JP2750731B2 - Positive electrode for lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery

Info

Publication number
JP2750731B2
JP2750731B2 JP1082589A JP8258989A JP2750731B2 JP 2750731 B2 JP2750731 B2 JP 2750731B2 JP 1082589 A JP1082589 A JP 1082589A JP 8258989 A JP8258989 A JP 8258989A JP 2750731 B2 JP2750731 B2 JP 2750731B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
active material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1082589A
Other languages
Japanese (ja)
Other versions
JPH02262241A (en
Inventor
陸郎 菅原
健三 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP1082589A priority Critical patent/JP2750731B2/en
Publication of JPH02262241A publication Critical patent/JPH02262241A/en
Application granted granted Critical
Publication of JP2750731B2 publication Critical patent/JP2750731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 従来、リチウム二次電池の充放電は、リチウムから成
る負極でリチウムイオンの電解液への溶解析出を行い、
Ca2Mn38を活物質として成る正極で酸化還元によりリ
チウムイオンの脱挿入が行われて進行させる形式のもの
がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] Conventionally, charging and discharging of a lithium secondary battery involves dissolving and depositing lithium ions in an electrolyte solution using a negative electrode made of lithium.
There is a type in which lithium ions are inserted and removed by oxidation-reduction and proceed by using a positive electrode comprising Ca 2 Mn 3 O 8 as an active material.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の上記形式のリチウム二次電池の正極を構成する
正極活物質であるCa2Mn38は、導電率が小さいので大
きい放電容量が得られない欠点を有する。
Conventionally, Ca 2 Mn 3 O 8 , which is a positive electrode active material constituting a positive electrode of a lithium secondary battery of the above type, has a drawback that a large discharge capacity cannot be obtained due to low conductivity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、かゝる従来形式のリチウム二次電池の正極
として用いられていたCa2Mn38の上記の欠点を改善
し、大きい放電容量を得られるリチウム二次電池用正極
を提供するもので、LXCa2-XMn38又はLXYCa2-X-YM
n38(茲でLはY又はLa、EはBa又はSr)を正極活物
質として成る。
The present invention improves the above-mentioned disadvantages of Ca 2 Mn 3 O 8 used as a positive electrode of such a conventional type lithium secondary battery, and provides a positive electrode for a lithium secondary battery capable of obtaining a large discharge capacity. but, L X Ca 2-X Mn 3 O 8 or L X E Y Ca 2-XY M
n 3 O 8 (where L is Y or La and E is Ba or Sr) is used as the positive electrode active material.

〔作用〕[Action]

本発明によれば、Ca2Mn38のCa2 2+の一部を三価の希
土類イオンのうち特に、Y又はLaで置換して得られる複
合酸化物は、導電率がCa2Mn38に比し著しく増大す
る。従ってこれを電池の正極活物質として使用し、放電
容量の増大をもたたらす。
According to the present invention, a complex oxide obtained by substituting part of Ca 2 2+ of Ca 2 Mn 3 O 8 among trivalent rare earth ions, particularly, with Y or La has conductivity of Ca 2 Mn It increases remarkably compared to 3 O 8 . Therefore, this is used as a positive electrode active material of a battery, thereby increasing the discharge capacity.

〔実施例〕〔Example〕

次に本発明の実施例を詳述する。 Next, examples of the present invention will be described in detail.

