JP2751152B2 - Electromagnetic flow meter - Google Patents

Electromagnetic flow meter

Info

Publication number
JP2751152B2
JP2751152B2 JP61229210A JP22921086A JP2751152B2 JP 2751152 B2 JP2751152 B2 JP 2751152B2 JP 61229210 A JP61229210 A JP 61229210A JP 22921086 A JP22921086 A JP 22921086A JP 2751152 B2 JP2751152 B2 JP 2751152B2
Authority
JP
Japan
Prior art keywords
coil
magnetic flux
core
tube
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61229210A
Other languages
Japanese (ja)
Other versions
JPS6383613A (en
Inventor
隆弘 筆保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16888544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2751152(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP61229210A priority Critical patent/JP2751152B2/en
Publication of JPS6383613A publication Critical patent/JPS6383613A/en
Application granted granted Critical
Publication of JP2751152B2 publication Critical patent/JP2751152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、電磁流量計、特に消費電力の軽減された
電磁流量計に関する。 (ロ)従来の技術 従来の電磁流量計は、第4図に示すように、被測定流
体を流す管41の内壁面に、互いに対面する1対の電極4
2、43を設け、一方、管外に設けるコイル44、45に励磁
回路46より低周波の励磁電流を流し、管41の軸及び電極
42、43方向に直交する磁界を加え、電極42、43から増幅
器47を経て、流量に応じた信号を導出している。上記励
磁用のコイル44、45は、空心かあるいはコアを有するも
のでも、その材質は鉄板あるいはケイ素鋼材で成るもの
であった。また、励磁回路46よりコイル44、45に流す励
磁電流は、第5図(a)のように間欠励磁のものか、第
6図(a)のような休止期間のないものが大半であっ
た。第5図(b)、第6図(b)は、それぞれの励磁電
流に対応して流体が流れる管内に生じる磁束である。 (ハ)発明が解決しようとする問題点 上記従来の電磁流量計では、間欠励磁、非間欠励磁の
如何に拘らず、管に磁束を加える期間は、コイルに励磁
電流を流しているので、多くの電力を消費するため、い
わゆる二線式の電磁流量計を実現することは不可能であ
った。 この発明は上記に鑑み、管への磁束入力期間よりも短
い期間の励磁電流とし、より消費電力の軽減された電磁
流量計を提供することを目的としている。 (ニ)問題点を解決するための手段及び作用 この発明の電磁流量計は、上記問題点を解決するため
に、励磁用のコイルを巻回するコアとして、励磁電流を
0にしても高い磁束密度を保持できる程度に残留磁束密
度が大であり、コア内の磁束がコイルによる磁界によっ
て容易に反転し得る程度に保磁力の小さな材料で構成
し、かつ励磁信号の正負の周期に比して十分に小さな期
間だけ前記コイルに励磁電流を流すようにしている。 この電磁流量計では、励磁用のコイルを残留磁束密度
が大で保磁力の小さな材質のコアに巻回しているので、
コア内の磁束はコイル自身による磁界によって容易に反
転し、またコイルによる磁界を0にしても、高い磁束密
度を保持できる。従って、コイルにはごくわずかの短期
間に励磁電流を流すのみで、管内に必要な磁束を形成で
きる。 (ホ)実施例 以下、実施例により、この発明をさらに詳細に説明す
る。 第1図は、この発明の一実施例を示す電磁流量計の回
路図である。この電磁流量計は、従来と同様に、被測定
流体を流す管1の内壁面に、互いに対面する1対の電極
2、3を設けている。また、管1外にコイル4、5を設
け、励磁回路6より低周波の励磁電流を流し、管1の軸
及び電極2、3方向に直交する磁界を加えている。電極
2、3から増幅器7を経て、流量に応じた信号を導出し
ている。 この電磁流量計の特徴は、励磁用のコイル4、5が、
第2図にそのBH特性を示すように、残留磁束密度Baが大
で、保持力Hcの小さな材料で構成されるコア8に巻回さ
れ、かつ励磁回路6からコイル4、5に流す電流が、第
3図(a)に示すように、周期Tに比して非常に小さな
期間の瞬時的であることである。 コア8の保磁力Hcが小さいため、コイル4、5の磁界
によって容易に反転し、また残留磁束密度Baが大きいた
め、コイル4、5の電流を0にし、その磁界を0して
も、高い磁束密度を保持できる。それゆえ、第3図
(a)のように、コイル4、5に流す励磁電流を瞬時的
なものとしても、管1内の磁束は、第3図(b)に示す
ようになり、測定に十分な磁束となる。 なお、コイル4、5に流す励磁電流は、定電流化する
必要がなく、コア8内の磁束密度が飽和する大きさ以上
であれば、いくらであってもよい。その分、励磁回路6
の構成を簡単にできる。また、管1には磁気センサ9が
取付けられており、コア8を介して管1内に発生した磁
束の密度をこの磁気センサ9で検出し、後段の演算回路
で、磁束の変化の補正に使用する。 また、飽和磁束密度の変化は温度に依存するので、上
記磁気センサの代わりに温度センサをコアに付設し、温
度センサ出力に応じて磁束変化を補正するようにしても
よい。 (ヘ)発明の効果 この発明によれば、励磁用のコイルを巻回するコアと
して、励磁電流を0にしても高い磁束密度を保持できる
程度に残留磁束密度が大であり、コア内の磁束がコイル
による磁界によって容易に反転し得る程度に保磁力の小
さな材料で構成し、かつ周期に比して十分に小さな期間
にコイルに励磁電流を流すようにしたものであるから、
従来に比し、消費電力を大幅に軽減できる。そのため、
二線式電磁流量計も実現できる。
The present invention relates to an electromagnetic flow meter, and more particularly to an electromagnetic flow meter with reduced power consumption. (B) Prior art As shown in FIG. 4, a conventional electromagnetic flowmeter has a pair of electrodes 4 facing each other on the inner wall surface of a pipe 41 through which a fluid to be measured flows.
2 and 43, on the other hand, a low-frequency excitation current is passed from the excitation circuit 46 to the coils 44 and 45 provided outside the tube, and the shaft and electrode of the tube 41 are provided.
A magnetic field perpendicular to the directions 42 and 43 is applied, and a signal corresponding to the flow rate is derived from the electrodes 42 and 43 via the amplifier 47. The exciting coils 44 and 45 may have an air core or a core, but may be made of an iron plate or a silicon steel material. Excitation currents flowing from the excitation circuit 46 to the coils 44 and 45 are mostly intermittent excitation as shown in FIG. 5 (a) or have no pause as shown in FIG. 6 (a). . FIGS. 5 (b) and 6 (b) show the magnetic flux generated in the pipe through which the fluid flows in response to the respective exciting currents. (C) Problems to be Solved by the Invention In the above-mentioned conventional electromagnetic flowmeter, regardless of intermittent excitation or non-intermittent excitation, the exciting current flows through the coil during the period of applying the magnetic flux to the tube. Therefore, it is impossible to realize a so-called two-wire type electromagnetic flow meter. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide an electromagnetic flowmeter which uses an exciting current for a period shorter than a magnetic flux input period to a tube and consumes less power. (D) Means and Action for Solving the Problems In order to solve the above problems, the electromagnetic flowmeter of the present invention has a high magnetic flux as the core for winding the exciting coil, even if the exciting current is set to zero. The residual magnetic flux density is large enough to maintain the density, the magnetic flux in the core is made of a material with a small coercive force enough to be easily reversed by the magnetic field generated by the coil, and compared to the positive and negative periods of the excitation signal. An exciting current is supplied to the coil only for a sufficiently short period. In this electromagnetic flowmeter, the coil for excitation is wound around a core made of a material having a large residual magnetic flux density and a small coercive force.
The magnetic flux in the core is easily inverted by the magnetic field generated by the coil itself, and a high magnetic flux density can be maintained even when the magnetic field generated by the coil is zero. Therefore, a necessary magnetic flux can be formed in the tube by supplying an exciting current to the coil in a very short time. (E) Examples Hereinafter, the present invention will be described in more detail with reference to examples. FIG. 1 is a circuit diagram of an electromagnetic flow meter showing one embodiment of the present invention. In this electromagnetic flow meter, a pair of electrodes 2 and 3 facing each other are provided on the inner wall surface of a tube 1 through which a fluid to be measured flows, as in the related art. Further, coils 4 and 5 are provided outside the tube 1, and a low-frequency exciting current flows from the exciting circuit 6 to apply a magnetic field orthogonal to the axis of the tube 1 and the electrodes 2 and 3. A signal corresponding to the flow rate is derived from the electrodes 2 and 3 via the amplifier 7. The feature of this electromagnetic flowmeter is that the coils 4 and 5 for excitation are
As shown by the BH characteristic in FIG. 2, the current that is wound around the core 8 made of a material having a large residual magnetic flux density Ba and a small coercive force Hc and flowing from the excitation circuit 6 to the coils 4 and 5 As shown in FIG. 3 (a), it is instantaneous for a period very small compared to the period T. Since the coercive force Hc of the core 8 is small, it is easily reversed by the magnetic field of the coils 4 and 5, and the residual magnetic flux density Ba is large. The magnetic flux density can be maintained. Therefore, even if the exciting current flowing through the coils 4 and 5 is instantaneous as shown in FIG. 3A, the magnetic flux in the tube 1 becomes as shown in FIG. There will be sufficient magnetic flux. The exciting current flowing through the coils 4 and 5 does not need to be a constant current, and may be any value as long as the magnetic flux density in the core 8 is equal to or greater than the saturation value. Exciting circuit 6
Can be simplified. Further, a magnetic sensor 9 is attached to the tube 1, and the density of the magnetic flux generated in the tube 1 via the core 8 is detected by the magnetic sensor 9, and the arithmetic circuit at the subsequent stage corrects the change in the magnetic flux. use. Further, since the change in the saturation magnetic flux density depends on the temperature, a temperature sensor may be attached to the core instead of the magnetic sensor, and the change in the magnetic flux may be corrected according to the output of the temperature sensor. (F) Effects of the Invention According to the present invention, the core around which the exciting coil is wound has a residual magnetic flux density that is large enough to maintain a high magnetic flux density even when the exciting current is zero. Is made of a material having a small coercive force such that it can be easily reversed by the magnetic field generated by the coil, and the exciting current flows through the coil for a period sufficiently small compared to the period.
Power consumption can be greatly reduced as compared with the conventional case. for that reason,
A two-wire electromagnetic flow meter can also be realized.

【図面の簡単な説明】 第1図は、この発明の一実施例を示す電磁流量計の回路
図、第2図は、同電磁流量計に使用されるコアのBH特性
を示す図、第3図(a)(b)は、同電磁流量計の励磁
電流及び発生磁界の波形を示す図、第4図は、従来の電
磁流量計を示す回路図、第5図(a)(b)及び第6図
(a)(b)は、従来の電磁流量計の動作を説明するた
めの波形図である。 1:管、2・3:電極、4・5:励磁用のコイル、6:励磁回
路、8:コア。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of an electromagnetic flow meter showing one embodiment of the present invention, FIG. 2 is a diagram showing BH characteristics of a core used in the electromagnetic flow meter, FIG. 4A and 4B are diagrams showing the waveforms of the exciting current and the generated magnetic field of the electromagnetic flowmeter, FIG. 4 is a circuit diagram showing a conventional electromagnetic flowmeter, and FIGS. FIGS. 6 (a) and 6 (b) are waveform diagrams for explaining the operation of a conventional electromagnetic flow meter. 1: Tube, 2: 3: Electrode, 4: 5: Coil for excitation, 6: Excitation circuit, 8: Core.

Claims (1)

(57)【特許請求の範囲】 1.被測定流体が導かれる管の内壁に1対の電極を設け
ると共に、前記被測定流体の流れ方向及び前記1対の電
極方向にそれぞれ直交する方向に磁界を加えるためコア
に巻回されたコイルを前記管外に配置し、正負両極性の
信号を前記コイルに加えて励磁電流を流し、前記両電極
より前記被測定流体の流量に応じた信号を導出する電磁
流量計において、 前記励磁用のコイルを巻回するコアとして、励磁電流を
0にしても高い磁束密度を保持できる程度に残留磁束密
度が大であり、コア内の磁束がコイルによる磁界によっ
て容易に反転し得る程度に保磁力の小さな材料で構成
し、かつ前記励磁信号の正負の周期に比して十分に小さ
な期間だけ前記コイルに励磁電流を流すようにしたこと
を特徴とする電磁流量計。
(57) [Claims] A pair of electrodes is provided on the inner wall of the tube through which the fluid to be measured is guided, and a coil wound around a core for applying a magnetic field in a direction perpendicular to the flow direction of the fluid to be measured and the direction of the pair of electrodes. An electromagnetic flowmeter disposed outside the tube, applying a signal of both positive and negative polarities to the coil to flow an excitation current, and deriving a signal corresponding to the flow rate of the fluid to be measured from the two electrodes, wherein the excitation coil Has a large residual magnetic flux density enough to maintain a high magnetic flux density even when the exciting current is 0, and has a small coercive force enough to allow the magnetic flux in the core to be easily reversed by the magnetic field generated by the coil. An electromagnetic flowmeter made of a material, wherein an exciting current is supplied to the coil only for a sufficiently short period as compared with the positive and negative periods of the exciting signal.
JP61229210A 1986-09-27 1986-09-27 Electromagnetic flow meter Expired - Lifetime JP2751152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229210A JP2751152B2 (en) 1986-09-27 1986-09-27 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229210A JP2751152B2 (en) 1986-09-27 1986-09-27 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPS6383613A JPS6383613A (en) 1988-04-14
JP2751152B2 true JP2751152B2 (en) 1998-05-18

Family

ID=16888544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229210A Expired - Lifetime JP2751152B2 (en) 1986-09-27 1986-09-27 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP2751152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020835A (en) * 2014-07-14 2016-02-04 愛知時計電機株式会社 Electromagnetic flowmeter and core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597930B2 (en) * 1979-02-08 1984-02-21 愛知時計電機株式会社 electromagnetic flow meter
JPS59154322A (en) * 1983-02-23 1984-09-03 Aichi Tokei Denki Co Ltd Electromagnetic flowmeter
JPS60242318A (en) * 1984-05-16 1985-12-02 Aichi Tokei Denki Co Ltd Remanent magnetism type electromagnetic flow meter

Also Published As

Publication number Publication date
JPS6383613A (en) 1988-04-14

Similar Documents

Publication Publication Date Title
US4409846A (en) Electromagnetic flow meter
US7293468B2 (en) Electromagnetic flowmeter
JPS5922515Y2 (en) Vibrating density meter
JP2635714B2 (en) DC bias detection method for transformer core
JP2751152B2 (en) Electromagnetic flow meter
JPS599513Y2 (en) electroacoustic transducer
JPH06341873A (en) Flow-rate measuring device of medium that passes conduit
JPH0121903B2 (en)
JP3680363B2 (en) Magnetic bearing control device
JPS57196697A (en) Dynamic type speaker
JP2514338B2 (en) Current detector
JPH05121228A (en) Electromagnetic device
JPH1183571A (en) Electromagnetic flowmeter for fast excitation
JPH03252577A (en) Magnetic field detecting method and magnetic field sensor
JPH0126491B2 (en)
SU783689A1 (en) Apparatus for recording magnetic field
JPH06300597A (en) Electromagnetic flowmeter
JPH03185368A (en) Dc bias detection circuit
JPS5537070A (en) Speaker
JPS62200267A (en) Clip-on ammeter
JPH01168829U (en)
JPH0814967A (en) Electromagnetic flowmeter
JPS5922883B2 (en) electromagnetic flowmeter transmitter
JPS59183622U (en) electromagnetic flow meter
JPS5866072A (en) Magnetism detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term