JPS597930B2 - electromagnetic flow meter - Google Patents

electromagnetic flow meter

Info

Publication number
JPS597930B2
JPS597930B2 JP1391679A JP1391679A JPS597930B2 JP S597930 B2 JPS597930 B2 JP S597930B2 JP 1391679 A JP1391679 A JP 1391679A JP 1391679 A JP1391679 A JP 1391679A JP S597930 B2 JPS597930 B2 JP S597930B2
Authority
JP
Japan
Prior art keywords
excitation
electrodes
magnetic
flow
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1391679A
Other languages
Japanese (ja)
Other versions
JPS55106316A (en
Inventor
和雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP1391679A priority Critical patent/JPS597930B2/en
Priority to US06/175,611 priority patent/US4409846A/en
Publication of JPS55106316A publication Critical patent/JPS55106316A/en
Publication of JPS597930B2 publication Critical patent/JPS597930B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 この発明は、流体の流れの少くとも部分を直接に挾んで
相対する1対の電極と、両電極を通る直接と流れとの両
者に交叉する磁束を生ずる磁気回路と、この磁気回路を
励磁する励磁線輪とをもち磁気回路の磁束と流体の流れ
とに起因して両電極間に生ずる電圧に基いて流速を算定
する電磁流量計に関し、電力消費量が少いものの実現を
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises: a pair of electrodes that directly sandwich at least a portion of a fluid flow; , an electromagnetic flowmeter that has an excitation wire ring that excites this magnetic circuit and calculates the flow velocity based on the voltage generated between both electrodes due to the magnetic flux of the magnetic circuit and the flow of fluid, and has low power consumption. The purpose is to realize something.

この目的のみに着目すれば、磁気回路を得る手段として
は永久磁石の使用が理想的であるが、両電極間の電圧極
性が不変のため、電気化学的作用で、接触電位や分極電
圧が発生し、大幅な零点変動をきたすという難点がある
ため、特殊の場合を除き実用不可能である。
Focusing only on this purpose, the use of permanent magnets is ideal as a means of obtaining a magnetic circuit, but since the voltage polarity between the two electrodes remains unchanged, contact potential and polarization voltage are generated due to electrochemical action. However, this method has the disadvantage of causing significant zero point fluctuations, making it impractical except in special cases.

交流励磁の磁気回路を使用するときは前記の難点は解消
するが、90度雑音があり、同相雑音との合成は必ずし
も90度の位相差とならず変動があり得るため、流体が
流れつつある間の零点の確認が困難である。
When using a magnetic circuit with AC excitation, the above-mentioned difficulties are solved, but there is 90 degree noise, and the combination with the in-mode noise does not necessarily result in a 90 degree phase difference, and there may be fluctuations, so the fluid is flowing. It is difficult to confirm the zero point in between.

交互に方向が反対の矩形波電流で励磁する磁気回路を使
用するときは、永久磁石を使用した場合の前記難点がな
いうえ、双方の電流方向について磁束の変化がない間の
値の平均値から流体が流れている間にも零点変動量が判
り、これに基いて補正できる利点はあるが、従来のもの
では励磁電流を常時流しておくようにしていたから、消
費電力量が大きい点に問題があつた。
When using a magnetic circuit that is excited by rectangular wave currents that alternate in opposite directions, there is no problem mentioned above when using permanent magnets, and the magnetic flux can be excited from the average value while there is no change in magnetic flux in both current directions. There is an advantage that the amount of zero point fluctuation can be determined even while the fluid is flowing, and it can be corrected based on this, but in the conventional method, the excitation current was kept flowing all the time, so there was a problem in that it consumed a lot of power. Ta.

この発明の電磁流量計は、これにかんがみ、磁気回路に
、交互に極性が反対となり間欠的ではあるが毎回若干時
間継続する矩形波磁束を生ぜしめることで前記の利点を
そのまゝ保持し、しかも、電力消費量を少くするための
構成事項として、励磁線輪に、間欠的で毎回瞬間的でか
つ交互に方向が反対の励磁電流を流し、励磁電流が流れ
ない間に磁気回路が保つ残留磁束と流体の流れとに起因
して両電極間に生ずる電圧に基き、流速を算定するよう
にした電磁流量計である。
In view of this, the electromagnetic flowmeter of the present invention maintains the above-mentioned advantages by generating in the magnetic circuit a rectangular wave magnetic flux whose polarity is alternately reversed and which is intermittent but lasts for a certain amount of time each time, Moreover, as a configuration item to reduce power consumption, an excitation current is passed through the excitation wire ring intermittently, instantaneously, and alternately in the opposite direction, and the magnetic circuit retains residual energy while the excitation current is not flowing. This is an electromagnetic flowmeter that calculates flow velocity based on the voltage generated between both electrodes due to magnetic flux and fluid flow.

第1図は、この発明の一実施例について流体の流れに直
交する断面を示している。
FIG. 1 shows a cross section perpendicular to the fluid flow of one embodiment of the invention.

流体の管路1はこの断面の近辺の長手方向の相当の範囲
に亘ク非磁性かつ非導電性である。管路1の内側に露出
して流体の流れの少くとも部分を直接に挾んで相対する
ように1対の電極2a、2bが多る。各電極2a、2b
は管路1の壁を水密的に貫通する導体部分を介して、両
電極2a、2b間の電圧に基いて流速を算定する流速算
定装置3に接続してある。管路1を挾んで磁極4a、4
bをもつ磁気回路4を設け、磁極4a、4b間に、両電
極2a、2bを通る直線と流体の流れとの両者に交叉す
る磁束を生ずるようにしてある。
The fluid conduit 1 is non-magnetic and non-conductive over a considerable length in the vicinity of this cross-section. There is a pair of electrodes 2a and 2b exposed inside the conduit 1 so as to directly sandwich at least a portion of the fluid flow and face each other. Each electrode 2a, 2b
is connected via a conductor portion that penetrates the wall of the conduit 1 in a watertight manner to a flow rate calculation device 3 that calculates the flow rate based on the voltage between both electrodes 2a and 2b. Magnetic poles 4a, 4 sandwich pipe line 1.
A magnetic circuit 4 having a magnetic field 4b is provided to generate a magnetic flux between the magnetic poles 4a and 4b that crosses both the straight line passing through the electrodes 2a and 2b and the flow of the fluid.

磁気回路4の材料は、高透磁率をもち磁化し易くかつあ
る程度の抗磁力をもつものとし、この実施例では普通鋼
を使用してある。
The material of the magnetic circuit 4 is one that has high magnetic permeability, is easily magnetized, and has a certain degree of coercive force, and in this embodiment, ordinary steel is used.

各磁極4a,4bには、磁気回路4を励磁するための各
励磁線輪5a,5bを巻いてある。
Excitation wire rings 5a, 5b for exciting the magnetic circuit 4 are wound around each magnetic pole 4a, 4b.

その線径は太く、全抵抗値を小さくしてある。両励磁線
輪5a,5bは互に直列に接続し、これに、間欠的で毎
回瞬間的でかつ交互に方向が反対の励磁電流を流す励磁
装置6を接続してある。
The wire diameter is thick and the total resistance value is small. Both excitation coils 5a and 5b are connected in series, and an excitation device 6 is connected thereto which supplies excitation current intermittently, instantaneously each time, and alternately in opposite directions.

この励磁電流によつて磁気回路4に生ずる磁界の強さを
+Hp,−Hpとするとき磁極4a,4b間に生ずる磁
速密度Bは第2図に曲線で示すように変化するが、励磁
電流がOになつたときは磁極4a,4b間のバーミアン
スが小さいために磁界の強さが0の点を通り越して図示
点p又はp′の状態で安定する。この状態での残留磁束
密度Bは図示線分0b又は0b′で表わされる。この残
留密度を大きく定めるには、管路1の断面を矩形とし、
磁極4a,4b間の空隙を狭くしてパーミアンスを大き
くするのが得策である。
When the strength of the magnetic field generated in the magnetic circuit 4 by this excitation current is +Hp and -Hp, the magnetic velocity density B generated between the magnetic poles 4a and 4b changes as shown by the curve in Figure 2, but the excitation current When becomes O, since the vermeance between the magnetic poles 4a and 4b is small, the magnetic field strength passes through the point of 0 and becomes stable at the point p or p' shown in the figure. The residual magnetic flux density B in this state is represented by the illustrated line segment 0b or 0b'. In order to set a large residual density, the cross section of the conduit 1 should be rectangular,
It is a good idea to narrow the gap between the magnetic poles 4a and 4b to increase permeance.

次に、励磁装置6と流速算定装置3とは、ともに、1の
発振器のパルスに基いて所要の信号を作る制御装置7か
ら受けるパルスによつて、時間的に互に―定の関係を保
つて周期的に動作し、その結果所定の作用を行うもので
ある。励磁装置6は、第3図の上半部に回路を示すよう
に、励磁線輪の銅抵抗の温度変化による変化の影響を実
質的に解消するため、励磁線輪5a,5bの直列接続に
直列に、両線輪5a,5bに比べれば十分に大きい抵抗
値をもつ固定抵抗rを挿入し別に、コンテンサcと常開
的瞬間閉成スィッチS1との直列接続を設け、その両端
を極性反転スイツチS,を介して前記線輪5a,5b及
び固定抵抗rより成る直列接続の両端と接続し、コンデ
ンサcと並列に高抵抗Rと安定化直流電源EOとの直列
接続を接続したものである。
Next, both the excitation device 6 and the flow rate calculation device 3 maintain a fixed relationship with each other in time by the pulses received from the control device 7 which generates a required signal based on the pulses of the oscillator 1. It operates periodically, and as a result performs a predetermined action. As shown in the circuit shown in the upper half of FIG. 3, the excitation device 6 is constructed by connecting excitation wire rings 5a and 5b in series in order to substantially eliminate the influence of changes in the copper resistance of the excitation wire rings due to temperature changes. A fixed resistor r having a sufficiently large resistance value compared to both wire rings 5a and 5b is inserted in series, and a capacitor c and a normally open instantaneous closing switch S1 are connected in series, and the polarity of both ends is reversed. It is connected to both ends of a series connection consisting of the wire rings 5a, 5b and a fixed resistor r via a switch S, and a series connection of a high resistance R and a stabilized DC power source EO is connected in parallel with a capacitor c. .

上記において常開的瞬間閉成スイツチS1及び極性反転
スィッチS2は、実際のものでは等価の機能をもつ電子
回路におきかえ、これらを制御装置7が発する一定刻み
のパルスで制御して、第4図線図S,,S,に示すよう
に、スイツチS2の接続極性を一定刻みで反転し、その
各極性維持期間の中間でスィツチS1を極めて短時間の
みを閉じて後直ちに開くようにしてある。このため、励
磁線輪5a,5bには、第4図線図5に示すように、間
欠的で毎回尖頭状で交互に方向が反対の一定の大きさの
励磁電流が流れ、この結果、磁極4a,4b間には、第
2図の線図から判るように、第4図線図4に示すように
尖頭状に変化する磁束に続きほマ一定の残留磁束を生ず
る。
In the above, the normally open instantaneous closing switch S1 and the polarity reversing switch S2 are replaced with electronic circuits having equivalent functions in the actual circuit, and these are controlled by pulses at constant intervals emitted by the control device 7, as shown in FIG. As shown in diagrams S, , S, the connection polarity of switch S2 is reversed at regular intervals, and in the middle of each polarity maintenance period, switch S1 is closed only for a very short time and then immediately opened. Therefore, as shown in Figure 4 and Diagram 5, an excitation current of a constant magnitude flows intermittently in the excitation wire rings 5a and 5b, each time having a pointed shape and alternating in the opposite direction. As can be seen from the diagram in FIG. 2, between the magnetic poles 4a and 4b, a magnetic flux that changes in a peaked manner as shown in diagram 4 in FIG. 4 is followed by a residual magnetic flux that is almost constant.

この結果、例えば管路1の流体の流速が漸減する場合に
ついて考えると、電極2a,2b間に生ずる電圧は第4
図線図2に示すように、線図4の磁束と流速との積に比
例して変化することになる。
As a result, for example, considering the case where the flow rate of the fluid in the pipe line 1 gradually decreases, the voltage generated between the electrodes 2a and 2b is
As shown in diagram 2, it changes in proportion to the product of magnetic flux and flow velocity in diagram 4.

次に、流速算定装置3は、第3図の下半部にプロツク図
で示すように、電極2a,2b間の電圧を第1増幅器A
1で増幅してサンプリング回路SPに伝え、サンプリン
グ回路SPは、制御装置7から、第4図線図Spに示す
ように線図2の電極電圧の毎回の期間のうち変動が大き
い前半を避けて後半のみに合致するサンプリングパルス
を受けて、各サンプリングパルスの期間内の電極電圧の
変化のみを、第4図線図S。に示すようにサンプル出力
する。この出力を第2増幅器A2で増幅し、同期整流器
SRで同期整流して、第4図線図SRに示すように流速
に比例して変化する断続出力を得、これを平均回路mで
時間平均して、第4図線図mに示すような滑らかな変化
を得、これに基いて瞬間流速を指示するものである。以
上説明の構造において、制御装置7の出力パルスによる
励磁電流の頻度を適度に定めることによつて、励磁電流
が流れない間の電極2a,2bに対する電気化学的作用
による零点変動を実用上の許容範囲にとどめ、かつサン
プリングパルスの期間以外の期間の流速変動があつても
全体の平均流速がサンプリングパルスの期間のみの平均
流速と実質上同一にすることが可能である。
Next, as shown in the block diagram in the lower half of FIG.
1 and transmits it to the sampling circuit SP, and the sampling circuit SP receives the signal from the control device 7 by avoiding the first half of each period of the electrode voltage in the diagram 2, where the fluctuation is large, as shown in the fourth diagram Sp. In response to sampling pulses that match only the second half, only the change in electrode voltage within the period of each sampling pulse is shown in FIG. Sample output as shown. This output is amplified by the second amplifier A2 and synchronously rectified by the synchronous rectifier SR to obtain an intermittent output that changes in proportion to the flow velocity as shown in the diagram SR in Figure 4. This is time averaged by the averaging circuit m. As a result, a smooth change as shown in diagram m in Figure 4 is obtained, and based on this, the instantaneous flow velocity is indicated. In the structure described above, by appropriately determining the frequency of the excitation current by the output pulse of the control device 7, the zero point fluctuation due to the electrochemical action on the electrodes 2a and 2b while the excitation current does not flow can be practically tolerated. It is possible to maintain the overall average flow velocity within the range and to make the overall average flow velocity substantially the same as the average flow velocity only during the sampling pulse period even if the flow velocity fluctuates during periods other than the sampling pulse period.

この発明の電磁流量計によると、励磁電流が瞬間的であ
るから、電力消費が極めて少なく所期の目的を達するこ
とができる。
According to the electromagnetic flowmeter of the present invention, since the excitation current is instantaneous, the intended purpose can be achieved with extremely low power consumption.

なお、電極2a,2b間の電圧極性が毎回反転するから
、電気化学的作用による大幅な零点変動はなく、更に残
留磁束の変化が実用上影響しない期間のみに測定するか
ら流体が流れつつある間でも零点の確認が容易である。
In addition, since the voltage polarity between the electrodes 2a and 2b is reversed every time, there is no significant zero point fluctuation due to electrochemical action, and furthermore, since the measurement is performed only during a period when changes in residual magnetic flux have no practical effect, it is possible to measure the voltage while the fluid is flowing. However, it is easy to check the zero point.

この発明は、電力消費が少く、従つて電池を電源とする
実用的電磁流量計の出現を可能とするものである。
This invention enables the emergence of a practical electromagnetic flowmeter that consumes less power and is powered by batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図は磁気回
路の性質の説明線図、第3図は励磁装置の回路図及び流
速算定装置のプロツク図、第4図は各部分の動作を示す
線図である。 2a,2b・・・・・・電極、4・・・・・・磁気回路
、5a,5b・・・・・・励磁線輪。
Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2 is a diagram explaining the properties of the magnetic circuit, Fig. 3 is a circuit diagram of the excitation device and a block diagram of the flow velocity calculation device, and Fig. 4 is each part. It is a line diagram showing the operation of. 2a, 2b...electrode, 4...magnetic circuit, 5a, 5b...excitation wire ring.

Claims (1)

【特許請求の範囲】[Claims] 1 流体の流れの少くとも部分を直接に挾んで相対する
1対の電極と、両電極を通る直線と流れとの両者に交叉
する磁束を生ずる磁気回路と、この磁気回路を励磁する
励磁線輪とをもち、励磁線輪に間欠的で、毎回瞬間的で
かつ交互に方向が反対の励磁電流を流し、励磁電流が流
れない間に磁気回路が保つ残留磁束と流体の流れとに起
因して両電極間に生ずる電圧に基き、流速を算定するよ
うにした電磁流量計。
1 A pair of electrodes that face each other by directly sandwiching at least a portion of the fluid flow, a magnetic circuit that generates a magnetic flux that crosses both the straight line passing through the electrodes and the flow, and an excitation wire ring that excites this magnetic circuit. With an intermittent, instantaneous and alternately opposite excitation current flowing through the excitation coil, the magnetic circuit maintains a residual magnetic flux and fluid flow while the excitation current does not flow. An electromagnetic flowmeter that calculates flow velocity based on the voltage generated between both electrodes.
JP1391679A 1979-02-08 1979-02-08 electromagnetic flow meter Expired JPS597930B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1391679A JPS597930B2 (en) 1979-02-08 1979-02-08 electromagnetic flow meter
US06/175,611 US4409846A (en) 1979-02-08 1980-08-06 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1391679A JPS597930B2 (en) 1979-02-08 1979-02-08 electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPS55106316A JPS55106316A (en) 1980-08-15
JPS597930B2 true JPS597930B2 (en) 1984-02-21

Family

ID=11846485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1391679A Expired JPS597930B2 (en) 1979-02-08 1979-02-08 electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPS597930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134629U (en) * 1981-02-13 1982-08-21
JP2751152B2 (en) * 1986-09-27 1998-05-18 株式会社島津製作所 Electromagnetic flow meter
JP4174725B2 (en) 2004-04-08 2008-11-05 横河電機株式会社 Electromagnetic flow meter

Also Published As

Publication number Publication date
JPS55106316A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
US4409846A (en) Electromagnetic flow meter
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US4784000A (en) Magnetic flowmeter coil driver and method
GB1158790A (en) Improvements in Fluid Density Meters
JPH0377933B2 (en)
US7574924B1 (en) Magnetic flow meter
US7293468B2 (en) Electromagnetic flowmeter
KR850007307A (en) Oxygen Sensing System Using Hall Effect
US6722207B1 (en) Electro-magnetic flow transducer with insulating scroll
JP3043087B2 (en) Residual magnetic electromagnetic flowmeter
GB2081449A (en) Electromagnetic flow meters
JPS597930B2 (en) electromagnetic flow meter
CZ20002941A3 (en) Method for the magnetic-inductive measurement of fluid flow
US4727755A (en) Electromagnetic flowmeter with alternating permanent magnet field
US9599494B2 (en) Method for operating a magnetic-inductive flowmeter with improved compensation of the interfering voltage
US4156363A (en) Magnetic flowmeter
US20200217698A1 (en) Magnetic flowmeter with media conductivity measurement
JPH0875515A (en) Electromagnetic flowmeter
JPH02280012A (en) Square wave excitating electromagnetic flowmeter
JPH0224476B2 (en)
RU2239789C1 (en) Method of measuring flow rate of liquid and electromagnetic transducer for measuring flow rate of liquid
JPS6111611Y2 (en)
JPH0868675A (en) Electromagnetic flowmeter
KR100359235B1 (en) Electromagnetic flowmeter
JP2607708B2 (en) Electromagnetic flow meter