本発明のリチウム二次電池用正極の活物質であるLXC
a2-XMn38又はLXYCa2-X-YMn38(茲でLはY又はL
a、EはBa又はSr)は、Ca2Mn38のCa2の一部をY3+、L
a3+の単独又はこれらのいずれかと、Ba2+又はSr2+で置
換したものであるが、Ca2Mn38の基本構造に変化はな
いが、「211」面の回析強度が増加すると共に、「003」
面の回析がブロードになっている。Ca2+をY3+、La3+
金属イオンで置換することにより、Mn4+はMn3+に還元さ
れるので、「211」面のようにMnイオンを含む面では、
電荷密度が増加し、回析強度が大きくなるものと考えら
れる。又、Ca2+イオンよりイオン半径の大きいLa3+、Y
3+で置換するときは、Ca2+イオンを含む「003」軸で
は、原子の配列に乱れを生じ、回析がブロードになるも
のと考えられる。又、Ca2+の一部をLa3+、Y3+で置換す
ることにより、Mn3+イオンが生成する結果、下記表1に
示すように、抵抗率が低下し、従って、導電率が増大
し、La3+、Y3+の効果が大きいことがわかった。
L X C which is the active material of the positive electrode for a lithium secondary battery of the present invention
a 2-X Mn 3 O 8 or L X EY Ca 2-XY Mn 3 O 8 (where L is Y or L
a, E is Ba or Sr) is a part of Ca 2 of Ca 2 Mn 3 O 8 represented by Y 3+ , L
a 3+ alone or any of these, and those substituted with Ba 2+ or Sr 2+ , there is no change in the basic structure of Ca 2 Mn 3 O 8 , but the diffraction strength of the `` 211 '' plane is As it increases, "003"
Diffraction of the surface is broad. By replacing Ca 2+ with a metal ion of Y 3+ or La 3+ , Mn 4+ is reduced to Mn 3+ , so on a surface containing Mn ions such as the “211” surface,
It is considered that the charge density increases and the diffraction strength increases. Also, La 3+ , Y having an ionic radius larger than that of Ca 2+ ions
When replacing with 3+ , it is considered that the arrangement of atoms is disordered in the “003” axis containing Ca 2+ ions, and that the diffraction becomes broad. Further, by substituting a part of Ca 2+ with La 3+ and Y 3+ , as a result of generating Mn 3+ ions, the resistivity is reduced as shown in Table 1 below, and thus the conductivity is reduced. It was found that the effect of La 3+ and Y 3+ was large.

本発明の上記活物質の製造法は、目的金属イオン組成
の硝酸塩混合物の水溶液を炭酸アンモニウム水溶液に加
え、炭酸塩を共沈させ、水洗、乾燥した後、酸素気流
中、650℃で熱分解させて合成した。この得られた酸化
物について、XRD、抵抗測定及びSEM観察を行った。
In the method for producing the active material of the present invention, an aqueous solution of a nitrate mixture having a target metal ion composition is added to an ammonium carbonate aqueous solution, carbonate is coprecipitated, washed with water, dried, and then thermally decomposed at 650 ° C. in an oxygen stream. And synthesized. The obtained oxide was subjected to XRD, resistance measurement and SEM observation.

具体例として、La0.2Ca1.8Mn38を製造するには、金
属イオン組成を混合モル比0.2:1.8:3から成るようにLa
(NO33、Ca(NO32及びMn(NO33の夫々の硝酸塩を
混合し、その混合物を水に添加し、これを炭酸アンモニ
ウム(NH4)CO3水溶液に加え炭酸塩を共沈させ、これを
水洗、乾燥した後、酸素気流中で熱電解することにより
得られる。
As a specific example, in order to produce La 0.2 Ca 1.8 Mn 3 O 8 , the metal ion composition is adjusted so that the mixture molar ratio is 0.2: 1.8: 3.
The respective nitrates of (NO 3 ) 3 , Ca (NO 3 ) 2 and Mn (NO 3 ) 3 were mixed, the mixture was added to water, and this was added to an aqueous solution of ammonium carbonate (NH 4 ) CO 3 to add carbonate Is coprecipitated, washed with water, dried, and then subjected to thermoelectrolysis in an oxygen stream.

上記と同様にして、La0.4Ca1.6Mn38、Y0.2Ca1.8Mn
38、La0.2Ba0.2Ca1.6Mn38、La0.2Sr0.2Ca1.6Mn
38、Y0.4Ca1.6Mn38及びLa0.1Ca1.9Mn38を夫々製
造した。比較のため、Ca2Mn38及びSr0.2Ca1.8Mn38
を夫々製造した。而して、これらの活物質につき、抵抗
率を測定した結果は上記表1に示す通りであった。
In the same manner as above, La 0.4 Ca 1.6 Mn 3 O 8 , Y 0.2 Ca 1.8 Mn
3 O 8 , La 0.2 Ba 0.2 Ca 1.6 Mn 3 O 8 , La 0.2 Sr 0.2 Ca 1.6 Mn
3 O 8 , Y 0.4 Ca 1.6 Mn 3 O 8 and La 0.1 Ca 1.9 Mn 3 O 8 were produced, respectively. For comparison, Ca 2 Mn 3 O 8 and Sr 0.2 Ca 1.8 Mn 3 O 8
Was manufactured respectively. The results of measuring the resistivity of these active materials were as shown in Table 1 above.

次にこれらの活物質を使用して夫々の正極板を作製し
た。これら正極板は、各活物質を主体とし、これに例え
ば、アセチレンブラックを混合し、その混合物をテフロ
ン分散液とイソプロパノールを加え、ガム状に練った
後、ロール成型することにより得られる。
Next, each positive electrode plate was manufactured using these active materials. These positive electrode plates are obtained by mixing each of the active materials as a main component, for example, acetylene black, adding a Teflon dispersion and isopropanol to the mixture, kneading the mixture into a gum, and then performing roll molding.

これら正極板の夫々にリチウムから成る負極板を対極
とし、電解液として炭酸プロピレンの1MLiClO4溶液を用
いてリチウム二次電池を夫々製造し、その各電池につい
て放電特性を検べた。放電々流は0.5mA/cm2とした。
Lithium secondary batteries were manufactured using a 1 M LiClO 4 solution of propylene carbonate as an electrolyte, and a discharge characteristic of each of the batteries was examined. The discharge current was 0.5 mA / cm 2 .

第1図示の例示から明らかなように、本発明の正極を
使用した電池は、いずれも、比較例のCa2Mn38及びSr
0.2Ca0.8Mn38を正極とした電池に比し著しく放電特性
が向上したことがわかる。更に詳細には、Y3+及びLa3+
でCa2+を置換した放電容量は、Ca2Mn38のそれに比べ
て増大している。特にLa3+置換酸化物の放電容量の増加
が著しく、抵抗率の低下の結果と一致している。又、La
3+-Ba2+(−Sr2+)で置換した酸化物も又放電容量の増
大を示すが、比較例として示したSr0.2Ca1.8Mn38のよ
うに、Sr2+のみで置換した場合は、逆にCa2Mn38より
放電容量の低下をもたらすことが判った。
As is apparent from the example shown in FIG. 1, the batteries using the positive electrode of the present invention were all Ca 2 Mn 3 O 8 and Sr of the comparative example.
It can be seen that the discharge characteristics were significantly improved as compared with the battery using 0.2 Ca 0.8 Mn 3 O 8 as the positive electrode. More specifically, Y 3+ and La 3+
The discharge capacity in which Ca 2+ is replaced by is increased as compared with that of Ca 2 Mn 3 O 8 . In particular, the discharge capacity of the La 3+ substituted oxide increased remarkably, which coincides with the result of the decrease in resistivity. Also, La
Oxide substituted with 3+ -Ba 2+ (-Sr 2+ ) also shows an increase in discharge capacity, but only with Sr 2+ like Sr 0.2 Ca 1.8 Mn 3 O 8 shown as a comparative example. On the contrary, it was found that the discharge capacity was lower than that of Ca 2 Mn 3 O 8 .

第2図は、本発明の活物質から成る正極板を使用した
リチウム二次電池の充放電サイクル特性を例示したもの
である。充電、放電とも0.5mA/cm2とし、放電は、電池
電圧が1.5Vになるまで行った。充電は、この放電量と等
しい量だけ行い、以下、この操作を繰り返した。この第
2図から明らかなように、その特性曲線は略平坦となり
安定しており、二次電池用として利用し得ることが判っ
た。その他の本発明の活物質についてもこれと略同等の
傾向が見られた。この場合、La3+-Sr2+で置換した酸化
物のサイクル特性の特性曲線は、La3+のみで置換した酸
化物よりも、初期サイクルにおいて一層平坦に特性が見
られた。図示しないが、La3+-Ba2+で置換した場合にも
その平坦性につき同様の平坦なサイクル特性が認められ
た。
FIG. 2 illustrates the charge / discharge cycle characteristics of a lithium secondary battery using a positive electrode plate made of the active material of the present invention. Both charging and discharging were performed at 0.5 mA / cm 2, and discharging was performed until the battery voltage reached 1.5 V. Charging was performed by an amount equal to the amount of discharge, and thereafter, this operation was repeated. As is clear from FIG. 2, the characteristic curve was substantially flat and stable, and it was found that the characteristic curve could be used for a secondary battery. The other active materials of the present invention also showed similar tendency. In this case, the characteristic curve of the cycle characteristics of the oxide substituted with La 3+ -Sr 2+ was more flat in the initial cycle than the oxide substituted with only La 3+ . Although not shown, similar flat cycle characteristics were observed in the case of substitution with La 3+ -Ba 2+ .

〔発明の効果〕〔The invention's effect〕

このように本発明によるときは、Ca2Mn38のCa2の一
部をY、La又はY−Ba、Y−Sr、La-Ba、La-Srで置換し
たいずれかの複合酸化物を、リチウム二次電池の正極用
活物質として使用し、正極を構成するときは、従来のCa
2Mn38から成る正極に比し導電率を向上し、又該電池
の放電容量の増大をもたらす等の効果を有する。
As described above, according to the present invention, any of the composite oxides in which a part of Ca 2 of Ca 2 Mn 3 O 8 is substituted with Y, La or Y-Ba, Y-Sr, La-Ba, La-Sr Is used as the positive electrode active material of the lithium secondary battery, and when forming the positive electrode, the conventional Ca is used.
Compared to the positive electrode made of 2 Mn 3 O 8 , it has the effects of improving the conductivity and increasing the discharge capacity of the battery.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例の正極を使用したリチウム二
次電池と従来の比較例の正極を使用したリチウム二次電
池の放電特性の比較図、第2図は、本発明の実施例の正
極を使用したリチウム二次電池の充放電サイクル特性を
示す図である。
FIG. 1 is a comparison diagram of the discharge characteristics of a lithium secondary battery using a positive electrode of an embodiment of the present invention and a lithium secondary battery using a conventional positive electrode of a comparative example, and FIG. FIG. 4 is a diagram showing charge / discharge cycle characteristics of a lithium secondary battery using the positive electrode of FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z // C01F 17/00 C01F 17/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z // C01F 17/00 C01F 17/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LXCa2-XMn38又はLXYCa2-X-YMn38
(茲でLはY又はLa、EはBa又はSr)を正極活物質とし
て成るリチウム二次電池用正極。
1. A L X Ca 2-X Mn 3 O 8 or L X E Y Ca 2-XY Mn 3 O 8
(Where L is Y or La and E is Ba or Sr) a positive electrode for a lithium secondary battery using a positive electrode active material.
JP1082589A 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery Expired - Lifetime JP2750731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082589A JP2750731B2 (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082589A JP2750731B2 (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH02262241A JPH02262241A (en) 1990-10-25
JP2750731B2 true JP2750731B2 (en) 1998-05-13

Family

ID=13778670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082589A Expired - Lifetime JP2750731B2 (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2750731B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601949A (en) * 1992-11-19 1997-02-11 Sanyo Electric Co., Ltd. Ion conductive material for secondary battery
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
US5506077A (en) * 1993-06-14 1996-04-09 Koksbang; Rene Manganese oxide cathode active material
JP5534578B2 (en) * 2009-11-19 2014-07-02 旭化成株式会社 Active material for positive electrode

Also Published As

Publication number Publication date
JPH02262241A (en) 1990-10-25

Similar Documents

Publication Publication Date Title
Robertson et al. Li1+ x Fe1− 3x Ti1+ 2x O 4 (0.0≤ x≤ 0.33) Based Spinels: Possible Negative Electrode Materials for Future Li‐Ion Batteries
JP2903469B1 (en) Method for producing anode material for lithium ion battery
EP0849817A2 (en) Positive active material for lithium battery having the same, and method for producing the same
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
CN103682304A (en) Lithium-rich solid solution anode composite and preparation method thereof, lithium ion battery anode plate and lithium ion battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
CN105226269A (en) A kind of nickel ion doped manufacturing process
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2001146425A (en) Lithium manganese compound oxide, method for producing the same and lithium secondary battery
JP2001023617A (en) Manufacture of lithium secondary battery
JP2750731B2 (en) Positive electrode for lithium secondary battery
Uchimoto et al. Changes in electronic structure by Li ion deintercalation in LiCoO2 from cobalt L-edge and oxygen K-edge XANES
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JP2015022983A (en) Sodium secondary battery
JP6002110B2 (en) Sodium secondary battery
JPH07122298A (en) Method for electrically charging/discharging non-aqueous secondary battery
JP3331373B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode material
JPH10241682A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
JPH08180875A (en) Lithium secondary battery
KR100385700B1 (en) Non-aqueous secondary battery with superior high-temperature cycle life
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
KR100358804B1 (en) Method of preparing positive active material for lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081028

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 16