JP2740170B2 - Semiconductor laser resonator manufacturing method - Google Patents

Semiconductor laser resonator manufacturing method

Info

Publication number
JP2740170B2
JP2740170B2 JP62195380A JP19538087A JP2740170B2 JP 2740170 B2 JP2740170 B2 JP 2740170B2 JP 62195380 A JP62195380 A JP 62195380A JP 19538087 A JP19538087 A JP 19538087A JP 2740170 B2 JP2740170 B2 JP 2740170B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
etched
etching
active layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195380A
Other languages
Japanese (ja)
Other versions
JPS6439789A (en
Inventor
護 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62195380A priority Critical patent/JP2740170B2/en
Publication of JPS6439789A publication Critical patent/JPS6439789A/en
Application granted granted Critical
Publication of JP2740170B2 publication Critical patent/JP2740170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光集積回路、特に光情報処理用半導体レーザ
の共振器製造方法に関する。 〔従来の技術〕 光集積回路、特に光情報処理用半導体レーザでは、量
産性および集積性を向上させるために半導体レーザの共
振器をモノリシックに形成する技術が求められている。
ドライエッチング技術は、他の真空プロセス技術と組合
せることにより高真空一貫プロセスが可能なことから、
微細化および高信頼化を必要とする今後の化合物半導体
デバイスのプロセス手段の主流になると考えられる。ド
ライエッチングにより半導体レーザの共振器を形成した
例として、内田らによる「RIBEによるエッチドミラーを
有するAlGaAs BCMレーザ(昭和60年第32回応用物理学
関係連合講演会予稿集,152頁,1p−ZB−8)がある。ま
ずこれについて簡単に説明する。 第2図はこの従来例を説明する模式図である。n型Ga
As基板101上にBCM構造と称する埋め込み型の多層のAlGa
As層をエピタキシャル成長する。簡単のために図では第
1のn型クラッド層102,活性層103および第2のp型ク
ラッド層104のみを示している。この結晶の表面にTi/Pt
/Auからなる電極105をEガン蒸着器で形成し、電極パタ
ーンを通常のフォトリソグラフィおよびリアクティブイ
オンエッチングで形成する(第2図a)。このあとAZ13
50J/Ti/AZ1350Jからなる多層レジスト106をマスクとし
て、リアクティブイオンビームエッチング(以下RIBEと
略記する)を行う。ECRパワー200W、塩素ガス圧1.2×10
-3Torr、引出し電圧400V、エッチング時間45分の条件下
で、深さ約10μm,幅50μmのエッチング溝が形成され、
その側面がエッチドミラー109となる(第2図b)。エ
ッチング終了後一旦大気に出し、酸素プラズマでエッチ
ングマスクの多層レジスト106を除去し、裏面に負電極1
07を形成することによりエッチドミラーレーザは完成す
る(第2図c)。このようにして形成されたエッチドミ
ラーレーザは、初期特性では通常のへき開のレーザに近
い28%の反射率を得ている。 〔発明が解決しようとする問題点〕 しかしながら従来のドライエッチングによるエッチド
ミラーレーザは、高真空でエッチングしたにもかかわら
ず、なんの処理もしないまま大気にさらしていたため
に、活性化したエッチング面が大気中の炭素,酸素等に
汚染され、その後パッシベーションしてもその界面は非
清浄でありその効果は極めて小さかった。そのため通常
のへき開によるレーザに比べ動作寿命の半分以下になる
という欠点があり、このことがエッチドミラーレーザの
実用化を阻んできた。 〔発明の目的〕 本発明の目的は、上述のような問題点を解決し、より
信頼性に優れたエッチドミラーレーザを提供することに
ある。 〔問題点を解決するための手段〕 本発明の半導体レーザの共振器製造方法は活性層を含
むダブルヘテロ構造を有する半導体レーザ結晶を高真空
中でエッチングすることにより、エッチドミラーを形成
し、高真空を保ったまま水素ラジカルにより前記エッチ
ドミラー面を高清浄化した後、前記活性層よりも大きな
禁制帯幅を持つ化合物半導体結晶を分子線エピタキシャ
ル成長法を用いてミラー面にエピタキシャル成長するこ
とを特徴とする。 〔作用〕 高真空中でエッチングしたあとの端面は活性化してい
るために、このまま大気にさらすことは表面に不安定な
化合物層を形成することになり、界面には極めて多数の
非発光界面準位を形成する。したがってこれを除去する
にはエッチング後エッチング面を高清浄に保ち、その上
に活性層よりも禁制帯幅の大きくかつ高抵抗の半導体層
をエピタキシャル成長すればよい。その結果エッチドミ
ラー端面が清浄な界面となるだけでなく光出射面の光の
吸収がなくなるため、結晶欠陥の増殖を防ぎ長寿命およ
び高出力動作が期待できる。 〔実施例〕 第1図は本発明の実施例を示している。 まず、n型GaAs基板101上に積層した多層のAlGaAsか
らなるレーザ結晶(第1図では簡単のために第1のn型
AlGaAsクラッド層102、アンドープAl0.15Ga0.85As(発
振波長0.78μm)活性層103、第2のp型AlGaAsクラッ
ド層104のみを示してある)にレジスト106を設ける(第
1図a)。 次に、レジスト106をエッチングマスクとしてRIBEで
エッチドミラー109を形成する(第1図b)。エッチン
グ条件はECRパワー200W、塩素ガス圧1.2×10-3Torr、引
出し電圧400V、エッチング時間45分である。引続き高真
空を保ったまま酸素のRIBEでレジストマスクを除去す
る。この時の条件は、エッチング面にダメージを与えな
いように、ECRパワー100W、酸素ガス1×10-3Torr、引
出し電圧100V、エッチング時間10分が適当である。さら
に50WでECR励起した水素ラジカルによって、エッチング
面に吸着した酸素および塩素を除去する。このプロセス
は前記のエッチング室に真空結合したより清浄なチャン
バー内で行うことが望ましい。 さらに、真空を保ったまま分子線エピタキシャル法
(以下MBE法と略記する)により、活性層よりも禁制帯
幅の大きくかつ高抵抗化合物半導体層たとえばアンドー
プAl0.5Ga0.5Asウインドウ層108を、エッチドミラー端
面に厚さ120nm(発振波長の2分の1)でエピタキシャ
ル成長する(第1図c)。MBE法は分子線の指向性が強
くかつ層厚の制御性に優れた試料を分子線に対して傾け
ることで、容易に所望の厚さの半導体層をエッチドミラ
ー端面にエピタキシャル成長することが可能である。ま
た成長温度を750度程度とすることでエッチングで受け
た結晶のダメージ層はアニールされ回復する。この後、
さらに真空を保ったままSi3N4あるいはSi2O3等でエッチ
ドミラーをパッジベーションする。この後、レーザ上部
のウインドウ膜およびパッシベーション膜を除去し、最
後に正電極105および負電極107を形成し、本実施例の半
導体レーザは完成する。 〔発明の効果〕 本発明によれば、高清浄なエッチング界面を得ること
ができるとともに光吸収のない端面となっているため
に、従来問題となっていたエッチング端面の損傷および
汚染に起因する寿命の劣化を防ぐことができ、かつ高出
力動作を可能にすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical integrated circuit, and more particularly to a method for manufacturing a resonator of a semiconductor laser for optical information processing. [Prior Art] In an optical integrated circuit, in particular, a semiconductor laser for optical information processing, a technique for monolithically forming a resonator of the semiconductor laser is required to improve mass productivity and integration.
Dry etching technology can be used in combination with other vacuum process technologies to achieve a high vacuum integrated process.
It is considered that it will become the mainstream of the processing means of the compound semiconductor device in the future that requires miniaturization and high reliability. An example of a semiconductor laser cavity formed by dry etching is described in Uchida et al., “AlGaAs BCM Laser with Etched Mirror by RIBE” Fig. 2 is a schematic diagram for explaining this conventional example, where n-type Ga is used.
An embedded multilayer AlGa called a BCM structure on an As substrate 101
An As layer is epitaxially grown. For simplicity, only the first n-type cladding layer 102, the active layer 103 and the second p-type cladding layer 104 are shown in the figure. Ti / Pt on the surface of this crystal
An electrode 105 made of / Au is formed by an E-gun evaporator, and an electrode pattern is formed by ordinary photolithography and reactive ion etching (FIG. 2a). After this AZ13
Reactive ion beam etching (hereinafter abbreviated as RIBE) is performed using the multilayer resist 106 of 50J / Ti / AZ1350J as a mask. ECR power 200W, chlorine gas pressure 1.2 × 10
Under the condition of -3 Torr, extraction voltage of 400 V, and etching time of 45 minutes, an etching groove having a depth of about 10 μm and a width of 50 μm is formed.
The side surface becomes the etched mirror 109 (FIG. 2B). After the etching is completed, the multilayer resist 106 is removed to the atmosphere by oxygen plasma, and the etching mask is removed with oxygen plasma.
By forming 07, the etched mirror laser is completed (FIG. 2c). The etched mirror laser thus formed has a reflectance of 28% which is close to that of a normal cleaved laser in the initial characteristics. [Problems to be Solved by the Invention] However, the etched mirror laser by the conventional dry etching was exposed to the atmosphere without any processing despite being etched in a high vacuum. Was contaminated by atmospheric carbon, oxygen, etc., and even after passivation, its interface was not clean and its effect was extremely small. For this reason, there is a drawback that the operating life is less than half of that of a laser by a normal cleavage, and this has hindered the practical use of an etched mirror laser. [Object of the Invention] An object of the present invention is to solve the above-mentioned problems and to provide an etched mirror laser with higher reliability. [Means for Solving the Problems] The semiconductor laser resonator manufacturing method of the present invention forms an etched mirror by etching a semiconductor laser crystal having a double heterostructure including an active layer in a high vacuum, After highly cleaning the etched mirror surface with hydrogen radicals while maintaining a high vacuum, a compound semiconductor crystal having a larger bandgap than the active layer is epitaxially grown on the mirror surface using a molecular beam epitaxial growth method. And [Function] Since the end face after etching in a high vacuum is activated, exposure to the air as it is will form an unstable compound layer on the surface, and an extremely large number of non-emission interface states will be formed at the interface. Form a position. Therefore, in order to remove this, it is sufficient to keep the etched surface highly clean after etching, and epitaxially grow a semiconductor layer having a larger forbidden band width and a higher resistance than the active layer on the etched surface. As a result, not only the end face of the etched mirror becomes a clean interface, but also light absorption on the light emitting surface is eliminated, so that growth of crystal defects can be prevented, and long life and high output operation can be expected. Embodiment FIG. 1 shows an embodiment of the present invention. First, a multi-layer AlGaAs laser crystal laminated on an n-type GaAs substrate 101 (the first n-type
A resist 106 is provided on the AlGaAs cladding layer 102, the undoped Al 0.15 Ga 0.85 As (oscillation wavelength 0.78 μm) active layer 103, and only the second p-type AlGaAs cladding layer 104 (FIG. 1a). Next, an etched mirror 109 is formed by RIBE using the resist 106 as an etching mask (FIG. 1B). The etching conditions are an ECR power of 200 W, a chlorine gas pressure of 1.2 × 10 −3 Torr, an extraction voltage of 400 V, and an etching time of 45 minutes. Subsequently, the resist mask is removed with oxygen RIBE while maintaining a high vacuum. Appropriate conditions at this time are ECR power of 100 W, oxygen gas of 1 × 10 −3 Torr, extraction voltage of 100 V, and etching time of 10 minutes so as not to damage the etched surface. Further, oxygen and chlorine adsorbed on the etched surface are removed by hydrogen radicals excited by ECR at 50 W. This process is preferably performed in a cleaner chamber vacuum-coupled to the etch chamber. Further, while maintaining a vacuum, a high-resistance compound semiconductor layer having a larger forbidden band width than the active layer, such as an undoped Al 0.5 Ga 0.5 As window layer 108, is etched by molecular beam epitaxy (hereinafter abbreviated as MBE). Epitaxial growth is performed on the mirror end surface with a thickness of 120 nm (half the oscillation wavelength) (FIG. 1c). In the MBE method, a semiconductor layer with a desired thickness can be easily epitaxially grown on the end face of an etched mirror by tilting a sample with strong molecular beam directivity and excellent layer thickness controllability with respect to the molecular beam. It is. By setting the growth temperature to about 750 ° C., the damaged layer of the crystal that has been etched is annealed and recovered. After this,
Further, while maintaining the vacuum, the etched mirror is passivated with Si 3 N 4 or Si 2 O 3 or the like. Thereafter, the window film and the passivation film on the laser are removed, and finally, the positive electrode 105 and the negative electrode 107 are formed. Thus, the semiconductor laser of this embodiment is completed. [Effects of the Invention] According to the present invention, a highly clean etching interface can be obtained and the end face has no light absorption. Can be prevented, and a high output operation can be performed.

【図面の簡単な説明】 第1図は本発明の実施例を示す模式図、 第2図は従来例を説明する模式図である。 101……n型GaAs基板 102……n型AlGaAsクラッド層 103……活性層 104……p型AlGaAsクラッド層 105……正電極 106……レジスト 107……負電極 108……AlGaAsウインドウ膜 109……エッチドミラー[Brief description of the drawings] FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating a conventional example. 101 ... n-type GaAs substrate 102 n-type AlGaAs cladding layer 103 ... Active layer 104 ... p-type AlGaAs cladding layer 105 ... Positive electrode 106 Resist 107 …… Negative electrode 108 …… AlGaAs window film 109 …… etched mirror

Claims (1)

(57)【特許請求の範囲】 1.活性層を含むダブルヘテロ構造を有する半導体レー
ザ結晶を高真空中でエッチングすることにより、エッチ
ドミラーを形成し、高真空を保ったまま水素ラジカルに
より前記エッチドミラー面を高清浄化した後、前記活性
層よりも大きな禁制帯幅を持つ化合物半導体結晶を分子
線エピタキシャル成長法を用いてミラー面にエピタキシ
ャル成長することを特徴とする半導体レーザの共振器製
造方法。
(57) [Claims] Etching a semiconductor laser crystal having a double hetero structure including an active layer in a high vacuum to form an etched mirror, and after highly cleaning the etched mirror surface with hydrogen radicals while maintaining a high vacuum, A method for manufacturing a resonator of a semiconductor laser, comprising epitaxially growing a compound semiconductor crystal having a larger forbidden band width than an active layer on a mirror surface using a molecular beam epitaxial growth method.
JP62195380A 1987-08-06 1987-08-06 Semiconductor laser resonator manufacturing method Expired - Lifetime JP2740170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195380A JP2740170B2 (en) 1987-08-06 1987-08-06 Semiconductor laser resonator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195380A JP2740170B2 (en) 1987-08-06 1987-08-06 Semiconductor laser resonator manufacturing method

Publications (2)

Publication Number Publication Date
JPS6439789A JPS6439789A (en) 1989-02-10
JP2740170B2 true JP2740170B2 (en) 1998-04-15

Family

ID=16340203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195380A Expired - Lifetime JP2740170B2 (en) 1987-08-06 1987-08-06 Semiconductor laser resonator manufacturing method

Country Status (1)

Country Link
JP (1) JP2740170B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680917B2 (en) * 1990-08-01 1997-11-19 シャープ株式会社 Method for manufacturing semiconductor laser device
IT1271636B (en) * 1994-05-04 1997-06-04 Alcatel Italia METHOD FOR THE PREPARATION AND PASSIVATION OF THE HIGH-EMISSION SEMICONDUCTOR LASER TERMINAL MIRRORS AND RELATED DEVICE
JP2914430B2 (en) * 1996-01-05 1999-06-28 日本電気株式会社 Method for manufacturing semiconductor laser device
US9972968B2 (en) * 2016-04-20 2018-05-15 Trumpf Photonics, Inc. Passivation of laser facets and systems for performing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267388A (en) * 1985-05-21 1986-11-26 Nec Corp Manufacture of semiconductor laser resonator

Also Published As

Publication number Publication date
JPS6439789A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
US5970080A (en) Gallium nitride compound semiconductor light emitting element and method for fabricating the same
JPH04273432A (en) Manufacture of device and obtained device
US6960482B2 (en) Method of fabricating nitride semiconductor and method of fabricating semiconductor device
JP3727106B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JP2740170B2 (en) Semiconductor laser resonator manufacturing method
JPH05175609A (en) Manufacture of algainp semiconductor lightemitting device
JP3246207B2 (en) Manufacturing method of semiconductor laser
JP4035689B2 (en) Manufacturing method of surface emitting semiconductor laser and surface emitting semiconductor laser
JPH1093199A (en) Gallium nitride compound semiconductor light-emitting device and manufacture thereof
JP3792003B2 (en) Semiconductor light emitting device
JPH1041585A (en) Manufacture of group iii nitride semiconductor laser diode
JP2993167B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH07297496A (en) Manufacture of group iii nitride semiconductor laser
JP2921385B2 (en) Surface emitting laser, method for manufacturing the same, and method for manufacturing edge emitting laser
JP3670768B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JP3298137B2 (en) Manufacturing method of surface emitting semiconductor laser
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JPH10242576A (en) Manufacture of semiconductor light emitting element
JPH09205254A (en) Manufacture of semiconductor device, semiconductor manufacturing device, and method for manufacturing semiconductor laser
JPH04336484A (en) Manufacture of light integrated circuit
JP2567066B2 (en) Method for manufacturing semiconductor light emitting device
KR100586937B1 (en) Method of producing a semiconductor laser device
JPH07162083A (en) Semiconductor laser device and its manufacture
JPH08148479A (en) Etching mask of semiconductor, manufacture thereof, semiconductor processing method, and manufacture of semiconductor laser
JPH09321388A (en) Manufacture of structural substrate