxide gas from the lower mold is performed as needed and is not necessarily essential. The time for blowing carbon dioxide gas from the lower mold may be approximately the same as the time for blowing gas from the upper mold.

こうした成形体へのガスの吹込みで、成形体は短時間で
炭酸化される。成形体が炭酸化して硬化した後は、プレ
スから型枠を外し、脱型して製品とする。本発明におい
て、炭酸化により硬化するバインダーとしてγ−C2S
を使用した場合は炭酸化により水を生成しないので、炭
酸化に際してガスの浸透する空隙を閉塞せず、有利に成
形体の炭酸化を行なうことができる。
By blowing gas into the molded body, the molded body is carbonated in a short time. After the molded body is carbonated and hardened, the mold is removed from the press and demolded to form a product. In the present invention, γ-C2S is used as a binder that hardens by carbonation.
When using carbonation, no water is produced during carbonation, so the molded body can be carbonated advantageously without clogging the voids through which gas permeates during carbonation.

原料混合物中には各種の複合材を添加することができる
。例えば、バルブ等の気孔を有する繊維を混合すると、
炭酸ガスの浸透に有利である。また、ガラス、ビニロン
、カーボン、アラミド繊維などの補強繊維を混合すると
、靭性に優れた硬化体を得ることが出来る。さらに、混
練水にメチルセルロースなどの増粘材を添加することに
より、脱水時間の調整、材料粒子に付着する水膜の厚さ
をコントロール出来、これによって炭酸化を効率よく行
なうことが出来る。
Various composite materials can be added to the raw material mixture. For example, if you mix fibers with pores such as bulbs,
It is advantageous for carbon dioxide gas penetration. Furthermore, by mixing reinforcing fibers such as glass, vinylon, carbon, and aramid fibers, a cured product with excellent toughness can be obtained. Furthermore, by adding a thickener such as methyl cellulose to the kneading water, it is possible to adjust the dehydration time and control the thickness of the water film adhering to the material particles, thereby making it possible to carry out carbonation efficiently.

本発明で使用する炭酸ガスは、炭酸ガスの稀釈ガス、燃
焼排ガスなどの炭酸ガスを含む廃ガスでもよく、またそ
の圧力、ガス組成、成形体の厚さにもよるが、はぼ2k
g/c−〜25kg/cdの範囲が好ましい。この範囲
の下限未満であると成形体中への炭酸ガスの浸透が充分
でなく、また上限を超える必要は通常はないためである
。以下に、実験例をあげてこの発明をさらに説明する。
The carbon dioxide gas used in the present invention may be diluted carbon dioxide gas or waste gas containing carbon dioxide such as combustion exhaust gas.Although it depends on the pressure, gas composition, and thickness of the molded product, it can be as much as 2k.
The range of g/c- to 25 kg/cd is preferred. This is because if it is less than the lower limit of this range, carbon dioxide gas will not penetrate sufficiently into the molded article, and there is usually no need to exceed the upper limit. This invention will be further explained below by giving experimental examples.

実験例1゜ 含水調整及び炭酸化法を異にして炭酸化された硬化体を
製造し、得られた硬化体の曲げ強度をM1定し、その平
均値、最大値、最少値及び変動係数を比較した。
Experimental example 1゜ Carbonated cured bodies were produced using different water content adjustment and carbonation methods, the bending strength of the obtained cured bodies was determined by M1, and the average value, maximum value, minimum value, and coefficient of variation were determined. compared.

原料はγ−C2S及び普通セメントの2種を使用した。Two types of raw materials were used: γ-C2S and ordinary cement.

成形される硬化体のサイズは、32X32X2(cm)
とし、これを4 esX 16eiX 2 cmの16
本に切り出し、それぞれについて曲げ強度を測定した。
The size of the cured body to be molded is 32X32X2 (cm)
and this is 16 of 4 esX 16eiX 2 cm
They were cut into books and the bending strength of each was measured.

