JPS61267388A - Manufacture of semiconductor laser resonator - Google Patents

Manufacture of semiconductor laser resonator

Info

Publication number
JPS61267388A
JPS61267388A JP10866285A JP10866285A JPS61267388A JP S61267388 A JPS61267388 A JP S61267388A JP 10866285 A JP10866285 A JP 10866285A JP 10866285 A JP10866285 A JP 10866285A JP S61267388 A JPS61267388 A JP S61267388A
Authority
JP
Japan
Prior art keywords
semiconductor laser
etching
wafer
semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10866285A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10866285A priority Critical patent/JPS61267388A/en
Publication of JPS61267388A publication Critical patent/JPS61267388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve mass productivity by forming semiconductor multilayer films which control reflectance before a semiconductor laser wafer is divided into bars. CONSTITUTION:Stripe patterns made of SiO2 are formed as etching-resistant films 2 on a double hetero structure semiconductor wafer 1 whose activation layer 10 is made of InGaAsP and cladding layer 20 is made of InP. The wafer 1 is then inserted into a reaction tube and etched with a mixture gas of hydrochloric acid with H2. The supply of the etching gas is discontinued and a mixture gas of AsH3 with PH3 is supplied and then a mixture of trimethyl indium (TMI) and PH3 and a mixture of TMI, trimethyl gallium, PH3 and AsH3 are alternately introduced to make high-resistance multilayer films 100 on the sides of steps. After that, electrodes are formed and the wafer 1 is cut into elements by cleaving, so that semiconductor lasers can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの共振器の作成方法に関する亀の
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a resonator for a semiconductor laser.

〔従来の技術〕[Conventional technology]

ヘキ開にて作成される通常の半導体レーデでは両ヘキ開
面からの光出力は等しい。通信相の半導体レーザでは1
つの出射光をファイバへ入力し、もう1つの出射光を光
力モニタ光として利用している。この場合ファイバへ入
力される出射光の光出力を増大するために光力モニタ側
のへき開面に誘電体多層膜やAuコート等により反射率
を上げるとど等が行なわれ、共振器面の反射率の制御は
半導体レーザにとって重要である。
In a normal semiconductor radar made by cleavage, the light output from both cleavage planes is equal. 1 for communication phase semiconductor lasers
One output light is input into the fiber, and the other output light is used as optical power monitoring light. In this case, in order to increase the optical output of the emitted light input to the fiber, the cleavage plane on the optical power monitor side is coated with a dielectric multilayer or Au to increase the reflectance, and the reflection of the resonator surface is Rate control is important for semiconductor lasers.

従来の端面の反射率を変えた半導体レーデの作製方法を
第3図に示す。図において、従来の作成方法は次のよう
に行なわれている。すなわち、第3図(a)に示す半導
体レーザクエファ1をへき開により第3図(b)に示す
ように幅200〜360#m程度の半導体レーザワエフ
ァのパー90を作成する。その次にそのバー90の端面
に第3図(c)に示すようにスパッタあるいはプラズマ
CVD法等の手段を用いて誘電体多層膜200を形成し
、端面の屈折率を変化させた半導体レーデの共振器面を
作成する。図中10は活性層、20はクラッド層である
FIG. 3 shows a conventional method for manufacturing a semiconductor radar in which the reflectance of the end face is changed. In the figure, the conventional production method is performed as follows. That is, the semiconductor laser wafer 1 shown in FIG. 3(a) is cleaved to form a semiconductor laser wafer par 90 having a width of approximately 200 to 360 #m as shown in FIG. 3(b). Next, as shown in FIG. 3(c), a dielectric multilayer film 200 is formed on the end face of the bar 90 using a method such as sputtering or plasma CVD, and the refractive index of the end face is changed. Create a resonator surface. In the figure, 10 is an active layer, and 20 is a cladding layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところ・がこの作成方法によるときに゛は半導体し □
−ザウェファを幅200〜300μmのレーザウェファ
のパーに分割してからその端面に誘電体多層膜200を
形成するため量産向きの形成方法ではない。
However, when using this manufacturing method, ゛ becomes a semiconductor □
- The method is not suitable for mass production because the dielectric multilayer film 200 is formed on the end faces of the laser wafer after dividing the laser wafer into parts each having a width of 200 to 300 μm.

特に半導体レーザウェファのパーは大変′小さく、扱い
が難しくそれを1つ1つ装置にセットし、誘電体多層膜
をつけなくてはならず、しかもそれぞれの工程を別個に
行わなければならない。
In particular, semiconductor laser wafers have a very small diameter and are difficult to handle, requiring each wafer to be set in a device one by one and a dielectric multilayer film applied thereto, and each process must be performed separately.

本発明の目的は上記の問題点を除き量産性の高い反射率
を制御した半導体レーザの共振器の作成方法を提供する
こと、にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser resonator with controlled reflectance that can be mass-produced and eliminates the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は反応管内で耐エツチング被膜よシなるエツチン
グツヤターンを表面に肩する半導体レーザウェファを塩
酸ガス+ )iBr l PCZ3 r AsCl2等
の工i   ツチングガスに接触させ、前記エツチング
パターンにて被覆されていない部分の半導体レーデ結晶
をエツチングし、半導体レーザウェファに段差を形成す
る工程と、前記エツチングがスを反応管より除去する工
程と、半導体原料ガスを供給1−1半導体レーザウ□エ
ファに形成された段差側面に半導体多層膜を形成する工
程とを順に行うことを特徴とする半導体レーザの共振器
の作成方法である。
In the present invention, a semiconductor laser wafer having an etching gloss pattern such as an etching-resistant film on its surface is brought into contact with an etching gas such as hydrochloric acid gas + )iBr l PCZ3 r AsCl2 in a reaction tube, and the semiconductor laser wafer is coated with the etching pattern. A step of etching the semiconductor laser wafer in the non-etched portion to form a step on the semiconductor laser wafer, a step of removing the etched gas from the reaction tube, and supplying the semiconductor raw material gas 1-1 The step formed on the semiconductor laser wafer This method of manufacturing a resonator of a semiconductor laser is characterized in that the steps of forming a semiconductor multilayer film on the side surface of a step are sequentially performed.

〔作 用〕[For production]

第1図および第2図に本発明の半導体レーザの共振器面
の作成方法を図示する。第1図(a)に示すヨウニ半導
体レーザウェファ1上に耐エツチング被膜2よりなるエ
ツチングツヤターンを形成する。
FIGS. 1 and 2 illustrate a method for forming a resonator surface of a semiconductor laser according to the present invention. An etched glossy turn made of an etching-resistant coating 2 is formed on a semiconductor laser wafer 1 shown in FIG. 1(a).

これを第2図に示すように反応管6o内に挿入してサセ
プタ50土にセットし、塩酸がス等のエツチングガスを
供給1−て第1図(b)に示すように耐エツチング被膜
2にて被覆されていない部分の半導体結晶をエツチング
する。70 #iRFコイルである。これによって形成
される段差側面が共振器となる。その稜反応管60への
エツチングガスの導入を止め残留するエツチングガスを
除去する。次に半導体原料ガスを供給し、段差側面に第
1図(c)に示すように半導体多層膜100を形成し、
段差側面の面の反射率を変化させる。その稜に凸部と凹
部とで各々へき開することによシ、へき開面と半導体多
層膜100とを有する反射面を共振器とする半導体レー
ザを得る。図中10は活性層、20Fiクラッド層であ
る。
This is inserted into a reaction tube 6o as shown in FIG. 2, set on a susceptor 50, and an etching gas such as hydrochloric acid is supplied to form an etching-resistant coating 2 as shown in FIG. 1(b). The uncoated portion of the semiconductor crystal is etched. 70 #iRF coil. The stepped side surface formed by this becomes a resonator. The introduction of etching gas into the edge reaction tube 60 is stopped and the remaining etching gas is removed. Next, a semiconductor raw material gas is supplied, and a semiconductor multilayer film 100 is formed on the side surface of the step as shown in FIG. 1(c).
Changes the reflectance of the side surface of the step. By cleaving the ridge at a convex portion and a concave portion, a semiconductor laser is obtained in which the reflecting surface having the cleaved plane and the semiconductor multilayer film 100 serves as a resonator. In the figure, 10 is an active layer and a 20Fi cladding layer.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体レーザの共振器面の形成方法は従来とは
異なシ、半導体レーザウェファをパーに分離する前に反
射率を制御着る半導体多層膜を形成するため1産性に優
れ、また、ウェファ状態で扱うため取扱いが容易であり
、さらに第1図(b)(C)の工程を1つの反応管内で
エツチングガスと成長用原料ガスの切り換えのみで足シ
、シたがって、本発明によれば共振器面の反射率を制御
した高品位の半導体レーザを得ることができる効果を有
するものである。
The method for forming the resonator surface of a semiconductor laser according to the present invention is different from conventional methods.Since a semiconductor multilayer film is formed to control the reflectance before separating the semiconductor laser wafer into parts, it has excellent productivity in one process. It is easy to handle as it can be handled in the same state, and furthermore, the steps shown in FIGS. In other words, it is possible to obtain a high-quality semiconductor laser in which the reflectance of the resonator surface is controlled.

〔実施例〕〔Example〕

以下に実施例を用いて説明する。 This will be explained below using examples.

半導体レーザウェファ1として1.5μmの発振波゛ 
長を有する活性層10をInGaAsPとし、クラッド
層20をInPとするダブルへテロ構造半導体レーザウ
ェファを用いた。その上に耐エツチング被膜2となる5
102よシなる600μm幅のストライプノ臂ターン(
ストライプとストライプの間隔200μm)を形成した
。耐エツチング被膜2のエツチングパターンを有する半
導体レーザウェファを第2図に示すように反応管60内
に挿入し、塩酸ガスとH2との混合ガスを供給し、反応
管60内をRFコイA−70で800℃に加熱してエツ
チングを行った。
A 1.5 μm oscillation wave is used as the semiconductor laser wafer 1.
A double heterostructure semiconductor laser wafer was used in which the long active layer 10 was made of InGaAsP and the cladding layer 20 was made of InP. On top of that, there will be an etching-resistant coating 2.
600 μm wide striped arm turn (
A stripe-to-stripe interval of 200 μm) was formed. A semiconductor laser wafer having an etching pattern of the etching-resistant coating 2 is inserted into a reaction tube 60 as shown in FIG. 2, a mixed gas of hydrochloric acid gas and H2 is supplied, and an RF coil A-70 Etching was performed by heating to 800°C.

エツチングの深さは10μmエツチングとした。その後
塩酸ガスを止め、A m H5とPH3とH2との混合
ガスを供給し、反応管60内の塩酸ガスを除去すると共
に温度を650℃に降温した。その後、トリメチルガリ
ウム(TMI)とPH3、トリメチルガリウム(TMI
)とトリメチルガリウム(TMG)とPH5とA m 
H5を交互に流し、厚さ1200XのInPと厚さ10
00スのInGaAaP (1,3μm組成)の12層
の高抵抗多層膜を成長した。その後に電極を形成し、へ
き開によシ素子を切シ出し半導体レーザを得た。半導体
レーザからの光出力は同じレーザウェファから切9出し
た両端面をへき開面とするレーザの出力と比較して本発
明の方法によシ作製したレーザではへき開面の出力は増
大し半導体多層膜を有する端面からの光出力は減少する
と共に発振しきい値の低下がみられた。
The etching depth was 10 μm. Thereafter, the hydrochloric acid gas was stopped, and a mixed gas of A m H5, PH3, and H2 was supplied to remove the hydrochloric acid gas in the reaction tube 60 and lower the temperature to 650°C. After that, trimethyl gallium (TMI) and PH3, trimethyl gallium (TMI)
) and trimethyl gallium (TMG) and PH5 and A m
H5 is flowed alternately, InP with a thickness of 1200X and InP with a thickness of 10X.
A 12-layer high-resistance multilayer film of InGaAaP (1.3 μm composition) of 0.00 μm was grown. Thereafter, electrodes were formed and the element was cut out by cleavage to obtain a semiconductor laser. The optical output from a semiconductor laser is compared with the output from a laser whose cleavage planes are on both end faces cut from the same laser wafer.In the laser manufactured by the method of the present invention, the output at the cleavage plane is increased, and the output from the cleavage plane is increased. It was observed that the optical output from the end face with the oscillation threshold decreased as well as the optical output from the end face.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の半導体レーザの共振器
面の作成方法を工程順に示す図、第2図は反応管内での
処理状況を示す断面図、第3図(a)〜(C)は従来の
共振器佃の作成方法を工程j@に示す図である。 1・・・半導体レープウェファ、2・・・耐エツチング
被膜、10・・・活性層、20・・・クラッド層、60
・・・反応管、100・・・半導体多層膜。 特許出願人  日本電気株式会社 代理人 弁理士  内  原     賊ハ ゛第1区
FIGS. 1(a) to (c) are diagrams showing the method of manufacturing a resonator surface of a semiconductor laser according to the present invention in the order of steps, FIG. 2 is a cross-sectional view showing the processing situation in a reaction tube, and FIG. 3(a) ~(C) is a diagram showing a conventional method of creating a resonator Tsukuda in a step j@. DESCRIPTION OF SYMBOLS 1... Semiconductor tape wafer, 2... Etching-resistant coating, 10... Active layer, 20... Clad layer, 60
...Reaction tube, 100...Semiconductor multilayer film. Patent Applicant: NEC Co., Ltd. Agent Patent Attorney: First Ward

Claims (1)

【特許請求の範囲】[Claims] (1)反応管内で耐エッチング被膜よりなるエッチング
パターンを表面に有する半導体レーザウェファを塩酸ガ
ス、HBr、PCl_3、AsCl_3等のエッチング
ガスに接触させ、前記エッチングパターンにて被覆され
ていない部分の半導体レーザ結晶をエッチングし、半導
体レーザウェファに段差を形成する工程と、前記エッチ
ングガスを反応管より除去する工程と、半導体原料ガス
を供給し、半導体レーザウェファに形成された段差側面
に半導体多層膜を形成する工程とを順に行うことを特徴
とする半導体レーザの共振器の作成方法。
(1) A semiconductor laser wafer having an etching pattern made of an etching-resistant film on its surface is brought into contact with an etching gas such as hydrochloric acid gas, HBr, PCl_3, AsCl_3, etc. in a reaction tube, and the semiconductor laser is removed from the portions not covered by the etching pattern. A step of etching the crystal to form a step on the semiconductor laser wafer, a step of removing the etching gas from the reaction tube, and a step of supplying semiconductor raw material gas to form a semiconductor multilayer film on the side surface of the step formed on the semiconductor laser wafer. 1. A method for manufacturing a semiconductor laser resonator, comprising sequentially performing the following steps.
JP10866285A 1985-05-21 1985-05-21 Manufacture of semiconductor laser resonator Pending JPS61267388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10866285A JPS61267388A (en) 1985-05-21 1985-05-21 Manufacture of semiconductor laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10866285A JPS61267388A (en) 1985-05-21 1985-05-21 Manufacture of semiconductor laser resonator

Publications (1)

Publication Number Publication Date
JPS61267388A true JPS61267388A (en) 1986-11-26

Family

ID=14490497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10866285A Pending JPS61267388A (en) 1985-05-21 1985-05-21 Manufacture of semiconductor laser resonator

Country Status (1)

Country Link
JP (1) JPS61267388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439789A (en) * 1987-08-06 1989-02-10 Nec Corp Manufacture of resonator for semiconductor laser
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439789A (en) * 1987-08-06 1989-02-10 Nec Corp Manufacture of resonator for semiconductor laser
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device

Similar Documents

Publication Publication Date Title
JPH0969664A (en) Ridge waveguide type distributed feedback semiconductor laser device and manufacture thereof
US6430203B1 (en) Semiconductor laser device with non-oxidized facet regions
JPS61267388A (en) Manufacture of semiconductor laser resonator
JP2002305350A (en) Distribution feedback-type semiconductor laser element and manufacturing method therefor
US5374587A (en) Method of manufacturing optical semiconductor element
EP0341034B1 (en) A method for the production of semiconductor devices
JPH05315703A (en) Manufacture of semiconductor laser
JPS61182292A (en) Manufacture of semiconductor laser
JPH08162706A (en) Manufacture of integrated semiconductor optical element
JPH04147685A (en) Manufacture of semiconductor element
JP2003069134A (en) Semiconductor optical device and method of manufacturing the same
US4849985A (en) Distributed feedback semiconductor laser device
JP2000183443A (en) Semiconductor laser device with spot size converter and its manufacture
JP3434654B2 (en) Manufacturing method of distributed feedback semiconductor laser
JPH06232509A (en) Semiconductor laser, semiconductor laser device and optical integrated circuit
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPH05304334A (en) Fabrication of semiconductor laser
JPS6180885A (en) Semiconductor laser and manufacture thereof
JPS61125190A (en) Manufacture of semiconductor device
JPH0264605A (en) Manufacture of optical waveguide
JPH0613700A (en) Semiconductor laser and its production
JPH07202261A (en) Manufacture of semiconductor light emitting element
JPS62165990A (en) Semiconductor laser and manufacture thereof
JPH05235463A (en) Distributed feedback type semiconductor laser device and fabrication thereof
JPH084178B2 (en) Method for manufacturing distributed Bragg reflection semiconductor laser