JP2751154B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2751154B2
JP2751154B2 JP62032638A JP3263887A JP2751154B2 JP 2751154 B2 JP2751154 B2 JP 2751154B2 JP 62032638 A JP62032638 A JP 62032638A JP 3263887 A JP3263887 A JP 3263887A JP 2751154 B2 JP2751154 B2 JP 2751154B2
Authority
JP
Japan
Prior art keywords
film
magnetization
magnetic field
magneto
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62032638A
Other languages
Japanese (ja)
Other versions
JPS63200343A (en
Inventor
勝久 荒谷
健次郎 渡辺
順一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62032638A priority Critical patent/JP2751154B2/en
Publication of JPS63200343A publication Critical patent/JPS63200343A/en
Application granted granted Critical
Publication of JP2751154B2 publication Critical patent/JP2751154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体、特に希土類−遷移金属合
金膜を有する光磁気記録媒体に関する。 〔発明の概要〕 本発明は、希土類−遷移金属合金膜を有して成る光磁
気記録媒体において、互いに異なるキュリー点TC1及びT
C2(TC1<TC2)を有し且つ組成を異にする第1及び第2
の希土類−遷移金属合金膜を有し、第1の希土類−遷移
金属合金膜と第2の希土類−遷移金属合金膜とを同一副
格子磁化が揃うように直接隣接させるとともに、第1及
び第2の希土類−遷移金属合金膜が夫々少なくとも1層
以上かつ合計で3層以上積層して垂直磁化膜を構成する
ことによって、弱い外部磁場下で記録・消去を可能にし
た光磁気記録媒体を構成する。 〔従来の技術〕 従来の光磁気記録媒体を構成する希土類−遷移金属合
金膜(垂直磁化膜)は、通常単一組成の磁性層によって
構成されている。 第13図は、従来構造の光磁気記録媒体、例えば光磁気
ディスクの要部の断面構造を示すもので、この例では、
夫々一方の面に記録トラック位置検出用の溝が形成され
た対の透明基板(1)が用意され、これら各溝が形成さ
れた面に、非晶質希土類−遷移金属合金よりなる垂直磁
化膜(2)が被着形成されてこれら垂直磁化膜(2)を
内側にして両基板(1)を、接着剤(3)によって接合
するという構造が採られる。(4)は各垂直磁化膜
(2)と基板(1)との間に被着形成した干渉膜、
(5)は垂直磁化膜(2)の表面に被着形成した保護膜
である。 この垂直磁化膜(2)の飽和磁化MS(以下磁化MSと記
述)は第14図に模式的に示すように、希土類金属の副格
子磁化MREと遷移金属の副格子磁化MTMの差|MRE−MTM
で与えられる。 この垂直磁化膜(2)に対する記録、例えばキュリー
点記録による場合は、第13図に示すように、その記録部
に磁界発生手段(6)によって外部磁界を与え、この状
態でレーザ光(7)を集光レンズ系(8)を介してその
記録を行おうとする一方の垂直磁化膜(2)に基板
(1)側の背面よりこの垂直磁化膜(2)にフォーカシ
ングするように照射して此所における磁化の向きを反転
させることによってその記録を行う。 このような被晶質希土類−遷移金属合金による単層膜
を有する光磁気ディスクでは、記録及び消去時に200〜3
00 0e程度の外部磁場を必要とする。この外部磁場を低
減することができれば、マグネットの小型化及び外部磁
場変調法によるオーバライト(先に書き込まれた情報を
重ね書きによって新しい情報に書き換える)を容易に行
うことが可能になる。 〔発明が解決しようとする問題点〕 ところで、記録及び消去時の必要外部磁場が低くなる
ような磁化膜を得るには (i)記録時の必要外部磁場HWと消去時の必要外部磁場
HEがHW=−HEとなるようにすること、 (ii)|HW|及び|HE|を低減すること、が必要であ
る。 しかし、従来の上述した垂直磁化膜では、一般に|HW
|<|HE|であり、|HE|を与えるマグネットを用いて
おり、記録時と消去時でその方向を切り替えている。な
お、外部磁場変調法によるオーバーライトではHW=−HE
とすることができればマグネットのコイルを流れる電流
の直流分を零に、あるいは交流分を低減することがで
き、コイル駆動電源の小型化、コイルの発熱防止に寄与
する。しかるに従来|HW|<|HE|となるのは、レーザ
照射時に照射位置近傍のT<TC(TC:キュリー温度)の
領域からの浮遊磁場が原因である。即ち第15図は垂直磁
化膜(2)にレーザ光(7)を照射して、部分aをキュ
リー点に加熱した状態を示すもので、このとき、この部
分aでは例えばキュリー点では磁化が消失するが、ここ
にその周囲の磁化MOによって浮遊磁場HSFが与えられ
る。したがって、今、この部分aに外部磁場を与えて記
録或いは消去を行うときはこの浮遊磁場HSFが影響す
る。すなわち、記録時の外部磁場HWは浮遊磁場HSFと同
方向であり、消去時の外部磁場HEは浮遊磁場HSFと逆方
向であることから、消去時には記録時より大きな外部磁
場HE(>HW)が必要となる。 単層膜の垂直磁化膜を用いる場合、この浮遊磁場を減
少させるためには、レーザ照射位置近傍の温度(T1
TC)で磁化が零、すなわちT1=TCO MP(TCO MP:磁気補
償温度)とすればよいが、このような垂直磁化膜を作製
することは容易ではなく、またTC近傍の磁化も減少し外
部磁場方向に磁化が向うとするエネルギー(ゼーマンエ
ネルギー)が減少してしまう。 次に|HW|及び|HE|を低減するには次の方法が考え
られる。 キュリー温度以上に加熱された磁化膜が、冷却され、
再びキュリー温度となり磁化が発生する場合、どのよう
な磁区構造(回転磁化ではなく磁壁移動により磁化反転
が生じる膜を対象とする)となるかは、ゼーマンエネル
ギーEz、反磁場による静磁エネルギーEd及び磁壁エネル
ギーEWにより決められる。これらの中で磁化に関するエ
ネルギーであるゼーマンエネルギーEzと静磁エネルギー
Edを考える。ゼーマンエネルギーEzは磁化が外部磁場
(浮遊磁場が存在する場合には、この磁場を加えたもの
となる)方向へ向こうとするエネルギーであり、この点
から磁化は大きい方が有利となる。しかし磁化が大きく
なると反磁場による静磁エネルギーEdが増加し多磁区状
態(熱消磁状態)となる。ところでゼーマンエネルギー
Ez及び反磁場による静磁エネルギーEdは、共に膜厚hの
関数であり膜圧hが薄いほど大きな磁化に対しても多磁
区状態より単磁区状態の方が安定となる。したがって多
磁区状態とはならず、大きな磁化を有する膜としては膜
厚が薄いことが有効となる。 しかし、単層膜の場合、TC直下(TCより低い温度)で
大きな磁化を有する薄い磁化膜(<200Å)を作ること
は信頼性(表面硬化、腐食等)の点で困難である。 本発明は、上述の点に鑑み、外部磁場で記録、消去が
可能な光磁気記録媒体を提供するものである。 〔問題点を解決するための手段〕 本発明は、キュリー点TC1を有しTC1より低い温度で希
土類副格子磁化が優勢な第1の希土類−遷移金属合金膜
(11)と、TC1より高いキュリー点TC2を有しTC1より低
い温度で遷移金属副格子磁化が優勢な第2の希土類−遷
移金属合金膜(12)とを有し、第1の希土類−遷移金属
合金膜(以下第1の磁性膜という)(11)と第2の希土
類−遷移金属合金膜(以下第2の磁性膜という)(12)
とを同一副格子磁化が揃うように直接隣接させるととも
に、第1及び第2の希土類−遷移金属合金膜(11)(1
2)が夫々少なくとも1層以上かつ合計で3層以上積層
された(10)を構成する。 この垂直磁化膜(10)としては、例えば第1図に示す
ようにキュリー点TC及び磁化MSの膜厚方向の分布を方形
波的に変化させたいわゆる多相膜構造とする場合、或い
は後述する第5図〜第7図に示すようにキュリー点TC
び磁化MSの膜厚方向の分布を連続的に変化させた膜構造
とすることができるも、先ず、本発明の理解を容易にす
るために、第1図に示す第1及び第2の磁性膜(11)及
び(12)を交互に積層して5層膜構造とした場合を例に
とって説明する。 第1の磁性膜(11)及び第2の磁性膜(12)はTb,Gd,
Dy,Ho‥‥等の希土類金属(一部Nd,Pr,Sn等の軽希土類
を含んでいてもよい)と、Fe,Co,Ni‥‥等の遷移金属と
の各一種以上の非晶質合金(他の元素を少量添加しても
よい)によって構成する。この場合、第1の磁性膜(1
1)については補償組成より希土類金属を多量にし、第
2の磁性膜(12)については同様の補償組成より遷移金
属を多量にすることによって、第2図に矢印MRE及びMTM
で示すように第1の磁性膜(11)においては、希土類金
属副格子磁化MREが支配的に作用して第1図に示す磁化M
1を発生し、第2の磁性膜(12)においては遷移金属副
格子磁化MTMが支配的に作用して逆向きの磁化M2を生ず
るようにする(磁化M1,M2はTC1より低い温度即ちTc1
下の温度での磁化方向を表わす)。このとき、第1図に
示す磁化分布については各磁性膜(11),(12)の磁化
が全体(トータル)としてできるだけ小さく、即ち互い
に打消し合うようにするが、副格子磁化についてみれ
ば、第2図に示すように各磁性膜(11),(12)に関し
て同一副格子磁化MRE同志、MTM同志が揃うように平行に
配列されることが必要であり、このような構造は、概略
として各磁性膜(11)及び(12)の保磁力により各磁性
膜(11)及び(12)間の交換結合による実効的磁場が大
きい場合に達成することができる。 第1図では垂直磁化膜(10)において、第1層、第3
層及び第5層がキュリー点TC1の第1の磁性膜(11)で
構成され、第2層及び第4層がTC1より高いキュリー点T
C2の第2の磁性膜(12)で構成される。このような垂直
磁化膜(10)を透明基板(13)に形成し、この垂直磁化
膜(10)にレーザ光(7)を集光して照射すると、第3
図において各位置における温度及び磁化方向を示すよう
に、温度TがTC1以下の所では隣接する各層の磁化M1,M
2の方向が逆向きとなり、この領域から発生する浮遊磁
場は小さく或いはほとんど零となる。即ち記録時と消去
時の必要外部磁場HW,HEはHW=−HEとなる。又T>TC1
の領域では、第2層及び第4層が磁気的に膜厚の薄い単
層膜となる。従ってこの温度領域での磁化が大きくなる
ように膜材料、組成を定めれば、第4図Aに示すように
弱い外部磁場Hex(即ちHW又はHE)に対しても容易に磁
化は外部磁場方向へ冷却時に向く。この状態から冷却さ
れ、第4図B(TC1<T<TC2までの冷却)を経てT=T
C1となった場合第4図Cに示すように第1層、第3層及
び第5層の磁化方向は第2層あるいは第4層との交換結
合力により定められる。これにより弱い外部磁場での記
録、消去が可能となる。 本発明で使用される磁化膜のキュリー温度は80℃〜25
0℃の範囲が好ましく、キュリー点記録により記録され
る。キュリー点及び磁化は膜材料、組成により制御され
る。 垂直磁化膜(10)としては第1及び第2の磁性膜(1
1)及び(12)を交互に配して多層膜構造として、好ま
しくは3層以上の多層膜とする。 又、垂直磁化膜(10)としては、キュリー点及び磁化
の膜厚方向の分布状況が方形波的に変化する多層膜構造
(例えば第1図参照)の他、例えば第5図A,B、第6図
A,B、或いは第7図A,Bで示すようにキュリー点及び磁化
が膜厚方向に連続的に変化させるように構成することも
できる。 なお、上述のキュリー点TC1(膜厚方向で最も低いキ
ュリー点)より低い温度とはキュリー点TC1から冷却の
過程において磁化の向きが決まってしまう温度であっ
て、TC1からTC1−70℃程度(好ましくはTC1−10℃〜30
℃程度)低い温度までのことを指す。また上述の垂直磁
化膜(10)の全体(トータル)の磁化とは膜厚方向の磁
化の平均値を表わすもので、従って全体の磁化は各層の
磁化の大きさ、方向及び膜厚で制御される。 垂直磁化膜(10)として、キュリー点が膜厚方向に方
形波的に変化する多層膜構造の場合、高いキュリー点T
C2の第2の磁性膜(12)は、その膜厚を300Å以下、好
ましくは100Å以下とするを可とし、キュリー点付近で
の磁化が大きい遷移金属多量の希土類−遷移金属合金膜
が有効である。 また、多層膜構造の場合、第1及び第2の磁性膜(1
1)及び(12)の磁化M1及びM2の関係は、TC1直下の温度
でみたときM2>M1とするを可とする。 〔作用〕 キュリー点TC1を有しTc1より低い温度で希土類副格子
磁化が優勢な第1の希土類−遷移金属合金膜(11)とTc
1より高いキュリー点Tc2を有しTc1より低い温度で遷移
金属副格子磁化が優勢な第2の希土類−遷移金属合金膜
(12)とを同一副格子磁化が揃うように直接隣接するよ
うにしたものであり、これによって、浮遊磁界を零ない
しは極めて少なくすることができ、且つレーザ光照射時
キュリー点の差によって第2の希土類−遷移金属合金膜
(12)が磁気的に膜厚の薄い単層膜となるので、記録、
消去時の必要外部磁場を低減することができる。 そして、この希土類−遷移金属合金膜(11),(12)
を3層以上積層させた多層膜構造即ち、交換結合する界
面を複数有する多層膜構造とすることにより、浮遊磁界
がさらに低減されて、低磁界記録をより効果的に行うこ
とができる。 〔実施例〕 第8図及び第9図に示す光磁気ディスク(17)及び
(18)を作製し、その記録特性の外部磁場依存性を評価
した。夫々の光磁気ディスク(17)及び(18)は透明基
板(13)と干渉膜(14)と垂直磁化膜(10)と保護膜
(15)から成る。 第8図の光磁気ディスク(17)は、垂直磁化膜(10)
を非晶質Tb Fe CoCr薄膜より構成し、Tbターゲット及び
Fe Co Cr合金ターゲットを用いた2元DCマグネトロンス
パッタリング法によりTb対Fe Co Cr組成比が異なる第1
の磁性膜(11)と第2の磁性膜(12)による3層構造と
なるようにして作製した。 第9図の光磁気ディスク(18)は、垂直磁化膜(10)
を、第8図と同様に非晶質Tb Fe Co Cr薄膜より構成
し、そのTb対Fe Co Cr組成比が異なる第1の磁性膜(1
1)と第2の磁性膜(12)による5層構造となるように
して作製した。 第1の磁性膜(11)は室温からキュリー温度に至る迄
いわゆるTb多量膜であり、そのキュリー温度が130℃、
室温での保磁力が2K Oeである。第2の磁性膜(12)は
室温からキュリー温度に至る迄いわゆる鉄族多量膜であ
り、キュリー温度が160℃、室温での保磁力が2K Oeであ
る。第1の磁性膜(11)の磁化と第2の磁性膜(12)の
磁化の比は100℃で約3対1であるため、この温度付近
でのトータルの磁化を零とするため、第1の磁性膜(1
1)のトータル膜厚を600Åとし、第2の磁性膜(12)の
トータル膜厚を200Åとした。また、キュリー温度の高
い第2の磁性膜(12)の各膜厚を夫々100Åとした。 かかる第8図および第9図の光磁気ディスク(17)及
び(18)に対し、搬送波周波数2.7MHz、線速度3.8m/sec
の条件下での記録特性の外部磁場依存性を評価した。ま
たこれらの光磁気ディスク(17),(18)と従来の光磁
気ディスクとを比較するため、磁性単層膜として記録時
の浮遊磁場が比較的少ない、室温からキュリー温度の間
に磁気補償温度を有するTb Fe Co Cr単層膜(膜厚800
Å)の光磁気ディスクの評価も行った。第10図は、第8
図の光磁気ディスク(17)の評価結果、第11図は、第9
図の光磁気ディスク(18)の評価結果、第12図は従来の
光磁気ディスクの評価結果を示す。第10図及び第11図か
ら明らかなように垂直磁化膜を多層構造(本発明)とし
た光磁気ディスクの場合には約±100 Oeの外部磁場で完
全な記録、消去状態となる。これらに対して、第12図で
示すように従来の磁性単層膜の光磁気ディスクの場合に
は+100 Oeの外部磁場で記録し、−300 Oeの外部磁場で
消去状態となる。従って垂直磁化膜を本発明の多層構造
とすることにより、記録、消去に関する外部磁場を従来
に比べて約半分に低減できる。 なお、キュリー温度がほぼ同一の鉄族多量膜(200
Å)及びTb多量膜(600Å)からなる磁気ディスクの場
合には、従来の磁性単層膜の光磁気ディスクに比べて
も、記録特性が劣り、約−500 Oe印加しなければ消去を
行うことができなかった。 〔発明の効果〕 本発明による光磁気記録媒体によれば、浮遊磁場の発
生をなくし、且つ磁気的に薄い単層膜となることによっ
て、記録、消去時の必要外部磁場を低減することができ
る。従って外部磁場変調法によるオーバライトを容易に
行うことができる。
Description: TECHNICAL FIELD The present invention relates to a magneto-optical recording medium, and more particularly to a magneto-optical recording medium having a rare earth-transition metal alloy film. SUMMARY OF THE INVENTION The present invention relates to a magneto-optical recording medium having a rare earth-transition metal alloy film, wherein Curie points T C1 and T
First and second having C2 (T C1 <T C2 ) and different compositions
The first rare earth-transition metal alloy film is directly adjacent to the second rare earth-transition metal alloy film so that the same sublattice magnetization is aligned, and the first and second rare earth-transition metal alloy films are By forming a perpendicular magnetization film by laminating at least one layer of the rare earth-transition metal alloy film and at least three layers in total, a magneto-optical recording medium capable of recording / erasing under a weak external magnetic field is formed. . [Related Art] A rare earth-transition metal alloy film (perpendicular magnetization film) constituting a conventional magneto-optical recording medium is usually constituted by a magnetic layer having a single composition. FIG. 13 shows a cross-sectional structure of a main part of a magneto-optical recording medium having a conventional structure, for example, a magneto-optical disk.
A pair of transparent substrates (1) each having a groove for recording track position detection formed on one surface is prepared, and a perpendicular magnetic film made of an amorphous rare earth-transition metal alloy is formed on the surface on which each groove is formed. (2) is formed, and the two substrates (1) are joined by an adhesive (3) with the perpendicular magnetization film (2) inside. (4) an interference film formed between each perpendicular magnetization film (2) and the substrate (1);
(5) is a protective film deposited on the surface of the perpendicular magnetization film (2). The saturation magnetization M S (hereinafter referred to as magnetization M S ) of the perpendicular magnetization film (2) is, as schematically shown in FIG. 14, the sub-lattice magnetization M RE of the rare earth metal and the sub-lattice magnetization M TM of the transition metal. Difference | M RE −M TM
Given by In the case of recording on the perpendicular magnetization film (2), for example, Curie point recording, as shown in FIG. 13, an external magnetic field is applied to the recording portion by the magnetic field generating means (6), and in this state, the laser beam (7) Is irradiated onto one perpendicular magnetic film (2) to be recorded through the condenser lens system (8) from the back surface on the substrate (1) side so as to focus on the perpendicular magnetic film (2). The recording is performed by reversing the direction of the magnetization at the place. In such a magneto-optical disk having a single-layer film made of a crystalline rare earth-transition metal alloy, 200 to 3
An external magnetic field of about 00 0e is required. If the external magnetic field can be reduced, it is possible to easily perform downsizing of the magnet and overwriting (rewriting previously written information with new information by overwriting) by the external magnetic field modulation method. [INVENTION AND SUMMARY Problems] Incidentally, the recording and the need an external magnetic field in the erasing obtain a magnetic layer, such as lower (i) requires an external magnetic field during erase requires external magnetic field H W at the time of recording
The H E is made to be H W = -H E, (ii ) | H W | and | H E | reducing the is required. However, in the above-described conventional perpendicular magnetization film, generally, | H W
| <| H E |, and a magnet giving | H E | is used, and its direction is switched between recording and erasing. In the overwriting by the external magnetic field modulation method, H W = −H E
Can reduce the DC component of the current flowing through the coil of the magnet to zero or reduce the AC component, which contributes to downsizing of the coil driving power supply and prevention of heat generation of the coil. However, conventionally, | H W | <| H E | is caused by a stray magnetic field from a region of T <T C (T C : Curie temperature) near the irradiation position at the time of laser irradiation. That is, FIG. 15 shows a state in which the perpendicular magnetization film (2) is irradiated with the laser beam (7) and the portion a is heated to the Curie point. At this time, the magnetization disappears at this portion a, for example, at the Curie point. Suruga given stray magnetic field H SF by the magnetization M O surrounding here. Therefore, when an external magnetic field is applied to the portion a to perform recording or erasing, the floating magnetic field HSF has an effect. That is, since the external magnetic field H W during recording is in the same direction as the floating magnetic field H SF and the external magnetic field H E during erasing is in the opposite direction to the floating magnetic field H SF , the external magnetic field H E during erasing is larger than that during recording. (> H W ) is required. In the case of using a single-layer perpendicular magnetic film, the temperature near the laser irradiation position (T 1 <
Magnetization is zero at T C), i.e. T 1 = T CO MP (T CO MP: may be the magnetic compensation temperature), it is not easy to produce such a perpendicular magnetic film, also from T C near The magnetization also decreases, and the energy (Zeeman energy) at which the magnetization is directed in the direction of the external magnetic field decreases. Next, the following method can be considered to reduce | H W | and | H E |. The magnetized film heated above the Curie temperature is cooled,
When the temperature returns to the Curie temperature and magnetization is generated, what magnetic domain structure (for a film in which magnetization reversal is caused by domain wall motion instead of rotational magnetization) is determined by Zeeman energy Ez, magnetostatic energy Ed by demagnetizing field, and It is determined by the domain wall energy E W. Among these, the Zeeman energy Ez and the magnetostatic energy, which are energies related to magnetization
Think Ed. The Zeeman energy Ez is energy at which the magnetization tends to move in the direction of an external magnetic field (if a floating magnetic field is present, the magnetic field is applied thereto). From this point, it is advantageous that the magnetization is larger. However, when the magnetization increases, the magnetostatic energy Ed due to the demagnetizing field increases, and a multi-domain state (thermal demagnetization state) occurs. By the way, Zeeman energy
Ez and the magnetostatic energy Ed due to the demagnetizing field are both functions of the film thickness h, and the thinner the film pressure h, the more stable the magnetization is in the single domain state rather than in the multi-domain state even with a large magnetization. Therefore, a multi-domain state does not occur, and a thin film having a large magnetization is effective. However, in the case of a single-layer film, it is difficult to form a thin magnetic film (<200 ° ) having a large magnetization just below T C (temperature lower than T C ) in terms of reliability (surface hardening, corrosion, etc.). In view of the above, the present invention provides a magneto-optical recording medium capable of recording and erasing with an external magnetic field. The present invention [Means for Solving the problems], first rare earth is dominant rare earth sublattice magnetization at a temperature lower than T C1 has a Curie point T C1 - transition metal alloy film (11), T C1 A second rare earth-transition metal alloy film (12) having a higher Curie point T C2 and having transition metal sublattice magnetization dominant at a temperature lower than T C1 , and a first rare earth-transition metal alloy film ( (Hereinafter referred to as a first magnetic film) (11) and a second rare earth-transition metal alloy film (hereinafter referred to as a second magnetic film) (12)
Are directly adjacent to each other so that the same sublattice magnetization is aligned, and the first and second rare earth-transition metal alloy films (11) (1)
2) constitutes (10) in which at least one layer or more and three or more layers in total are laminated. If As the perpendicular magnetic film (10), a so-called multiphase film structure example a distribution in the thickness direction of the Curie point T C and the magnetization M S square wave manner varied as shown in FIG. 1, or it can also be the fifth FIGS to seventh Curie point as shown in FIG. T C and the magnetization M S film structure continuously changing the thickness direction of the distribution of which will be described later, first, an understanding of the present invention For the sake of simplicity, a case where the first and second magnetic films (11) and (12) shown in FIG. 1 are alternately stacked to form a five-layer film structure will be described. The first magnetic film (11) and the second magnetic film (12) are Tb, Gd,
One or more amorphous metals such as rare earth metals such as Dy, Ho ‥‥ (may contain some light rare earths such as Nd, Pr, Sn) and transition metals such as Fe, Co, Ni ‥‥ It is composed of an alloy (a small amount of other elements may be added). In this case, the first magnetic film (1
1) a large amount of rare earth metal than the compensation composition is about, by the large amount of transition metal than a similar compensation composition for the second magnetic layer (12), arrows M RE and M TM in Figure 2
In the first magnetic film (11), the rare-earth metal sublattice magnetization MRE predominantly acts as shown by, and the magnetization M shown in FIG.
1 generates, in the second magnetic layer (12) so as produce the magnetization M 2 opposite act dominantly transition metal sublattice magnetization M TM (magnetization M 1, M 2 is T C1 It represents the direction of magnetization at a lower temperature, ie just below T c1 ). At this time, with respect to the magnetization distribution shown in FIG. 1, the magnetization of each of the magnetic films (11) and (12) is made as small as possible as a whole (total), that is, the magnetizations cancel each other. each magnetic film as shown in FIG. 2 (11), it is necessary to be arranged in parallel with so that the same sublattice magnetization M RE comrades, is M TM comrades aligned with respect to (12), such a structure, In general, this can be achieved when the effective magnetic field due to exchange coupling between the magnetic films (11) and (12) is large due to the coercive force of the magnetic films (11) and (12). In FIG. 1, in the perpendicular magnetization film (10), the first layer, the third layer
The layer and the fifth layer are composed of a first magnetic film (11) having a Curie point T C1 , and the second and fourth layers are each composed of a Curie point T higher than T C1.
It is composed of C2 second magnetic film (12). When such a perpendicular magnetization film (10) is formed on a transparent substrate (13), and this perpendicular magnetization film (10) is focused and irradiated with a laser beam (7),
As shown in the drawing, the temperature and the magnetization direction at each position are shown. When the temperature T is equal to or lower than T C1 , the magnetizations M 1 , M
The direction of 2 is reversed, and the stray magnetic field generated from this region is small or almost zero. That recording time required external magnetic field H W at the time of erasing, H E is the H W = -H E. Also T> T C1
In the region (2), the second and fourth layers are magnetically thin single-layer films. Accordingly film material so that the magnetization becomes larger in this temperature range, be determined composition, easily magnetized even to Figure 4, as shown in A weak external magnetic field H ex (i.e. H W or H E) is Suitable for cooling in the direction of the external magnetic field. From this state, cooling is performed, and T = T through FIG. 4B (cooling until T C1 <T <T C2 ).
In the case of C1 , as shown in FIG. 4C, the magnetization directions of the first, third and fifth layers are determined by the exchange coupling force with the second or fourth layer. This enables recording and erasing with a weak external magnetic field. The Curie temperature of the magnetic film used in the present invention is 80 ° C to 25 ° C.
A range of 0 ° C. is preferred and is recorded by Curie point recording. The Curie point and magnetization are controlled by the film material and composition. As the perpendicular magnetization film (10), the first and second magnetic films (1
1) and (12) are alternately arranged to form a multilayer film structure, preferably a multilayer film having three or more layers. As the perpendicular magnetization film (10), in addition to the multilayer film structure in which the distribution of the Curie point and the magnetization in the film thickness direction changes in a square wave (for example, see FIG. 1), for example, FIGS. Fig. 6
A, B, or as shown in FIGS. 7A, B, the Curie point and the magnetization can be continuously changed in the film thickness direction. The temperature lower than the Curie point T C1 (the lowest Curie point in the film thickness direction) is a temperature at which the direction of magnetization is determined in the process of cooling from the Curie point T C1 , and T C1 to T C1 − About 70 ° C (preferably T C1 -10 ° C to 30
(Approx. ° C.) refers to a lower temperature. The total (total) magnetization of the perpendicular magnetization film (10) represents the average value of the magnetization in the film thickness direction. Therefore, the overall magnetization is controlled by the magnitude, direction and film thickness of each layer. You. When the perpendicular magnetization film (10) has a multilayer structure in which the Curie point changes in a square wave in the film thickness direction, a high Curie point T
The second magnetic film (12) of C2 can have a thickness of 300 ° or less, preferably 100 ° or less, and a rare earth-transition metal alloy film having a large amount of transition metal having a large magnetization near the Curie point is effective. is there. In the case of a multilayer film structure, the first and second magnetic films (1
1) and the relationship of the magnetization M 1 and M 2 (12) shall be allowed to the M 2> M 1 when viewed at a temperature just below T C1. [Operation] A first rare earth-transition metal alloy film (11) having a Curie point TC 1 and having a rare earth sublattice magnetization dominant at a temperature lower than Tc 1 and Tc
Transition metal at a temperature lower than a Tc 1 high Curie point Tc 2 than 1 sublattice magnetization is dominant second rare earth - transition metal alloy film (12) and to directly adjacent so that the same sublattice magnetization is aligned with Thereby, the stray magnetic field can be reduced to zero or extremely small, and the second rare earth-transition metal alloy film (12) can be magnetically thickened by the difference of the Curie points during laser light irradiation. Since it becomes a thin single layer film, recording,
The external magnetic field required for erasing can be reduced. Then, the rare earth-transition metal alloy film (11), (12)
Are laminated, that is, a multilayer film structure having a plurality of exchange coupling interfaces, whereby the stray magnetic field can be further reduced and low magnetic field recording can be performed more effectively. [Examples] Magneto-optical disks (17) and (18) shown in FIGS. 8 and 9 were produced, and the dependence of the recording characteristics on the external magnetic field was evaluated. Each of the magneto-optical disks (17) and (18) comprises a transparent substrate (13), an interference film (14), a perpendicular magnetization film (10), and a protective film (15). The magneto-optical disk (17) shown in FIG.
Is composed of an amorphous Tb Fe CoCr thin film, and a Tb target and
The first one in which the composition ratio of Tb to Fe Co Cr is different by binary DC magnetron sputtering using a Fe Co Cr alloy target
The magnetic film (11) and the second magnetic film (12) were formed to have a three-layer structure. The magneto-optical disk (18) in FIG. 9 has a perpendicular magnetization film (10).
Is composed of an amorphous TbFeCoCr thin film as in FIG. 8, and the first magnetic film (1) having a different composition ratio of Tb to FeCoCr.
It was manufactured so as to have a five-layer structure of 1) and the second magnetic film (12). The first magnetic film (11) is a so-called Tb-rich film from room temperature to the Curie temperature, and its Curie temperature is 130 ° C.
The coercive force at room temperature is 2K Oe. The second magnetic film (12) is a so-called iron-group-rich film from room temperature to the Curie temperature, and has a Curie temperature of 160 ° C. and a coercive force of 2 K Oe at room temperature. Since the ratio of the magnetization of the first magnetic film (11) to the magnetization of the second magnetic film (12) is about 3 to 1 at 100 ° C., the total magnetization around this temperature is reduced to zero. 1 magnetic film (1
The total film thickness of 1) was set to 600 mm, and the total film thickness of the second magnetic film (12) was set to 200 mm. The thickness of each of the second magnetic films (12) having a high Curie temperature was set to 100 °. A carrier frequency of 2.7 MHz and a linear velocity of 3.8 m / sec were applied to the magneto-optical disks (17) and (18) shown in FIGS.
The external magnetic field dependence of the recording characteristics under the following conditions was evaluated. In order to compare these magneto-optical disks (17) and (18) with the conventional magneto-optical disk, the magnetic compensation temperature between room temperature and the Curie temperature is relatively small as a magnetic single-layer film with a relatively small stray magnetic field during recording. Tb Fe Co Cr single-layer film with a thickness of 800
The evaluation of the magneto-optical disk of Å) was also performed. FIG.
The evaluation result of the magneto-optical disk (17) shown in FIG.
FIG. 12 shows the evaluation result of the magneto-optical disk (18) shown in the figure, and FIG. 12 shows the evaluation result of the conventional magneto-optical disk. As is clear from FIGS. 10 and 11, in the case of a magneto-optical disk having a perpendicular magnetization film having a multilayer structure (the present invention), a complete recording and erasing state is achieved with an external magnetic field of about ± 100 Oe. On the other hand, as shown in FIG. 12, in the case of a conventional magneto-optical disk having a magnetic single-layer film, recording is performed with an external magnetic field of +100 Oe and erased by an external magnetic field of -300 Oe. Therefore, when the perpendicular magnetization film has the multilayer structure of the present invention, the external magnetic field for recording and erasing can be reduced to about half as compared with the conventional case. It should be noted that a large amount of iron group film (200
In the case of a magnetic disk consisting of Å) and a large amount of Tb film (600 Å), the recording characteristics are inferior to those of a conventional magnetic single-layer magneto-optical disk, and erasing must be performed unless approximately -500 Oe is applied. Could not. [Effects of the Invention] According to the magneto-optical recording medium of the present invention, the generation of a stray magnetic field is eliminated, and a magnetically thin single-layer film is used, so that an external magnetic field required for recording and erasing can be reduced. . Therefore, overwriting by the external magnetic field modulation method can be easily performed.

【図面の簡単な説明】 第1図は本発明による光磁気記録媒体の垂直磁化膜の自
発磁化を模式的に示す図、第2図は第1図の磁化の状態
を形成する副格子磁化の配列を模式的に示す図、第3図
及び第4図A〜Cは垂直磁化膜の動作説明に供する図、
第5図乃至第7図は夫々本発明垂直磁化膜の他の例を示
す膜厚方向に関するキュリー温度及び磁化の分布図、第
8図及び第9図は本発明の記録特性の評価に用いた光磁
気ディスクの実施例、第10図は第8図の光磁気ディスク
の評価結果の図、第11図は第9図の光磁気ディスクの評
価結果の図、第12図は従来の光磁気ディスクの評価結果
の図、第13図は従来の光磁気記録媒体の断面構造図、第
14図はその磁化状態の説明図、第15図は浮遊磁界発生の
説明図である。 (10)は垂直磁化膜、(11)は第1の磁性層、(12)は
第2の磁性層である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing spontaneous magnetization of a perpendicular magnetization film of a magneto-optical recording medium according to the present invention, and FIG. 2 is a diagram of a sub-lattice magnetization forming the state of magnetization shown in FIG. FIGS. 3 and 4A to C schematically show the arrangement, and FIGS.
5 to 7 show other examples of the perpendicular magnetization film of the present invention, showing the distribution of Curie temperature and magnetization in the film thickness direction. FIGS. 8 and 9 are used for evaluating the recording characteristics of the present invention. Example of magneto-optical disk, FIG. 10 is a diagram of the evaluation result of the magneto-optical disk of FIG. 8, FIG. 11 is a diagram of the evaluation result of the magneto-optical disk of FIG. 9, and FIG. FIG. 13 is a sectional structural view of a conventional magneto-optical recording medium, and FIG.
FIG. 14 is an explanatory diagram of the magnetization state, and FIG. 15 is an explanatory diagram of the generation of a stray magnetic field. (10) is a perpendicular magnetic film, (11) is a first magnetic layer, and (12) is a second magnetic layer.

Claims (1)

(57)【特許請求の範囲】 1.キュリー点TC1を有し該TC1より低い温度で希土類副
格子磁化が優勢な第1の希土類−遷移金属合金膜と、 上記キュリー点TC1よりも高いキュリー点TC2を有し上記
TC1より低い温度で遷移金属副格子磁化が優勢な第2の
希土類−遷移金属合金膜とを有し、 上記第1の希土類−遷移金属合金膜を上記第2の希土類
−遷移金属合金膜とを同一副格子磁化が揃うように直接
隣接させるとともに、上記第1及び第2の希土類−遷移
金属合金膜が夫々少なくとも1層以上かつ合計で3層以
上積層されて成ることを特徴とする光磁気記録媒体。
(57) [Claims] First rare earth at a temperature lower than the T C1 has a Curie point T C1 predominant rare earth sublattice magnetization - the comprises a transition metal alloy film, a Curie point T C2 higher than the Curie point T C1
A second rare earth-transition metal alloy film in which transition metal sublattice magnetization is predominant at a temperature lower than T C1 , wherein the first rare earth-transition metal alloy film is Wherein the first and second rare earth-transition metal alloy films are each laminated at least one layer in total and three or more layers in total, so that the same sublattice magnetization is aligned. recoding media.
JP62032638A 1987-02-16 1987-02-16 Magneto-optical recording medium Expired - Fee Related JP2751154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032638A JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032638A JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63200343A JPS63200343A (en) 1988-08-18
JP2751154B2 true JP2751154B2 (en) 1998-05-18

Family

ID=12364394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032638A Expired - Fee Related JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2751154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757560B2 (en) * 1990-11-26 1998-05-25 三菱電機株式会社 Magneto-optical recording medium
US5593790A (en) * 1994-12-29 1997-01-14 Imation Corp. Interference super-resolution using two magnetic layer construction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193351A (en) * 1987-02-06 1988-08-10 Canon Inc Magneto-optical recording medium and recording system

Also Published As

Publication number Publication date
JPS63200343A (en) 1988-08-18

Similar Documents

Publication Publication Date Title
US4955007A (en) Thermomagnetic recording method applying power modulated laser on a magnetically coupled double layer structure of perpendicular anisotropy film
JPS62128040A (en) Photomagnetic recording medium
JPH0740380B2 (en) Magneto-optical recording material
KR960011791B1 (en) Thermomagnetic recording method
JP2925424B2 (en) Overwritable high-density magneto-optical recording medium
JP2000163817A (en) Magneto-optical recording medium
JP2751154B2 (en) Magneto-optical recording medium
Greidanus et al. Magneto‐Optical Recording and Data Storage Materials
JPH0536141A (en) Magneto-optical recorder
JP2829970B2 (en) Thermomagnetic recording medium
JP2555245B2 (en) Magneto-optical recording medium and manufacturing method thereof
JP2805070B2 (en) Thermomagnetic recording method
JP2642656B2 (en) Magneto-optical recording medium
JPH05325283A (en) Magneto-optical recording medium
KR20010078359A (en) Magneto-optical recording medium
JP3613267B2 (en) Magneto-optical recording medium
JP2945049B2 (en) Magneto-optical recording medium
JP2910287B2 (en) Magneto-optical recording medium
JP2805787B2 (en) Magneto-optical recording method
JP3395189B2 (en) Magneto-optical recording method
JP2809224B2 (en) Thermomagnetic recording device
JP3381960B2 (en) Magneto-optical recording medium
JP3089659B2 (en) Magneto-optical recording medium and recording method thereof
JP2757560B2 (en) Magneto-optical recording medium
JPH06150409A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees