JP2732663B2 - Copper thin film patterning method - Google Patents

Copper thin film patterning method

Info

Publication number
JP2732663B2
JP2732663B2 JP11496889A JP11496889A JP2732663B2 JP 2732663 B2 JP2732663 B2 JP 2732663B2 JP 11496889 A JP11496889 A JP 11496889A JP 11496889 A JP11496889 A JP 11496889A JP 2732663 B2 JP2732663 B2 JP 2732663B2
Authority
JP
Japan
Prior art keywords
thin film
etching
film
patterning
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11496889A
Other languages
Japanese (ja)
Other versions
JPH02295117A (en
Inventor
佳一 柳沢
章男 田子
宣博 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11496889A priority Critical patent/JP2732663B2/en
Publication of JPH02295117A publication Critical patent/JPH02295117A/en
Application granted granted Critical
Publication of JP2732663B2 publication Critical patent/JP2732663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Magnetic Heads (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体、薄膜を用いたデバイス、例えば薄
膜磁気ヘッド、薄膜トランス等において、その一部にCu
を使用したパタンを含む場合、高精度でパターニングを
行う銅薄膜パターニング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device using a semiconductor or a thin film, for example, a thin film magnetic head, a thin film transformer, etc.
TECHNICAL FIELD The present invention relates to a copper thin film patterning method for performing patterning with high accuracy when a pattern using the same is included.

(従来の技術) 従来、薄膜デバイスの一部にCu膜を使用して、これを
パターニングして所望のCuパタンを得ようとする場合、
そのパターニング方法には(1)電気めっき法、(2)
リフトオフ法、(3)反応製イオンエッチング法などが
ある。しかし(1)は導電性を付与するためにあらかじ
め形成してある導体薄膜を除去する必要があること、
(2)はパタン崩れが起こること、(3)はCuとマスク
とのエッチング選択比が小さい(20程度)ことなど、Cu
膜厚が3〜10μmの厚い膜の微細パタンを高精度でパタ
ーニングすることができないという欠点があった。
(Prior art) Conventionally, when a Cu film is used for a part of a thin film device and a desired Cu pattern is obtained by patterning the Cu film,
The patterning methods include (1) electroplating and (2)
Lift-off method, (3) ion etching method by reaction and the like. However, (1) is that it is necessary to remove a conductor thin film formed in advance in order to impart conductivity.
(2) The pattern collapse occurs, and (3) the etching selectivity between Cu and the mask is small (about 20).
There is a drawback that a fine pattern of a thick film having a thickness of 3 to 10 μm cannot be patterned with high accuracy.

(発明が解決しようとする課題) 本発明は、薄膜デバイスにおけるCuパタンの形成を高
精度、かつ効率的に行う銅薄膜パターニング方法を提供
することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a copper thin film patterning method for forming a Cu pattern in a thin film device with high accuracy and efficiency.

(課題を解決するための手段) 本発明の銅薄膜パターニング方法は、Cuパタンを金属
マスクを用いたイオンエッチングで形成するにあたり、
マスク材としてTa,NbまたはZrを用い、このマスクを利
用してCuをパターニングする際に、動作ガスとして窒素
と水素との混合ガスまたは窒素とアンモニアとの混合ガ
スを使う。
(Means for Solving the Problems) In the copper thin film patterning method of the present invention, when forming a Cu pattern by ion etching using a metal mask,
Ta, Nb or Zr is used as a mask material, and when patterning Cu using this mask, a mixed gas of nitrogen and hydrogen or a mixed gas of nitrogen and ammonia is used as an operating gas.

従来、薄膜デバイスのCuパタンの形成には、前述のよ
うに、電気めっき法を用いるか、リフト法を用いるか、
金属マスクを用いてCuとのエッチング選択比を利用した
反応性イオンエッチングによるか、いずれかの方法が採
用されていた。反応性イオンエッチングの動作ガスに
は、Arと酸素の混合ガスのほか、ハロゲン系のガスを使
うことも可能であるが、毒性や被加工材の温度を上げね
ばならないなどの欠点があった。また、高アスペクト比
のCuパタンの場合、従来の方法では高精度のパターニン
グが困難であった。
Conventionally, to form a Cu pattern of a thin film device, as described above, using an electroplating method, using a lift method,
Either reactive ion etching using an etching selectivity with Cu using a metal mask, or either method has been adopted. As a working gas for reactive ion etching, it is possible to use a halogen-based gas in addition to a mixed gas of Ar and oxygen. Further, in the case of a Cu pattern having a high aspect ratio, it has been difficult to perform high-precision patterning by the conventional method.

(実施例) 第1図は、本発明によるCuとTaのエッチング速度とイ
オン加速電圧との関係を示す図である。エッチングはカ
ウフマン型イオンビームエッチング装置で行った。第1
図は、エッチングガスに窒素:アンモニア(2:1)の混
合ガスを用い、動作ガス圧1×10-4Torrとしたときのエ
ッチング速度のイオン加速電圧依存性を示している。こ
の図からCuは加速電圧が上がるにつれてエッチング速度
は増加傾向を示すが、これに対しTaはほとんどエッチン
グされないことがわかった。またイオン加速電圧を300V
とした場合、CuとTaとのエッチング速度比が50以上得ら
れることから、Taをマスクに使えばマスクを薄くできる
ので、高精度のパターニングおよび高アスペクト比のCu
のパターニングが可能であることがわかった。これは窒
素とアンモニアとの混合ガスを用いることで、Cuは混合
ガスとの反応が進むのに対して、Taは耐食性が優れてい
るためである。この実施例では基板温度は室温で行った
が、反応性を高めるために200〜300℃で行えば、さらに
エッチング特性が向上することは明らかである。
(Example) FIG. 1 is a diagram showing the relationship between the etching rate of Cu and Ta and the ion acceleration voltage according to the present invention. The etching was performed by a Kauffman-type ion beam etching apparatus. First
The figure shows the ion acceleration voltage dependence of the etching rate when a mixed gas of nitrogen: ammonia (2: 1) is used as the etching gas and the operating gas pressure is 1 × 10 −4 Torr. From this figure, it was found that the etching rate of Cu tends to increase as the accelerating voltage increases, whereas Ta is hardly etched. In addition, ion acceleration voltage is 300V
In this case, the etching rate ratio between Cu and Ta can be 50 or more, so if Ta is used as a mask, the mask can be made thinner.
It has been found that patterning is possible. This is because, by using a mixed gas of nitrogen and ammonia, Cu reacts with the mixed gas, whereas Ta has excellent corrosion resistance. In this embodiment, the substrate temperature was set at room temperature, but it is clear that etching at 200 to 300 ° C. in order to increase the reactivity further improves the etching characteristics.

第2図(a)〜(d)は本発明の反応性イオンビーム
エッチングによる薄膜磁気ヘッド用Cuコイルのパターニ
ングの工程を示す図である。第2図において、1はコイ
ル形状のホトレジストマスク、2はTa膜、3はCu膜、4
はスライダに用いるアルチック基板である。まず厚さ5
μmのCu膜、厚さ0.1μm以下のTa膜をイオンビームス
パッタで形成した後、厚さ0.5μmのホトレジストAZ135
0(商品名)をスピンコートしてキュアする。その後、
コイル形状のマスク1で露光、現像した(第2図
(a))。さらにその後、このホトレジストパタンをマ
スクとして、動作ガスにArを用いイオンエッチングでTa
膜をコイル形状にパターニングする(第2図(b))。
このTa膜をマスク22として使用し(第2図(c))、エ
ッチングガスに窒素とアンモニアとの混合ガスを用い
て、Cu膜を反応性イオンビームエッチングし、所望のCu
コイルパタン33を得た(第2図(d))。この方法によ
れば、従来見られたCu側壁面へのエッチング生成物の再
付着がない、しかも側壁の基板に対する角度85度以上の
切れのよいコイルパタンが得られた。
FIGS. 2 (a) to 2 (d) are views showing a step of patterning a Cu coil for a thin film magnetic head by reactive ion beam etching according to the present invention. In FIG. 2, 1 is a coil-shaped photoresist mask, 2 is a Ta film, 3 is a Cu film,
Is an Altic substrate used for the slider. First thickness 5
After forming a Cu film having a thickness of 0.1 μm and a Ta film having a thickness of 0.1 μm or less by ion beam sputtering, a photoresist AZ135 having a thickness of 0.5 μm is formed.
Spin coat 0 (product name) and cure. afterwards,
Exposure and development were performed using a coil-shaped mask 1 (FIG. 2A). Then, using this photoresist pattern as a mask, Ar is used as an operating gas and ion etching
The film is patterned into a coil shape (FIG. 2 (b)).
Using this Ta film as a mask 22 (FIG. 2 (c)), the Cu film is subjected to reactive ion beam etching using a mixed gas of nitrogen and ammonia as an etching gas to obtain a desired Cu.
A coil pattern 33 was obtained (FIG. 2 (d)). According to this method, a sharply-cut coil pattern having an angle of 85 ° or more with respect to the substrate was obtained without the re-adhesion of the etching product to the Cu side wall surface, which was conventionally observed.

また、コイル間隔1μm、コイル幅1μm、コイル高
さ5μmの高アスペクト比の微細パタンにおいても、高
精度のパターニングを行うことができることがわかっ
た。上記の例では、Cuパタンの形成にTa膜をマスクに用
いたが、エッチングガスに窒素とアンモニアガスとの混
合ガスを使用した場合、Cuに対して50以上の選択比が得
られるマスク材として、Nb,Zrがあり、これらをマスク
材として用いた場合にも同等の効果が得られること、さ
らに窒素と水素との混合ガスをエッチングガスとして使
用した場合でも、エッチング速度は低下するが、エッチ
ング選択比は50以上得られることがわかった。
It was also found that high-precision patterning can be performed even with a fine pattern having a high aspect ratio of 1 μm, a coil width of 1 μm, and a coil height of 5 μm. In the above example, the Ta film was used as a mask to form the Cu pattern.However, when a mixed gas of nitrogen and ammonia gas was used as the etching gas, a mask material capable of obtaining a selectivity of 50 or more with respect to Cu was obtained. , Nb, and Zr, the same effect can be obtained when these are used as a mask material, and even when a mixed gas of nitrogen and hydrogen is used as an etching gas, the etching rate is reduced, but the etching is The selectivity was found to be over 50.

(発明の効果) 以上述べたように、本発明の銅薄膜パターニング方法
によれば、動作ガスに窒素と水素との混合ガスまたは窒
素とアンモニアガスを用いてCu膜をパターニングする
際、マスク材にTa,NbまたはZrのようにCu膜に対して50
以上の高いエッチング選択比が得られる材料を用いれ
ば、急峻なパタン側面角が得られるので、高アスペクト
比、高精度のCuパタンが容易に得られる。この技術を用
いれば、薄膜磁気ヘッド、薄膜トランス、そのほか半導
体デバイスにおける配線にも低抵抗のCu膜を用いること
ができ、薄膜デバイスの適用分野が広がるという効果が
ある。
(Effects of the Invention) As described above, according to the copper thin film patterning method of the present invention, when patterning a Cu film using a mixed gas of nitrogen and hydrogen or nitrogen and ammonia gas as an operating gas, 50 for Cu film such as Ta, Nb or Zr
If a material that can obtain the above high etching selectivity is used, a sharp pattern side angle can be obtained, and thus a Cu pattern with a high aspect ratio and high accuracy can be easily obtained. If this technique is used, a low-resistance Cu film can be used for thin-film magnetic heads, thin-film transformers, and other wirings in semiconductor devices, and the field of application of thin-film devices is widened.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるCuとTaのエッチング速度とイオン
加速電圧との関係を示す図、 第2図(a)〜(d)は本発明の反応性イオンビームエ
ッチングによる薄膜磁気ヘッド用Cuコイルのパターニン
グの工程を示す図である。 1……コイル形状のホトレジストマスク 2……Ta膜、3……Cu膜 4……基板、22……Taマスク 33……Cuコイルパタン
FIG. 1 is a diagram showing the relationship between the etching rate of Cu and Ta and the ion acceleration voltage according to the present invention, and FIGS. 2 (a) to (d) are Cu coils for a thin film magnetic head by reactive ion beam etching according to the present invention. FIG. 4 is a view showing a patterning step of FIG. 1 ... Coil-shaped photoresist mask 2 ... Ta film 3 ... Cu film 4 ... Substrate 22 ... Ta mask 33 ... Cu coil pattern

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フォトリソグラフィ技術とドライエッチン
グ技術とを用いて作製されるCuのコイル、配線等を含む
薄膜デバイスにおいて、Cu膜をパターニングする際に、
マスク材にTa,NbまたはZrの薄膜を用い、動作ガスに窒
素と水素との混合ガスもしくは窒素とアンモニアとの混
合ガスを用いて、イオンビームエッチングで加工するこ
とを特徴とする銅薄膜パターニング方法。
When patterning a Cu film in a thin film device including a Cu coil, a wiring, and the like manufactured using a photolithography technique and a dry etching technique,
A copper thin film patterning method characterized in that a thin film of Ta, Nb or Zr is used as a mask material and processing is performed by ion beam etching using a mixed gas of nitrogen and hydrogen or a mixed gas of nitrogen and ammonia as an operating gas. .
JP11496889A 1989-05-10 1989-05-10 Copper thin film patterning method Expired - Fee Related JP2732663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11496889A JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11496889A JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Publications (2)

Publication Number Publication Date
JPH02295117A JPH02295117A (en) 1990-12-06
JP2732663B2 true JP2732663B2 (en) 1998-03-30

Family

ID=14651088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11496889A Expired - Fee Related JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Country Status (1)

Country Link
JP (1) JP2732663B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646811B2 (en) * 1990-07-13 1997-08-27 ソニー株式会社 Dry etching method
US6008140A (en) * 1997-08-13 1999-12-28 Applied Materials, Inc. Copper etch using HCI and HBr chemistry
US6143476A (en) * 1997-12-12 2000-11-07 Applied Materials Inc Method for high temperature etching of patterned layers using an organic mask stack
TWI246633B (en) 1997-12-12 2006-01-01 Applied Materials Inc Method of pattern etching a low k dielectric layen
WO2003019629A2 (en) * 2001-08-27 2003-03-06 Nptest, Inc. Process for charged particle beam micro-machining of copper
US6804879B2 (en) * 2002-10-23 2004-10-19 Hitachi Global Storage Technologies Netherlands, B.V. Method of fabricating a magnetic transducer with a write head having a multi-layer coil
US7024756B2 (en) * 2003-07-30 2006-04-11 Hitachi Global Storage Technologies Netherlands, B.V. Method of making a perpendicular recording magnetic head pole tip with an etchable adhesion CMP stop layer
US7060196B2 (en) 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
WO2018088532A1 (en) * 2016-11-10 2018-05-17 東京エレクトロン株式会社 Etching device and etching method

Also Published As

Publication number Publication date
JPH02295117A (en) 1990-12-06

Similar Documents

Publication Publication Date Title
JP2732663B2 (en) Copper thin film patterning method
EP0088869B1 (en) Thin film techniques for fabricating narrow track ferrite heads
JPH02207418A (en) Copper thin film patterning method
JPH0346330A (en) Structure and method for plating metal
JPS63150940A (en) Method for forming a plurality of devices on substrate with intervals
JPS5972133A (en) Method of metallizing semiconductor element with two stages
JPH03104118A (en) Manufacture of semiconductor device
JPH0480549B2 (en)
JPS63168810A (en) Production of thin film magnetic head
JP2937537B2 (en) Pattern formation method
JPH03259409A (en) Production of thin-film magnetic head
JP2804658B2 (en) Method of forming thin film laminate
JPS61144084A (en) Forming method of josephson junction element
KR100255164B1 (en) Polysilicon/oxide of semiconductor material etching method
JPH02213144A (en) Manufacture of semiconductor device
JPS605230B2 (en) Manufacturing method of Josephson device
JPS6255693B2 (en)
JPH0224810A (en) Manufacture of thin-film magnetic head
JPH023926A (en) Forming method of wiring
JPH01128528A (en) Forming method for wiring pattern
JPS60210887A (en) Manufacture of josephson junction element
JPS6149437A (en) Semiconductor device
JPS6366049B2 (en)
JPH07254111A (en) Production of thin film magnetic head
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees