JPH02295117A - Method of patterning thin film of copper - Google Patents

Method of patterning thin film of copper

Info

Publication number
JPH02295117A
JPH02295117A JP11496889A JP11496889A JPH02295117A JP H02295117 A JPH02295117 A JP H02295117A JP 11496889 A JP11496889 A JP 11496889A JP 11496889 A JP11496889 A JP 11496889A JP H02295117 A JPH02295117 A JP H02295117A
Authority
JP
Japan
Prior art keywords
film
etching
mask
thin film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11496889A
Other languages
Japanese (ja)
Other versions
JP2732663B2 (en
Inventor
Keiichi Yanagisawa
佳一 柳沢
Akio Tago
田子 章男
Norihiro Funakoshi
船越 宣博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11496889A priority Critical patent/JP2732663B2/en
Publication of JPH02295117A publication Critical patent/JPH02295117A/en
Application granted granted Critical
Publication of JP2732663B2 publication Critical patent/JP2732663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Magnetic Heads (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a copper pattern in a thin film device highly accurately and efficiently by a method wherein a thin film made of Ta, Nb or Zr is employed as a film for forming a mask and mixed gas of nitrogen and hydrogen or mixed gas of nitrogen and ammonia is employed as etching gas. CONSTITUTION:After a Cu film 3 and a Ta film 2 are formed on a substrate 4 by ion beam sputtering, photoresist 1 is applied by spin-coating and cured. Then the photoresist 1 is exposed with a coil-shaped mask and developed. After that, the Ta film 2 is patterned into a coil shape by ion etching using Ar as etching gas by using the photoresist pattern 1 as a mask. The Cu film 3 is subjected to reactive ion beam etching by using the patterned Ta film as a mask 22 and by using mixed gas of nitrogen and ammonia as etching gas to form a required Cu coil pattern 33. With this constitution, readhesion of etching products onto the side wall of the Cu pattern can be eliminated and, moreover, a sharp coil pattern whose side wall makes an angle larger than 85 deg. with the substrate can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体、薄膜を用いたデバイス、例えば薄膜
磁気ヘッド、薄膜トランス等において、その一部にCu
を使用したパタンを含む場合、高精度でパターニングを
行う銅薄膜パターニング方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to devices using semiconductors and thin films, such as thin film magnetic heads, thin film transformers, etc.
This invention relates to a copper thin film patterning method that performs patterning with high accuracy when the pattern includes a pattern using a copper film.

(従来の技術) 従来、薄膜デバイスの一部にCu膜を使用して、これを
パターニングして所望のCuバタンを得ようとする場合
、そのパターニング方法には(1)電気めっき法、(2
)リフトオフ法、 (3)反応製イオンエッチング法な
どがある。しかし(1)は導電性を付与するためにあら
かじめ形成してある導体薄膜を除去する必要があること
、(2)はバタン崩れが起こること、 (3)はCuと
マスクとのエッチング選択比が小さい(20程度)こと
など、Cu膜厚が3〜10μmの厚い膜の微細パタンを
高精度でパターニングすることができないという欠点が
あった。
(Prior Art) Conventionally, when attempting to obtain a desired Cu pattern by using a Cu film as a part of a thin film device, the patterning methods include (1) electroplating, (2)
) Lift-off method, (3) Reactive ion etching method, etc. However, (1) it is necessary to remove the conductor thin film that has been formed in advance to impart conductivity, (2) it causes collapse, and (3) the etching selectivity between Cu and the mask is low. There was a drawback that it was not possible to pattern a fine pattern of a thick Cu film with a thickness of 3 to 10 μm with high precision, such as being small (about 20 μm).

(発明が解決しようとする課題) 本発明は、薄膜デバイスにおけるCuパタンの形成を高
精度、かつ効率的に行う銅薄膜パターニング方法を提供
することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a copper thin film patterning method for forming a Cu pattern in a thin film device with high precision and efficiency.