使用原料及び混練水の違いなどによって、AないしCの
各々を2つに分け、第1表の通りとした。
Depending on the raw materials used and the kneading water, each of A to C was divided into two as shown in Table 1.

各成形体の含水調整及び炭酸化は次のようにして行なっ
た。
The water content adjustment and carbonation of each molded article were carried out as follows.

(1) Aの配合材料を図に示す装置に流し込んだ後に
25kg/ 8m2でプレス加圧を行なった。この状態
で(ロ)室は開放し、(イ)室に9.9 kg/cm2
の圧力で炭酸ガスを供給し、成形体の脱水と続いて炭酸
化を5分間行なった。その後(イ)室を開放し、(ロ)
室に9.9 kg/cm2の圧力で炭酸ガスを供給し、
引続き5分間炭酸化を行なった。・・・・・・本発明 (2) Aの配合材料を図に示す装置に流し込んだ後に
、25kg/c■2でプレス加圧成形を行なった後脱型
し、乾燥気で105℃に乾燥して成形体全体の含水量が
成形体重量に対して8%になるまで乾燥させた。このも
のを再び図に示す装置に入れて(1)と同様なガス操作
を行なった。
(1) After pouring the compounded material A into the apparatus shown in the figure, pressurization was performed at 25 kg/8 m2. In this state, chamber (B) is open and 9.9 kg/cm2 is placed in chamber (B).
Carbon dioxide gas was supplied at a pressure of 100 ml to dehydrate the molded body, followed by carbonation for 5 minutes. Then (a) open the room and (b)
Carbon dioxide gas was supplied to the chamber at a pressure of 9.9 kg/cm2,
Carbonation was then carried out for 5 minutes.・・・・・・Present invention (2) After pouring the blended material A into the apparatus shown in the figure, press pressure molding was performed at 25 kg/cm2, then the mold was removed and dried at 105°C with dry air. The molded body was dried until the moisture content of the entire molded body became 8% based on the weight of the molded body. This product was again placed in the apparatus shown in the figure and subjected to the same gas operation as in (1).

(3) Aの配合材料を図に示す装置に流し込んだ後に
、(ロ)室を真空ポンプで減圧し成形体全体の含水量が
成形体重量に対して8%となるまで真空脱水した。その
後(1)と同様なガス操作を行なった。
(3) After pouring the compounded material A into the apparatus shown in the figure, (b) the pressure in the chamber was reduced using a vacuum pump, and vacuum dehydration was performed until the moisture content of the entire molded body became 8% of the molded weight. Thereafter, the same gas operation as in (1) was performed.

(4) Bの配合材料゛を図に示す装置に均等に敷きな
らした後25kg/ cm2でプレス加圧を行な(1、
その状態で(イ)及び(ロ)室に炭酸ガスを充填した後
除荷し、10分間炭酸化を行なった。
(4) After spreading the blended material B evenly on the device shown in the figure, press it at 25 kg/cm2 (1,
In this state, chambers (a) and (b) were filled with carbon dioxide gas, unloaded, and carbonated for 10 minutes.

(5) Cの配合材料を図に示す装置に均一に敷きなら
した後25kg/ e+g2でプレス加圧を行なt)、
その状態で(イ)及び(ロ)室に炭酸ガスを充填した後
除荷し、10分間炭化を行なう。
(5) After spreading the compounded material C uniformly in the device shown in the figure, press it at 25 kg/e+g2 (t),
In this state, chambers (a) and (b) are filled with carbon dioxide gas, unloaded, and carbonized for 10 minutes.

(1)ないしく5)の実験結果を第2表舊;示す。The experimental results of (1) to 5) are shown in Table 2.

実験例2 γ−02S1θθ、水50重量比の混合物を図に示す装
置に流し込み、25kg/ejでプレス加圧して2cm
とした。この状態で(ロ)室を開放し、(イ)室を炭酸
ガスで3分間加圧した後(イ)室を開放しく口)室を炭
酸ガスで3分間加圧する。この場合におけるガス圧を2
.5.10.20kg/cシにそれぞれ変えて硬化させ
、その曲げ強度を測定した。
Experimental Example 2 A mixture of γ-02S1θθ and water at a weight ratio of 50 was poured into the device shown in the figure, and pressurized at 25 kg/ej to a thickness of 2 cm.
And so. In this state, (b) open the chamber, pressurize the (a) chamber with carbon dioxide gas for 3 minutes, and then (b) open the chamber and pressurize the chamber with carbon dioxide gas for 3 minutes. The gas pressure in this case is 2
.. 5, 10, and 20 kg/c, respectively, were cured, and the bending strength was measured.

ガス圧20kg/c−のものには、水に対して0,5%
のメチルセルロースを添加した。また、ガス圧2kg/
C−のものには、γ−C2Sに対して5%のバルブを添
加した。結果は第3表の通りであった。
For gas pressure 20kg/c-, 0.5% to water.
of methylcellulose was added. Also, gas pressure 2kg/
For C-, 5% bulb was added to γ-C2S. The results are shown in Table 3.

実施例1゜ 重量比で、γ−02S100、骨材(川砂)75、水5
0、及び水に対して0.5%のメチルセルロースの混合
物を図示した装置に流し込み、25kg/cjでプレス
加圧し、2 csとした。その状態で(ロ)室を開放し
、(イ)室を9.9 kg/c−の圧力の空気で5分間
加圧した。その後つづいて(イ)室に炭酸ガス濃度15
%の混合気で、9.9kg/c−の圧力で20分間加圧
した後、(イ)室を開放しく口)室を炭酸ガス濃度15
%の混合気で、9.9kg/c−の圧力で20分間加圧
した。ここに得られたものは、曲げ強度142kg/c
シ、変動係数6.3%の硬化体であった。
Example 1 Weight ratio: γ-02S100, aggregate (river sand) 75, water 5
A mixture of 0.0 and 0.5% methylcellulose in water was poured into the illustrated apparatus and pressed at 25 kg/cj to 2 cs. In this state, chamber (b) was opened, and chamber (a) was pressurized with air at a pressure of 9.9 kg/c- for 5 minutes. After that, (a) the carbon dioxide concentration in the chamber was 15.
After pressurizing the mixture for 20 minutes at a pressure of 9.9 kg/c-, (a) open the chamber and reduce the carbon dioxide concentration to 15.
% mixture and was pressurized for 20 minutes at a pressure of 9.9 kg/c-. What was obtained here has a bending strength of 142 kg/c
The cured product had a coefficient of variation of 6.3%.

実施例2゜ 重量比でγ−C2S10Q、川砂75、水60でモルタ
ルを混練した。これをサイズが90X 180  (c
m)で図と同様な形式の型枠に、ガラス繊維(長さ3゜
5c@)をモルタル重量に対し、5%にして吹き付すた
。これを40kg/ c−でプレスし、その状態で下面
空隙側を大気圧に開放し、上面より7.5kg/cシつ
圧力の炭酸ガスで5分間加圧、通気した。その後ガスの
流れを入替えて、さらに3分間、加圧、通気し、更に3
分間、加圧、通気した。このようにして90X 180
 X 2  (cm)の外装板を4枚/時間で生産した
。この壁板は、曲げ強度280kg/c−で表面のボロ
ツキもなく内部まで均一な建材であった。
Example 2 A mortar was mixed with γ-C2S10Q, 75% river sand, and 60% water in a weight ratio. The size of this is 90X 180 (c
In step m), glass fiber (length 3°5 cm) was sprayed at 5% of the weight of the mortar into a formwork similar to the one shown in the figure. This was pressed at 40 kg/c-, and in this state, the lower cavity side was opened to atmospheric pressure, and the upper surface was pressurized and vented with carbon dioxide gas at a pressure of 7.5 kg/c- for 5 minutes. Then, change the gas flow, pressurize and vent for another 3 minutes, and then pressurize and vent for another 3 minutes.
It was pressurized and vented for 1 minute. In this way 90X 180
Exterior boards of X 2 (cm) were produced at a rate of 4 sheets/hour. This wall board was a building material with a bending strength of 280 kg/c- and a uniform interior without any surface fraying.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施に用いられる成形型の一実施例を示
した説明図である。 1・・・下型、2・・・上型、4・・・混練物収納部、
5゜5′・・・ろ退部。
The figure is an explanatory view showing one embodiment of a mold used in carrying out the present invention. 1...lower mold, 2...upper mold, 4...kneaded material storage section,
5゜5'...Retirement section.

Claims (1)

【特許請求の範囲】[Claims]  炭酸化により硬化するバインダーを含む混合物の成形
体を炭酸化して硬化するに当り、加圧ガスで成形体を圧
搾、脱水し、これと同時に又はひき続き成形体中に炭酸
ガスを含むガスを透過させることを特徴とする成形体の
炭酸化養生法。
When carbonating and curing a molded body of a mixture containing a binder that hardens by carbonation, the molded body is compressed and dehydrated with pressurized gas, and at the same time or subsequently, a gas containing carbon dioxide is permeated into the molded body. A carbonation curing method for a molded body, which is characterized by:
JP63165941A 1988-07-05 1988-07-05 Carbonation curing method for compacts Expired - Lifetime JP2753267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165941A JP2753267B2 (en) 1988-07-05 1988-07-05 Carbonation curing method for compacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165941A JP2753267B2 (en) 1988-07-05 1988-07-05 Carbonation curing method for compacts

Publications (2)

Publication Number Publication Date
JPH0218368A true JPH0218368A (en) 1990-01-22
JP2753267B2 JP2753267B2 (en) 1998-05-18

Family

ID=15821925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165941A Expired - Lifetime JP2753267B2 (en) 1988-07-05 1988-07-05 Carbonation curing method for compacts

Country Status (1)

Country Link
JP (1) JP2753267B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JPH10194799A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Cement for clay concrete, clay concrete and its production
US7390444B2 (en) 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
US9028607B2 (en) 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US9108883B2 (en) 2013-06-25 2015-08-18 Carboncure Technologies, Inc. Apparatus for carbonation of a cement mix
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US9738562B2 (en) 2013-06-25 2017-08-22 Carboncure Technologies Inc. Methods and compositions for concrete production
EP3097405A4 (en) * 2014-01-22 2017-10-11 Solidia Technologies, Inc. Method and apparatus for curing co2 composite material objects at near ambient temperature and pressure
JP2017530032A (en) * 2014-08-05 2017-10-12 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. Method and apparatus for curing composite material by controlling flow rate limiting process in water removal
US9790131B2 (en) 2013-02-04 2017-10-17 Carboncure Technologies Inc. System and method of applying carbon dioxide during the production of concrete
US10350787B2 (en) 2014-02-18 2019-07-16 Carboncure Technologies Inc. Carbonation of cement mixes
US10570064B2 (en) 2014-04-07 2020-02-25 Carboncure Technologies Inc. Integrated carbon dioxide capture
US10781140B2 (en) 2013-03-14 2020-09-22 Solidia Technologies, Inc. Method and apparatus for the curing of composite material by control over rate limiting steps in water removal
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US11660779B2 (en) 2016-04-11 2023-05-30 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
US11958212B2 (en) 2017-06-20 2024-04-16 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194799A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Cement for clay concrete, clay concrete and its production
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
US7390444B2 (en) 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US9028607B2 (en) 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
US10654191B2 (en) 2012-10-25 2020-05-19 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
US9492945B2 (en) 2012-10-25 2016-11-15 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
US9790131B2 (en) 2013-02-04 2017-10-17 Carboncure Technologies Inc. System and method of applying carbon dioxide during the production of concrete
US10683237B2 (en) 2013-02-04 2020-06-16 Carboncure Technologies Inc. System and method of applying carbon dioxide during the production of concrete
US10781140B2 (en) 2013-03-14 2020-09-22 Solidia Technologies, Inc. Method and apparatus for the curing of composite material by control over rate limiting steps in water removal
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US11773019B2 (en) 2013-06-25 2023-10-03 Carboncure Technologies Inc. Methods and compositions for concrete production
US11773031B2 (en) 2013-06-25 2023-10-03 Carboncure Technologies Inc. Apparatus for delivery of a predetermined amount of solid and gaseous carbon dioxide
US9738562B2 (en) 2013-06-25 2017-08-22 Carboncure Technologies Inc. Methods and compositions for concrete production
US10246379B2 (en) 2013-06-25 2019-04-02 Carboncure Technologies Inc. Methods and compositions for concrete production
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US9108883B2 (en) 2013-06-25 2015-08-18 Carboncure Technologies, Inc. Apparatus for carbonation of a cement mix
US9463580B2 (en) 2013-06-25 2016-10-11 Carboncure Technologies Inc. Methods for carbonation of a cement mix in a mixer
US9758437B2 (en) 2013-06-25 2017-09-12 Carboncure Technologies Inc. Apparatus for delivery of carbon dioxide to a concrete mix in a mixer and determining flow rate
US11517874B2 (en) 2014-01-22 2022-12-06 Solidia Technologies, Inc. Method and apparatus for curing CO2 composite material objects at near ambient temperature and pressure
EP3097405A4 (en) * 2014-01-22 2017-10-11 Solidia Technologies, Inc. Method and apparatus for curing co2 composite material objects at near ambient temperature and pressure
US10350787B2 (en) 2014-02-18 2019-07-16 Carboncure Technologies Inc. Carbonation of cement mixes
US10570064B2 (en) 2014-04-07 2020-02-25 Carboncure Technologies Inc. Integrated carbon dioxide capture
US11878948B2 (en) 2014-04-07 2024-01-23 Carboncure Technologies Inc. Integrated carbon dioxide capture
JP2017530032A (en) * 2014-08-05 2017-10-12 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. Method and apparatus for curing composite material by controlling flow rate limiting process in water removal
US11660779B2 (en) 2016-04-11 2023-05-30 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
US11958212B2 (en) 2017-06-20 2024-04-16 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water

Also Published As

Publication number Publication date
JP2753267B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JPH0218368A (en) Carbonization curing method of molding
SU1664116A3 (en) Method for manufacture of slabs and profiles
CN113968701B (en) CO (carbon monoxide) 2 Light concrete for driving consolidation and preparation method thereof
HU178627B (en) Method for solidifying concrete
JP2771383B2 (en) Method for producing calcium hydrosilicate bonded fiberboard
WO1985000587A1 (en) A method of accelerating the hardening of concrete
CN112811880A (en) Preparation method of high-strength foamed concrete
CN114409320B (en) Carbon mineralized fiber cement board and secondary compression molding preparation method and application thereof
JPH06316453A (en) Preparation of hydrated calcium silicate bound molded body
US11427510B1 (en) Method and article for improving the strength of carbonated calcium hydroxide compacts
JPH10230506A (en) Manufacture of cement-based plate material
JP3618001B2 (en) Porous open cell concrete molded body and method for producing the same composite
CN114560667B (en) Light energy-saving foam concrete and preparation method thereof
JP2001240457A (en) Humidity conditioning formed article and method for producing the same
JP2820767B2 (en) Manufacturing method of building materials
JP2574212B2 (en) Method and apparatus for producing inorganic plate
JP3231161B2 (en) Method for producing hydraulic inorganic molded article
JP2000158433A (en) Concrete manufacturing device and method
JPH09156987A (en) Production of wooden cement plate
CN117776643A (en) Ecological porous carbon-fixing concrete based on carbon capture and carbon sequestration and preparation method thereof
JP2004115353A (en) Inorganic board and its producing method
JP3009538B2 (en) Method for producing hydraulic inorganic molded article
JPS63239141A (en) Manufacture of lightweight calcium silicate formed body
CN118239705A (en) Building gypsum product and preparation method thereof
WO1988006083A1 (en) Process for forming cement moldings

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11