(課題を解決するための手段) 本発明の銅薄膜パターニング方法は、Cuパタンを金属
マスクを用いたイオンエッチングで形成するにあたり、
マスク材としてTa, NbまたはZrを用い、このマ
スクを利用してCuをパターニングする際に、動作ガス
として窒素と水素との混合ガスまたは窒素とアンモニア
との混合ガスを使う。
(Means for Solving the Problems) The copper thin film patterning method of the present invention includes the following steps when forming a Cu pattern by ion etching using a metal mask.
Ta, Nb, or Zr is used as a mask material, and when patterning Cu using this mask, a mixed gas of nitrogen and hydrogen or a mixed gas of nitrogen and ammonia is used as an operating gas.

従来、薄膜デバイスのCuパタンの形成には、前述のよ
うに、電気めっき法を用いるか、リフト法を用いるか、
金属マスクを用いてCuとの工・ンチング選択比を利用
した反応性イオンエッチングによるか、いずれかの方法
が採用されていた。反応性イオンエッチングの動作ガス
には、Arと酸素の混合ガスのほか、ハロゲン系のガス
を使うことも可能であるが、毒性や被加工材の温度を上
げねばならないなどの欠点があった。また、高アスペク
ト比のCuバタンの場合、従来の方法では高精度のパタ
ーニングが困難であった。
Conventionally, Cu patterns for thin film devices have been formed using either electroplating or lift methods, as described above.
Either a reactive ion etching method using a metal mask and a selective ratio between etching and etching with respect to Cu has been adopted. In addition to a mixed gas of Ar and oxygen, halogen-based gases can also be used as the operating gas for reactive ion etching, but these have drawbacks such as toxicity and the need to raise the temperature of the workpiece. Furthermore, in the case of a Cu baton with a high aspect ratio, it is difficult to pattern it with high precision using conventional methods.

(実施例) 第1図は、本発明によるCuとTaの工・ノチング速度
とイオン加速電圧との関係を示す図である。エッチング
はカウフマン型イオンビームエ・冫チング装置で行った
。第1図は、エッチングガスに窒素:アンモニア(2 
: 1)の混合ガスを用い、動作ガス圧I X 10−
 ’Torrとしたときのエッチング速度のイオン加速
電圧依存性を示している。この図からCuは加速電圧が
上がるにつれてエッチング速度は増加傾向を示すが、こ
れに対しTaはほとんどエッチングされないことがわか
った。またイオン加速電圧を300■とした場合、Cu
とTaとのエッチング速度比が50以上得られることか
ら、Taをマスクに使えばマスクを薄くできるので、高
精度のパターニングおよび高アスペクト比のCuのパタ
ーニングが可能であることがわかった。これは窒素とア
ンモニアとの混合ガスを用いることで、Cuは混合ガス
との反応が進むのに対して、Taは耐食性が優れている
ためである。この実施例では基板温度は室温で行ったが
、反応性を高めるために200〜300 ’Cで行えば
、さらにエッチング特性が向上することは明らかである
(Example) FIG. 1 is a diagram showing the relationship between the etching/notching speed of Cu and Ta and the ion accelerating voltage according to the present invention. Etching was performed using a Kaufman type ion beam etching device. Figure 1 shows that the etching gas is nitrogen:ammonia (2
: Using the mixed gas of 1), the operating gas pressure is I x 10-
It shows the dependence of the etching rate on the ion acceleration voltage when set to 'Torr. This figure shows that the etching rate of Cu tends to increase as the accelerating voltage increases, but on the other hand, Ta is hardly etched. Moreover, when the ion acceleration voltage is 300■, Cu
Since an etching rate ratio of 50 or more between Ta and Ta was obtained, it was found that if Ta is used as a mask, the mask can be made thinner, so that highly accurate patterning and patterning of Cu with a high aspect ratio are possible. This is because by using a mixed gas of nitrogen and ammonia, the reaction of Cu with the mixed gas progresses, whereas Ta has excellent corrosion resistance. In this example, the substrate temperature was room temperature, but it is clear that etching characteristics can be further improved if the substrate temperature is 200 to 300'C to increase reactivity.

第2図(a)〜(d)は本発明の反応性イオンビームエ
ッチングによる薄膜磁気ヘッド用Cuコイルのパターニ
ングの工程を示す図である。第2図において、1はコイ
ル形状のホトレジストマスク、2はTa膜、3はCu膜
、4はスライダに用いるアルチック基板である。まず厚
さ5μmのCu膜、厚さ0.1μm以下のTa膜をイオ
ンビームスパツタで形成した後、厚さ0.5μmのホト
レジストAZ1350 (商品名)をスピンコートして
キュアする。その後、コイル形状のマスク1で露光、現
像した(第2図(a))。
FIGS. 2(a) to 2(d) are diagrams showing the process of patterning a Cu coil for a thin film magnetic head by reactive ion beam etching according to the present invention. In FIG. 2, 1 is a coil-shaped photoresist mask, 2 is a Ta film, 3 is a Cu film, and 4 is an AlTiC substrate used for a slider. First, a Cu film with a thickness of 5 μm and a Ta film with a thickness of 0.1 μm or less are formed by ion beam sputtering, and then a photoresist AZ1350 (trade name) with a thickness of 0.5 μm is spin coated and cured. Thereafter, exposure and development were performed using a coil-shaped mask 1 (FIG. 2(a)).

さらにその後、このホトレジストパクンをマスクとして
、動作ガスにArを用いイオンエッチングでTa膜をコ
イル形状にパターニングする(第2図(b)).このT
a膜をマスク22として使用し(第2図(C))、エッ
チングガスに窒素とアンモニアとの混合ガスを用いて、
Cu膜を反応性イオンビームエッチングし、所望のCu
コイルパタン33を得た(第2図(d))。
Thereafter, using this photoresist mask as a mask, the Ta film is patterned into a coil shape by ion etching using Ar as an operating gas (FIG. 2(b)). This T
Using the a film as a mask 22 (FIG. 2 (C)) and using a mixed gas of nitrogen and ammonia as the etching gas,
The Cu film is reactive ion beam etched to form the desired Cu film.
A coil pattern 33 was obtained (FIG. 2(d)).

この方法によれば、従来見られたCu側壁面へのエッチ
ング生成物の再付着がない、しかも側壁の基板に対する
角度85度以上の切れのよいコイルパクンが得られた。
According to this method, there was no redeposition of etching products to the Cu side wall surface, which was observed in the past, and a well-cut coil crack with an angle of 85 degrees or more between the side wall and the substrate was obtained.

また、コイル間隔ltIm、コイル幅1 p m 、コ
イル高さ5μmの高アスベクト比の微細パタンにおいて
も、高精度のパターニングを行うことができることがわ
かった。上記の例では、Cuパタンの形成にTa膜をマ
スクに用.いたが、エッチングガスに窒素とアンモニア
ガスとの混合ガスを使用した場合、Cuに対して50以
上の選択比が得られるマスク材として、Nb+ Zrが
あり、これらをマスク材として用いた場合にも同等の効
果が得られること、さらに窒素と水素との混合ガスをエ
ッチングガスとして使用した場合でも、エッチング速度
は低下するが、エッチング選択比は50以上得られるこ
とがわかった。
It was also found that highly accurate patterning can be performed even in a fine pattern with a high aspect ratio of a coil spacing ltIm, a coil width of 1 pm, and a coil height of 5 μm. In the above example, a Ta film is used as a mask to form a Cu pattern. However, when a mixed gas of nitrogen and ammonia gas is used as the etching gas, Nb + Zr is a mask material that can obtain a selectivity of 50 or more with respect to Cu, and even when these are used as a mask material, It was found that the same effect can be obtained, and that even when a mixed gas of nitrogen and hydrogen is used as the etching gas, an etching selectivity of 50 or more can be obtained, although the etching rate decreases.

(発明の効果) 以上述べたように、本発明の銅薄膜パターニング方法に
よれば、動作ガスに窒素と水素との混合ガスまたは窒素
とアンモニアガスを用いてCu膜をパターニングする際
、マスク材にTa, NbまたはZrのようにCu膜に
対して50以上の高いエッチング選択比が得られる材料
を用いれば、急峻なバタン側面角が得られるので、高ア
スペクト比、高精度のCuパタンか容易に得られる。こ
の技術を用いれば、薄膜磁気ヘッド、薄膜トランス、そ
のほか半導体デバイスにおける配線にも低抵抗のCu膜
を用いることができ、薄膜デバイスの適用分野が広がる
という効果がある。
(Effects of the Invention) As described above, according to the copper thin film patterning method of the present invention, when patterning a Cu film using a mixed gas of nitrogen and hydrogen or nitrogen and ammonia gas as the operating gas, the mask material By using a material such as Ta, Nb, or Zr that has a high etching selectivity of 50 or more with respect to the Cu film, a steep side angle can be obtained, making it easy to create a high aspect ratio, high precision Cu pattern. can get. If this technology is used, a low-resistance Cu film can be used for wiring in thin-film magnetic heads, thin-film transformers, and other semiconductor devices, which has the effect of expanding the field of application of thin-film devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるCuとTaのエッチング速度とイ
オン加速電圧七の関係を示す図、 第2図(a)〜(d)は本発明の反応性イオンビームエ
ッチングによる薄膜磁気ヘッド用Cuコイルのパターニ
ングの工程を示す図である。 1・・・コイル形状のホトレジストマスク2・・・Ta
膜       3・・・Cu膜4・・・基板    
   22・・・Taマスク33・・・Cuコイルバタ
ン 特許出願人   日本電信電話株式会社代理人弁理士 
  杉  村  暁  秀同
Fig. 1 is a diagram showing the relationship between the etching rate of Cu and Ta and the ion acceleration voltage according to the present invention, and Fig. 2 (a) to (d) are Cu coils for thin film magnetic heads produced by reactive ion beam etching according to the present invention. FIG. 3 is a diagram showing the patterning process of FIG. 1... Coil-shaped photoresist mask 2... Ta
Film 3...Cu film 4...Substrate
22...Ta mask 33...Cu coil baton Patent applicant Nippon Telegraph and Telephone Corporation representative patent attorney
Hidetoshi Sugimura

Claims (1)

【特許請求の範囲】[Claims] 1、フォトリソグラフィ技術とドライエッチング技術と
を用いて作製されるCuのコイル、配線等を含む薄膜デ
バイスにおいて、Cu膜をパターニングする際に、マス
ク材にTa、NbまたはZr(7)薄膜を用い、動作ガ
スに窒素と水素との混合ガスもしくは窒素とアンモニア
との混合ガスを用いて、イオンビームエッチングで加工
することを特徴とする銅薄膜パターニング方法。
1. When patterning a Cu film in a thin film device including a Cu coil, wiring, etc. produced using photolithography technology and dry etching technology, a Ta, Nb or Zr (7) thin film is used as a mask material. A copper thin film patterning method characterized by processing by ion beam etching using a mixed gas of nitrogen and hydrogen or a mixed gas of nitrogen and ammonia as an operating gas.
JP11496889A 1989-05-10 1989-05-10 Copper thin film patterning method Expired - Fee Related JP2732663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11496889A JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11496889A JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Publications (2)

Publication Number Publication Date
JPH02295117A true JPH02295117A (en) 1990-12-06
JP2732663B2 JP2732663B2 (en) 1998-03-30

Family

ID=14651088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11496889A Expired - Fee Related JP2732663B2 (en) 1989-05-10 1989-05-10 Copper thin film patterning method

Country Status (1)

Country Link
JP (1) JP2732663B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472724A (en) * 1990-07-13 1992-03-06 Sony Corp Dryetching process
US6008140A (en) * 1997-08-13 1999-12-28 Applied Materials, Inc. Copper etch using HCI and HBr chemistry
US6080529A (en) * 1997-12-12 2000-06-27 Applied Materials, Inc. Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
US6331380B1 (en) 1997-12-12 2001-12-18 Applied Materials, Inc. Method of pattern etching a low K dielectric layer
WO2003019629A3 (en) * 2001-08-27 2003-11-20 Nptest Inc Process for charged particle beam micro-machining of copper
US6804879B2 (en) * 2002-10-23 2004-10-19 Hitachi Global Storage Technologies Netherlands, B.V. Method of fabricating a magnetic transducer with a write head having a multi-layer coil
US7024756B2 (en) * 2003-07-30 2006-04-11 Hitachi Global Storage Technologies Netherlands, B.V. Method of making a perpendicular recording magnetic head pole tip with an etchable adhesion CMP stop layer
US7060196B2 (en) 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
WO2018088532A1 (en) * 2016-11-10 2018-05-17 東京エレクトロン株式会社 Etching device and etching method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472724A (en) * 1990-07-13 1992-03-06 Sony Corp Dryetching process
US6489247B1 (en) 1997-08-13 2002-12-03 Applied Materials, Inc. Copper etch using HCl and HBR chemistry
US6008140A (en) * 1997-08-13 1999-12-28 Applied Materials, Inc. Copper etch using HCI and HBr chemistry
US6534416B1 (en) 1997-08-13 2003-03-18 Applied Materials Inc. Control of patterned etching in semiconductor features
US6331380B1 (en) 1997-12-12 2001-12-18 Applied Materials, Inc. Method of pattern etching a low K dielectric layer
US6458516B1 (en) 1997-12-12 2002-10-01 Applied Materials Inc. Method of etching dielectric layers using a removable hardmask
US6080529A (en) * 1997-12-12 2000-06-27 Applied Materials, Inc. Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
WO2003019629A3 (en) * 2001-08-27 2003-11-20 Nptest Inc Process for charged particle beam micro-machining of copper
US6824655B2 (en) 2001-08-27 2004-11-30 Credence Systems Corporation Process for charged particle beam micro-machining of copper
US6804879B2 (en) * 2002-10-23 2004-10-19 Hitachi Global Storage Technologies Netherlands, B.V. Method of fabricating a magnetic transducer with a write head having a multi-layer coil
US7024756B2 (en) * 2003-07-30 2006-04-11 Hitachi Global Storage Technologies Netherlands, B.V. Method of making a perpendicular recording magnetic head pole tip with an etchable adhesion CMP stop layer
US7060196B2 (en) 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
US7883630B2 (en) 2003-10-03 2011-02-08 Dcg Systems, Inc. FIB milling of copper over organic dielectrics
WO2018088532A1 (en) * 2016-11-10 2018-05-17 東京エレクトロン株式会社 Etching device and etching method
JPWO2018088532A1 (en) * 2016-11-10 2019-10-10 東京エレクトロン株式会社 Etching apparatus and etching method

Also Published As

Publication number Publication date
JP2732663B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JPS62232127A (en) Manufacture of semiconductor device
JPS5620165A (en) Formation of pattern
EP0088869B1 (en) Thin film techniques for fabricating narrow track ferrite heads
US4496419A (en) Fine line patterning method for submicron devices
JPH02295117A (en) Method of patterning thin film of copper
US4614563A (en) Process for producing multilayer conductor structure
JPH0346330A (en) Structure and method for plating metal
JPH02207418A (en) Copper thin film patterning method
JPH08253881A (en) Dry etching method
JPH0410208A (en) Thin-film magnetic head and production thereof
JPH0227810B2 (en) EIKYUJISHAKUMAKUPATAANNOKEISEIHOHO
US20040061092A1 (en) Wet etch for selective removal of alumina
JPH03104118A (en) Manufacture of semiconductor device
JPS63168810A (en) Production of thin film magnetic head
JPH03259409A (en) Production of thin-film magnetic head
JPH07254111A (en) Production of thin film magnetic head
JPH01274430A (en) Patterning method for film
JPH06168919A (en) Patterning of semiconductor device
JPS5858283A (en) Etching method
JPH0224810A (en) Manufacture of thin-film magnetic head
JPH05251425A (en) Method for etching au film
JPH01204207A (en) Manufacture for thin film magnetic head
JPS6212502B2 (en)
JPS627273B2 (en)
JPS6255693B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees