JP2728796B2 - Chemiluminescence measuring method and measuring device - Google Patents

Chemiluminescence measuring method and measuring device

Info

Publication number
JP2728796B2
JP2728796B2 JP3093964A JP9396491A JP2728796B2 JP 2728796 B2 JP2728796 B2 JP 2728796B2 JP 3093964 A JP3093964 A JP 3093964A JP 9396491 A JP9396491 A JP 9396491A JP 2728796 B2 JP2728796 B2 JP 2728796B2
Authority
JP
Japan
Prior art keywords
light
measuring
intensity
chemiluminescence
luminous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3093964A
Other languages
Japanese (ja)
Other versions
JPH04324345A (en
Inventor
英貴 板谷
光男 山木
豊 木村
勉 門井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KORONA DENKI KK
Showa Denko Materials Co Ltd
Original Assignee
KORONA DENKI KK
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KORONA DENKI KK, Hitachi Chemical Co Ltd filed Critical KORONA DENKI KK
Priority to JP3093964A priority Critical patent/JP2728796B2/en
Publication of JPH04324345A publication Critical patent/JPH04324345A/en
Application granted granted Critical
Publication of JP2728796B2 publication Critical patent/JP2728796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、臨床検査や生化学実
験、理化学実験等において、生体物質、化学物質等の化
学発光分析を行うための化学発光測定方法及び測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring chemiluminescence of a biological substance, a chemical substance and the like in a clinical test, a biochemical experiment, a physicochemical experiment and the like.

【0002】[0002]

【従来の技術】近年、抗原−抗体反応やホルモン−レセ
プター反応等、生体中で行われる反応を利用して血液中
の抗原、抗体、ホルモン等の微量物質を定量する方法が
数多く実用化されている。その中で最も一般的なもの
が、抗原−抗体反応を利用するラジオイムノアッセイ
(RIA)とエンザイムイムノアッセイ(EIA)であ
る。ラジオイムノアッセイは測定感度がng/ml〜p
g/mlと大変高い、共存物質の影響を受けにくい等の
利点を持つ。その反面、放射性同位元素(ラジオアイソ
トープ、以下RIとする)を用いるため、管理施設、廃
棄物処理、測定装置等に費用がかかる、RIの半減期が
短いため試薬の有効期限が短いといった欠点を持つ。そ
こで、こうしたRIAの欠点を補う方法として、RIの
代わりに酵素を用いるEIAが開発された。EIAは非
放射性測定という利点により、急速に普及したが、検出
手段にこれまで主として比色法が用いられていたため、
実用感度ではRIAに劣った。しかし、検出法に化学、
生物発光(以後、本明細書では両者を含め化学発光とす
る)を用いることで、RIA並の感度が得られるため、
最近注目を集めている。一方、化学発光は、エンザイム
イムノアッセイだけでなく、H22、ATP、NADP
といった、直接に発光物質に作用する生体物質の定量に
も応用されている。
2. Description of the Related Art In recent years, many methods have been put to practical use for quantifying trace substances such as antigens, antibodies, and hormones in blood by utilizing reactions performed in a living body such as an antigen-antibody reaction and a hormone-receptor reaction. I have. The most common of them are a radioimmunoassay (RIA) and an enzyme immunoassay (EIA) utilizing an antigen-antibody reaction. The radioimmunoassay has a measurement sensitivity of ng / ml to p.
It has advantages such as extremely high g / ml and is hardly affected by coexisting substances. On the other hand, the use of radioisotopes (radioisotopes, hereafter referred to as RI) requires costs for management facilities, waste disposal, measurement equipment, etc., and the short life of RI leads to short expiration of reagents. Have. Therefore, as a method for compensating for the drawbacks of RIA, EIA using an enzyme instead of RI was developed. EIA has spread rapidly due to the advantage of non-radioactive measurement, but since the detection method used to be mainly colorimetric,
The practical sensitivity was inferior to RIA. However, chemistry,
By using bioluminescence (hereinafter, both are referred to as chemiluminescence in the present specification), sensitivity equivalent to that of RIA can be obtained.
Recently it has been attracting attention. On the other hand, chemiluminescence can be measured not only by enzyme immunoassay but also by H 2 O 2 , ATP, and NADP.
It is also applied to the quantification of biological substances that directly act on luminescent substances.

【0003】化学発光を測定する方法としては、化学発
光をポラロイド写真で撮影する方法(例えば、特開昭5
8−38842号公報)や光電子増倍管で検出するルミ
ノメータを用いる方法(例えば、特開昭61−2093
40号公報)がある。ポラロイド写真を用いる方法は特
殊な装置を必要とせず、複数の発光部位を同時に測定で
きるという利点を持つが、写真撮影に時間がかかる、写
真感度で測定範囲が限定される等の欠点を持つ。一方、
ルミノメータを用いる方法は発光を直接電気信号に変換
するため、広範囲にわたり定量性良く測定できるが、測
定にセルを用いた場合1検体(1発光部位)ごとの測定
となるため、多検体の測定のためには大ががりなセル移
動装置や分注装置が必要となる。また、発光強度は経時
変化するため同時発光している発光部位を精度よく測定
するには迅速さが要求される。このように従来は複数の
同時発光する発光部位を有する検体を、迅速かつ高精度
で測定できる方法及び装置はなかった。
As a method of measuring chemiluminescence, a method of taking a chemiluminescence with a polaroid photograph (for example, Japanese Patent Laid-Open No.
No. 8-38842) and a method using a luminometer which detects with a photomultiplier tube (for example, Japanese Patent Application Laid-Open No. 61-2093).
No. 40). The method using a polaroid photograph has the advantage that a plurality of light emitting sites can be measured at the same time without the need for a special device, but has the disadvantage that it takes a long time to take a picture and the measurement range is limited by photographic sensitivity. on the other hand,
The method using a luminometer directly converts luminescence into an electric signal, so it can be measured with high quantitativeness over a wide range. However, when a cell is used for measurement, measurement is performed for each sample (one luminescent site). For this purpose, a large cell moving device and a dispensing device are required. In addition, since the light emission intensity changes with time, quick measurement is required to accurately measure light emission sites that are simultaneously emitting light. Thus, conventionally, multiple
There has been no method and apparatus that can quickly and accurately measure a specimen having a light emitting site that emits light simultaneously .

【0004】[0004]

【発明が解決しようとする課題】本発明はかかる化学発
光測定の問題点を解決するものであり、複数の同時発光
している発光部位を有する検体又は同時発光している
検体の各化学発光の強度を迅速かつ精度良く測定する方
法及び装置を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem of the chemiluminescence measurement, and is directed to a sample having a plurality of simultaneously emitting light-emitting portions or a multi-sample simultaneously emitting light. And a method and apparatus for measuring the intensity of each chemiluminescence quickly and accurately.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、複数
の同時発光している発光部位を有する検体または同時発
光している多検体の各発光部位の発光強度を測定する方
法であって、あらかじめ発光部位を配列し、その上に沿
って測光部を一定速度で移動させるとともに、発光強度
を連続的に測光し、発光強度の連続した波形グラフを
得、該波形グラフの各発光部位に相当するピーク値をも
って各発光部位の発光強度とすることを特徴とする化学
発光測定方法に関する。
That is, the present invention provides a plurality of
Analyte or simultaneous onset having a light emitting part that simultaneously emission of
A method for measuring the emission intensities of the light emitting part of the multi-analyte being light, arranged in advance emitting site, along thereon
While moving the light measuring unit at a constant speed, the light emission intensity is continuously measured, and a continuous waveform graph of the light emission intensity is obtained, and the light emission intensity of each light emission portion is obtained with a peak value corresponding to each light emission portion of the waveform graph. And a method for measuring chemiluminescence.

【0006】また、本発明は複数の同時発光している
光部位を有する検体または同時発光している多検体の各
発光部位の発光強度を測定する装置であって、あらかじ
め発光部位を配列し、その上に沿って一定速度で移動
発光強度を連続的に測光する測光部、発光強度の連続し
た波形グラフを得、該波形グラフの各発光部位に相当す
るピーク値を解析して各発光部位の発光強度とするデー
タ解析部を有することを特徴とする化学発光測定装置に
関する。
Further, the present invention is an apparatus for measuring the emission intensities of the light emitting part of the multi-analyte that analyte or simultaneous emission having emitting <br/> light portion have multiple simultaneous emission, beforehand
The light-emitting portions are arranged , and a light-metering section that moves at a constant speed along the light-emitting portions and continuously measures the light-emitting intensity, obtains a continuous waveform graph of the light-emitting intensity, and a peak value corresponding to each light-emitting portion in the waveform graph. The present invention relates to a chemiluminescence measuring apparatus having a data analyzer for analyzing the light emission intensity of each of the light emission sites.

【0007】まず、本発明の測定方法について詳述す
る。本発明において、複数の同時発光している発光部位
を有する検体とは、種々のものがあげられるが、本発明
の方法が特に有効なものとして、マストイムノシステム
ズ(米国マストイムノシステムズ社製、商品名)の測定
容器(図4)の各糸14の発光の測定が挙げられる。こ
れはアレルギー診断薬であり、特開昭58−50163
7号公報、特開昭60−89753号公報、特開昭61
−82165号公報、特開昭62−22770公報に詳
細が記載されるが、アレルギー特異的IgE抗体の定量
試薬で、図4に示す様に血清や発光試薬を注入するプラ
スチック容器中に、多種類の各アレルゲン(アレルギー
の原因物質)を結合した各糸が配列されている。アレル
ギー患者の血清を本容器に注入すると血清中の特異抗体
がアレルゲンに結合する。この複合体に酵素標識二次抗
体(IgE)を反応させた後ルミノールと過酸化水素の
組合せで化学発光を誘起し、発光量の測定により血清中
の抗体量を定量する方法である。なお、従来この発光量
の測定はポラロイドフィルムへの露光、得られるフィル
ムの透過度電圧の測定により行なわれており、露光に時
間を要し、測定精度も低いものであった。
First, the measuring method of the present invention will be described in detail. In the present invention, examples of the sample having a plurality of light- emitting sites emitting at the same time include various ones. Mast immunosystems (manufactured by US Mast Immunosystems, Inc. Measurement of the light emission of each thread 14 of the measurement container (FIG. 4). This is an allergy diagnostic agent and is disclosed in Japanese Patent Application Laid-Open No. 58-50163.
No. 7, Japanese Patent Application Laid-Open No. 60-89553, Japanese Patent Application Laid-Open No.
The details are described in JP-A-82165 and JP-A-62-22770. As shown in FIG. 4, various kinds of allergy-specific IgE antibody quantification reagents are contained in a plastic container into which serum or a luminescence reagent is injected. Each thread that binds each allergen (cause of allergy) is arranged. When the serum of an allergic patient is injected into this container, the specific antibodies in the serum bind to the allergen. In this method, the complex is reacted with an enzyme-labeled secondary antibody (IgE), and then chemiluminescence is induced by a combination of luminol and hydrogen peroxide, and the amount of antibody in the serum is determined by measuring the amount of luminescence. Heretofore, the measurement of the light emission amount has been conventionally performed by exposure to a polaroid film and measurement of the transmittance voltage of the obtained film, which required a long time for exposure and low measurement accuracy.

【0008】その他、本発明の方法が特に有効なものと
して、制限酵素で切断したDNA断片、RNAを電気泳
動し、セルロース等の膜にこれを移してDNAプローブ
で相補的配列を調べるサザンブロッティング法及びノザ
ンブロッティング法、タンパク質を電気泳動し、セルロ
ース等の膜にこれを移して特異抗体で抗原検索するウェ
スタンブロッティング法を化学発光を用いて測定する場
合がある。これらは全て後述のように1次元に移動する
ことで結果を得られるが、後述の2次元に移動すること
でも測定が可能である。
[0008] In addition, the method of the present invention is particularly effective in the Southern blotting method in which a DNA fragment or RNA cleaved with a restriction enzyme is electrophoresed, transferred to a membrane such as cellulose, and a complementary sequence is examined with a DNA probe. In some cases, chemiluminescence is used as a Northern blotting method, or a western blotting method in which a protein is electrophoresed, the protein is transferred to a membrane such as cellulose, and an antigen is searched for with a specific antibody. All of these can be obtained by moving one-dimensionally as described later, but measurement can also be performed by moving two-dimensionally described later.

【0009】本発明の方法においては、上記検体を測定
装置にセットし発光強度を測定するが、セットされた検
体は測定時には外部光に対して完全に遮蔽される必要が
ある。セットされた検体の発光部位上を、測定装置にお
ける測定部を一定速度で一定方向に移動させ、連続的に
発光強度を測定する。これにより、図5に示すように、
発光強度のグラフが一定周期の波形グラフとなり、隣接
する波形同士を明瞭に区別でき、各発光部位と対応する
波形グラフの識別及び同定を容易にできる。ここで、測
光部を一定速度で移動させ、発光強度を連続的に測定す
るとは、発光強度のデータをデジタル信号で取り込むた
めに、0.05mm〜0.5mm程度のピッチで停止さ
せ、データを取り込み、移動することを連続的に繰返す
こと、すなわち結果的に肉眼では一定速度に見える場合
を含む。また、本発明の方法は、測定部を固定し、検体
の方を一定速度で移動させる場合も含むものである。こ
れは測定部と検体の相対的な動作という面では相違しな
いからである。また、電気信号のノイズの影響を除去す
るため、その前後何点かの信号の実測値を平均する移動
平均法、ザービッキーゴーレイの提出した重み付き移動
平均法等を用いて、平滑化処理をすることもできる。
In the method of the present invention, the above-mentioned sample is set in a measuring device and the luminescence intensity is measured. The set sample needs to be completely shielded from external light at the time of measurement. The measuring unit of the measuring device is moved at a constant speed in a constant direction over the light emitting portion of the set sample, and the light emitting intensity is continuously measured. Thereby, as shown in FIG.
The emission intensity graph becomes a waveform graph with a fixed period,
Waveforms can be clearly distinguished from each other,
The waveform graph can be easily identified and identified. Here, moving the photometric unit at a constant speed and continuously measuring the light emission intensity means that the light intensity is stopped at a pitch of about 0.05 mm to 0.5 mm in order to capture the data of the light emission intensity as a digital signal, and the data is stopped. This includes a case where the taking and moving are continuously repeated, that is, a case where the object appears to have a constant speed as a result. The method of the present invention also includes a case where the measurement unit is fixed and the sample is moved at a constant speed. This is because there is no difference in the relative operation of the measurement unit and the sample. In addition, in order to remove the effects of noise in the electrical signal, smoothing processing is performed using a moving average method that averages the measured values of several signals before and after the signal, a weighted moving average method submitted by Zarbic Golay, etc. You can also

【0010】本発明の方法において、複数の発光部位が
一直線上に存在する検体(上記マストイムノシステム
ズ、ブロッティング法におけるセルロース等)の場合、
測定は発光部位が存在する直線方向に沿って測光部を一
移動させて連続的に発光強度を測定し、波形グラフを
得、得られた該波形グラフの各発光部位に相当するピー
ク値をもってその発光部位の発光強度とすることができ
る(1次元の移動)。これは、複数の検体を直線上に配
列したもの、例えばマイクロタイタープレートのウェル
中での発光強度も同様に測定できる。これらの場合、複
数の発光部位が一直線上に存在する検体または複数の検
体を直線上に配列したものを、複数個さらに並列に並べ
ておけば、上記の移動を、上記走査方向と垂直方向に測
光部又は検体を一回ごとに移動させて繰り返すことによ
り一度に測定することも可能である(2次元の移動)
In the method of the present invention, in the case of a specimen having a plurality of luminescent sites on a straight line (such as cellulose in the above-mentioned mast immunosystems or blotting method),
The measurement is performed by moving the photometric unit once along the linear direction in which the light emitting portion exists, continuously measuring the light emission intensity, obtaining a waveform graph, and obtaining a peak value corresponding to each light emitting portion of the obtained waveform graph. The light emission intensity of the light emitting portion can be obtained (one-dimensional movement ). This means that a plurality of specimens can be arranged on a straight line, for example, the luminescence intensity in a well of a microtiter plate can be similarly measured. In these cases, if the plurality of light emitting sites are arranged in a straight line or a plurality of specimens arranged in a straight line, and a plurality of the light emitting sites are further arranged in parallel, the movement is measured in a direction perpendicular to the scanning direction. It is also possible to measure all at once by moving the part or sample once and repeating it (two-dimensional movement) .

【0011】[0011]

【0012】本発明の測定方法が有用な発光反応として
は、化学発光所謂ケミルミネッセンスと生物発光所謂バ
イオルミネッセンスに基づく発光反応がある。分析方法
としては、抗原または抗体を化学発光物質で標識して抗
原抗体反応を行い発光を検出するケミルミネッセントイ
ムノアッセイ、抗原または抗体をペルオキシダーゼ等の
酵素で標識して抗原抗体反応を行い化学発光を検出する
ケムルミネッセントエンザイムイムノアッセイ、抗原ま
たは抗体を生物発光関連酵素で標識して抗原抗体反応を
行い発光を検出するバイオルミネッセントエンザイムイ
ムノアッセイ、抗原または抗体を生物発光反応の補酵素
でで標識して抗原抗体反応を行い補酵素の不活化を生物
発光で検出するホモジニアスなバイオルミネッセントコ
ファクターイムノアッセイ等の各種イムノアッセイ、目
的のDNAやRNAに相補的な塩基配列のDNAやRN
Aに化学発光物質や酵素を標識して目的のDNAやRN
Aとのハイブリッドを形成させこれを発光で検出するD
NAプローブ法等がある。
The luminescence reactions useful for the measurement method of the present invention include luminescence reactions based on chemiluminescence, so-called chemiluminescence, and bioluminescence, so-called bioluminescence. As an analysis method, a chemiluminescent immunoassay in which an antigen or antibody is labeled with a chemiluminescent substance to perform an antigen-antibody reaction to detect luminescence, or an antigen or antibody reaction in which the antigen or antibody is labeled with an enzyme such as peroxidase to perform chemiluminescence. Chemiluminescent enzyme immunoassay for detection, bioluminescent enzyme immunoassay for labeling an antigen or antibody with a bioluminescence-related enzyme and performing an antigen-antibody reaction to detect luminescence, labeling the antigen or antibody with a bioluminescence coenzyme Various immunoassays such as a homogeneous bioluminescent cofactor immunoassay for detecting an inactivation of coenzyme by bioluminescence by performing an antigen-antibody reaction, and DNA or RN having a base sequence complementary to the target DNA or RNA.
A is labeled with a chemiluminescent substance or enzyme and the target DNA or RN
A that forms a hybrid with A and detects this by emission D
There is an NA probe method and the like.

【0013】本発明に用いられる化学発光物質には、過
酸化水素と反応して発光するルミノール(5−アミノ−
2,3−ジヒドロ−1,4−フタラジンジオン)及びイ
ソルミノールとその誘導体、ルシゲニン(10,10’
ージメチルー9,9’ビアクリジウム二硝酸塩)、アク
リジウム塩やそのエステル、熱的冷気で発光する1,2
ージオキセタン、強塩基存在下酸素により発光するロフ
ィン(2,4,5ートリフェニルイミダゾール)、3ー
メチルインドール等のインドール誘導体、酸素や空気に
さらされると発光するテトラキス(ジメチルアミノ)エ
チレン、シジメチルホルムアミド溶液中t−ブチル存在
下で発光するシッフ塩基等がある。中でもルミノールま
たはイソルミノールと過酸化水素存在下でペルオキシダ
ーゼを用いる系が最も良く使われる。また、シュウ酸ジ
エステル等のシュウ酸誘導体にペレリン、8−アニリノ
ナフタレン−1−スルホン酸、ダンシルアミノ酸等の蛍
光物質を共存させ蛍光物質を励起させて発光させる方法
もある。
The chemiluminescent substance used in the present invention includes luminol (5-amino-) which emits light by reacting with hydrogen peroxide.
2,3-dihydro-1,4-phthalazinedione) and isoluminol and its derivatives, lucigenin (10,10 ′)
-Dimethyl-9,9 'biacridium dinitrate), acridium salts and esters thereof,
-Dioxetane, indole derivatives such as lophine (2,4,5-triphenylimidazole) and 3-methylindole which emit light by oxygen in the presence of a strong base, tetrakis (dimethylamino) ethylene and sidimethyl which emit light when exposed to oxygen or air There is a Schiff base that emits light in the presence of t-butyl in a formamide solution. Among them, a system using peroxidase in the presence of luminol or isoluminol and hydrogen peroxide is most often used. There is also a method in which a fluorescent substance such as perelin, 8-anilinonaphthalene-1-sulfonic acid, or dansyl amino acid coexists with an oxalic acid derivative such as an oxalic acid diester to excite the fluorescent substance to emit light.

【0014】本発明に用いられる生物発光物質にはホタ
ル、発光バクテリア等のルシフェラーゼ、オワンクラゲ
から得られるエクオリン等の各種発光蛋白がある。これ
らの発光物質は発光を増幅する成分所謂エンハンサーと
共に用いることができる。これらエンハンサーとしては
6−ヒドロキシベンゾチアゾールやヨウドフェノール等
のフェノール誘導体がある。
The bioluminescent substance used in the present invention includes luciferases such as fireflies and luminescent bacteria, and various photoproteins such as aequorin obtained from Oan jellyfish. These luminescent substances can be used together with a component for amplifying luminescence, that is, an enhancer. These enhancers include phenol derivatives such as 6-hydroxybenzothiazole and iodophenol.

【0015】次に、本発明の化学発光測定方法を実施す
るための本発明の化学発光測定装置について詳述する。
本発明の測定装置は、あらかじめ発光部位を配列し、そ
の上に沿って一定速度で移動し発光強度を連続的に測光
する測光部、発光強度の連続した波形グラフを得、該波
形グラフの各発光部位に相当するピーク値を解析して各
発光部位の発光強度とするデータ解析部を有する。
Next, a chemiluminescence measuring apparatus of the present invention for carrying out the chemiluminescence measuring method of the present invention will be described in detail.
The measuring device of the present invention arranges the luminescent sites in advance, and
A light meter that moves at a constant speed along the top and continuously measures light emission intensity, obtains a continuous waveform graph of light emission intensity, analyzes peak values corresponding to each light emission portion of the waveform graph, and analyzes each light emission portion. And a data analysis unit for setting the light emission intensity.

【0016】該測光部の一例を図1(斜視図)および図
2(側面断面図)に示す。図1では、検体として、マス
トイムノシステムズの専用反応容器10 5本を固定台
11上に固定し、プレートホルダ12上に設置してい
る。図1に示されるように測光部1はレンズ2、3、移
動方向と垂直方向に長いスリット4、5、光電子増倍管
8及び増幅器7から構成される。該測光部1はガイド棒
9に沿って、図中に示されるX方向に一定速度で移動
連続的に発光強度を測定することが可能である。また、
プレートホルダ12は図中で示されるY方向に移動が可
能である。図2の断面図に示すように発光の光は測光部
の下面から入り反射ミラー6を介して光電子増倍管8方
向へ反射して電気信号に変換される。
One example of the photometric unit is shown in FIG. 1 (perspective view) and FIG. 2 (side sectional view). In FIG. 1, 105 dedicated reaction vessels from Mast Immunosystems are fixed on a fixed base 11 and placed on a plate holder 12 as samples. As shown in FIG. 1, the photometric unit 1 includes lenses 2 and 3, slits 4 and 5 elongated in a direction perpendicular to the moving direction, a photomultiplier tube 8, and an amplifier 7. The photometric unit 1 moves at a constant speed in the X direction shown in the figure along the guide rod 9 and can continuously measure the emission intensity. Also,
The plate holder 12 can move in the Y direction shown in the drawing. As shown in the cross-sectional view of FIG. 2, the emitted light enters from the lower surface of the photometric unit, is reflected via the reflection mirror 6 toward the photomultiplier tube 8, and is converted into an electric signal.

【0017】測光部1で測定され、電気信号に変換され
た光強度はデータ解析部において、発光強度の連続した
波形グラフを得、該波形グラフの各発光部位に相当する
ピーク値を解析して各発光部位の発光強度に換算され
る。該データ解析部としては、マイクロプロセッサが使
用される。図3に本発明の測定装置の1例の概略図を示
す。サンプルからの光は反射ミラーを経て光電子増倍管
に入り、増幅器、A/Dコンバータを経てマイクロプロ
セッサーに取り込まれ、演算処理されてプリンタに出力
される。一方マイクロプロセッサーは測光部やプレート
ホルダーの駆動モータも制御する。特に測光部は所定の
サンプリング回数のデータを取り込んだ後、測光部を次
の位置へ微小送りする。
The light intensity measured by the photometric unit 1 and converted into an electric signal is obtained by a data analysis unit by obtaining a continuous waveform graph of the light emission intensity and analyzing the peak value corresponding to each light emitting portion of the waveform graph. It is converted into the luminous intensity of each luminous site. A microprocessor is used as the data analysis unit. FIG. 3 shows a schematic diagram of an example of the measuring device of the present invention. Light from the sample enters the photomultiplier tube via a reflection mirror, is taken into a microprocessor via an amplifier and an A / D converter, is processed, and is output to a printer. On the other hand, the microprocessor also controls the drive motor of the photometer and the plate holder. In particular, the photometric unit fetches data of a predetermined number of samplings, and then minutely feeds the photometric unit to the next position.

【0018】以上のような本発明の化学発光測定方法及
び測定装置によれば、例えば検体がマイクロプレートの
ウェル中の多検体の場合には、発光物質の付着、沈降の
不均一性などの影響を受けず、またマストイムノシステ
ムズを検体とした場合にはプラスチック容器中の糸の間
隔のバラツキによらず高精度のデータを得ることができ
る。また、測光部が一回一回発光部位で停止して測定を
行うのに比べ、測光部が一定速度で移動するために、短
時間で測定が完了する。
According to the method and apparatus for measuring chemiluminescence of the present invention as described above, for example, when the sample is a multi-sample in a well of a microplate, the influence of adhesion of a luminescent substance, non-uniformity of sedimentation, etc. And when mast immunosystems is used as the sample, highly accurate data can be obtained regardless of the variation in the interval between the yarns in the plastic container. In addition, the measurement is completed in a short time because the photometry unit moves at a constant speed, as compared with the case where the photometry unit stops at the light emitting portion once and performs the measurement.

【0019】[0019]

【実施例】以下に本発明の実施例を示す。本実施例では
図1に示す測光部を有し、図3に示す化学発光測定装置
を使用した。被測定検体は、アレルギー診断薬マストイ
ムノシステムズ(米国マストイムノシステムズ社製、輸
入元日立化成工業(株))の反応容器(図4、該商品の
使用説明書に従って、検体血清、酵素標識抗体を反応さ
せた後、化学発光用ルミノール溶液を充填したもの)
を、図1に示すように5本分を1回で測定するようにセ
ットして用いた。測光部の実際の移動と測定は、0.1
88mm間隔で移動し停止する度に発光強度を測定する
ことを繰返すことにより行ない、1つの反応容器につい
て約1,000点発光強度を連続的に測定した。図1に
示すように、プラスチック容器に沿って(X方向)、測
光部を移動し発光強度を測定したところ、図5に示すよ
うな波形グラフを得た。1本あたりの走査時間は20秒
であった。これをマイクロプロセッサーで数値解析し、
各ピーク値を各アレルゲンの発光量に割当て、表1に示
す結果を得た。
Examples of the present invention will be described below. In the present example, the photometric unit shown in FIG. 1 was used, and the chemiluminescence measuring device shown in FIG. 3 was used. The sample to be measured was prepared by reacting a sample serum and enzyme-labeled antibody in accordance with the reaction vessel of the allergy diagnostic agent Mast Immunosystems (Mast Immunosystems, USA, imported from Hitachi Chemical Co., Ltd.) (FIG. 4, instruction manual for the product). After reaction, filled with luminol solution for chemiluminescence)
Was used as shown in FIG. 1 so that five samples were measured at one time. The actual movement and measurement of the photometric unit is 0.1
By repeating the measurement of the luminescence intensity each time the sample was moved at an interval of 88 mm and stopped, the luminescence intensity at about 1,000 points was continuously measured for one reaction vessel. As shown in FIG. 1, when the light intensity was measured by moving the photometric unit along the plastic container (X direction), a waveform graph as shown in FIG. 5 was obtained. The scanning time per line was 20 seconds. This is numerically analyzed with a microprocessor,
Each peak value was assigned to the emission amount of each allergen, and the results shown in Table 1 were obtained.

【0020】[0020]

【表1】 [Table 1]

【0021】なお、実施例で用いたプラスチック容器中
の糸は約2.8mm間隔で並んでいるが、間隔のバラツ
キを精査したところ、最大でおよそ±0.3mmであっ
た。この様に寸法精度に誤差があっても本発明はピーク
値から計算で発光量を得るため、高精度なデータを得る
ことができる。
The yarns in the plastic containers used in the examples are arranged at intervals of about 2.8 mm. When the variation in the intervals was closely examined, the maximum was about ± 0.3 mm. Thus, even if there is an error in the dimensional accuracy, the present invention obtains the light emission amount by calculation from the peak value, so that highly accurate data can be obtained.

【0022】[0022]

【発明の効果】本発明の化学発光測定方法及び測定装置
によれば、複数の同時発光している発光部位を有する検
体又は同時発光している多検体の各化学発光の強度を迅
速かつ精度良く測定することができる。
According to the method and apparatus for measuring chemiluminescence of the present invention, the intensity of each chemiluminescence of a sample having a plurality of simultaneously emitting luminescent sites or a plurality of samples simultaneously emitting light can be measured quickly and accurately. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化学発光測定装置の1例の要部を示す
斜視図である。
FIG. 1 is a perspective view showing a main part of an example of a chemiluminescence measuring apparatus of the present invention.

【図2】本発明の化学発光測定装置の1例の要部を示す
側面断面図である。
FIG. 2 is a side sectional view showing a main part of one example of the chemiluminescence measuring apparatus of the present invention.

【図3】本発明の化学発光測定装置の1例を示す概略図
である。
FIG. 3 is a schematic view showing one example of a chemiluminescence measuring apparatus of the present invention.

【図4】本発明の化学発光測定方法が有用である複数の
同時発光している発光部位を有する検体(マストイムノ
システムズの反応容器)を示す斜視図である。
FIG. 4 shows a plurality of useful chemiluminescence measurement methods of the present invention.
It is a perspective view which shows the sample (reaction container of Mast Immunosystems) which has the light emission part which emits simultaneously .

【図5】本発明の実施例において測定された発光強度の
波形グラフである。
FIG. 5 is a waveform graph of emission intensity measured in the example of the present invention.

【符号の説明】[Explanation of symbols]

1…測光部 2…レンズ 3…レンズ 4…スリット 5…スリット 6…反射ミラー 7…増幅器 8…光電子増倍管 9…ガイド棒 10…専用反応容器 11…固定台 12…可動式プレートホルダ 13…プレートガイド 14…糸 DESCRIPTION OF SYMBOLS 1 ... Photometry part 2 ... Lens 3 ... Lens 4 ... Slit 5 ... Slit 6 ... Reflection mirror 7 ... Amplifier 8 ... Photomultiplier tube 9 ... Guide rod 10 ... Dedicated reaction vessel 11 ... Fixed table 12 ... Movable plate holder 13 ... Plate guide 14 ... thread

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 豊 茨城県勝田市東石川3517番地 コロナ電 気株式会社内 (72)発明者 門井 勉 茨城県勝田市東石川3517番地 コロナ電 気株式会社内 (56)参考文献 特開 平2−268256(JP,A) 特開 平2−28772(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yutaka Kimura 3517 Higashiishikawa Katsuta-shi Ibaraki Pref.Corona Electric Co., Ltd. (72) Inventor Tsutomu 3517 Higashiishikawa Katsuta-shi Ibaraki Pref.Corona Electric Co. (56) References JP-A-2-268256 (JP, A) JP-A-2-28772 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の同時発光している発光部位を有す
る検体または同時発光している多検体の各発光部位の発
光強度を測定する方法であって、あらかじめ発光部位を
配列し、その上に沿って測光部を一定速度で移動させる
とともに、発光強度を連続的に測光し、発光強度の連続
した波形グラフを得、該波形グラフの各発光部位に相当
するピーク値をもって各発光部位の発光強度とすること
を特徴とする化学発光測定方法。
1. A method for measuring the luminous intensity of each luminous site of a sample having a plurality of luminous sites emitting at the same time or a plurality of analytes emitting at the same time , comprising:
While arranging , moving the photometric unit at a constant speed along it , continuously measuring the light emission intensity, obtaining a continuous waveform graph of the light emission intensity, and having a peak value corresponding to each light emitting portion of the waveform graph. A method for measuring chemiluminescence, wherein the luminescence intensity of each luminescence site is used.
【請求項2】 複数の同時発光している発光部位を有す
る検体または同時発光している多検体の各発光部位の発
光強度を測定する方法であって、あらかじめ発光部位を
直線上に配列し、その上に沿って測光部を一定速度で移
動させるとともに、発光強度を連続的に測光し、発光強
度の連続した波形グラフを得、該波形グラフの各発光部
位に相当するピーク値をもって各発光部位の発光強度と
することを特徴とする化学発光測定方法。
2. It has a plurality of light-emitting portions which emit light simultaneously.
Of each luminescent site of a sample or multiple samples that emit light simultaneously
This is a method for measuring light intensity, in which light emitting sites are arranged in a straight line in advance , and the photometric unit is moved at a constant speed along the light emitting sites.
As well as continuously measuring the light emission intensity,
Degree continuous waveform graph, and each light emitting part of the waveform graph
With the peak value corresponding to the position,
A method for measuring chemiluminescence.
【請求項3】 複数の同時発光している発光部位を有す
る検体または同時発光している多検体の各発光部位の発
光強度を測定する装置であって、あらかじめ発光部位を
配列し、その上に沿って一定速度で移動し発光強度を連
続的に測光する測光部、発光強度の連続した波形グラフ
を得、該波形グラフの各発光部位に相当するピーク値を
解析して各発光部位の発光強度とするデータ解析部を有
することを特徴とする化学発光測定装置。
3. An apparatus for measuring the luminous intensity of each luminous part of a sample having a plurality of luminous parts emitting at the same time or of multiple specimens emitting at the same time , wherein the luminous part is determined in advance.
Array , move along it at a constant speed, and continuously measure the light emission intensity, obtain a light measurement unit, obtain a continuous waveform graph of the light emission intensity, and analyze the peak value corresponding to each light emitting part of the waveform graph. A chemiluminescence measuring device comprising a data analysis unit for setting the luminescence intensity of each luminescence site.
【請求項4】 複数の同時発光している発光部位を有す
る検体または同時発光している多検体の各発光部位の発
光強度を測定する装置であって、あらかじめ発光部位を
直線上に配列し、その上に沿って一定速度で移動し発光
強度を連続的に測光する測光部、発光強度の連続した波
形グラフを得、該波形グラフの各発光部位に相当するピ
ーク値を解析して各発光部位の発光強度とするデータ解
析部を有することを特徴とする化学発光測定装置。
4. It has a plurality of light emitting parts which emit light simultaneously.
Of each luminescent site of a sample or multiple samples that emit light simultaneously
This is a device for measuring light intensity.
Arrange on a straight line, move at a constant speed along it and emit light
Metering unit that continuously measures the intensity, continuous wave of emission intensity
A shape graph is obtained, and the peaks corresponding to each light emitting portion of the waveform graph are obtained.
Data solution by analyzing the peak value and obtaining the luminous intensity of each luminous site
A chemiluminescence measuring device comprising a analyzer.
【請求項5】 測光部が、レンズ、移動方向と垂直方向
に長いスリット、光電子増倍管及び増幅器を有すること
を特徴とする請求項3又は4記載の化学発光測定装置。
5. A photometric portion, the lens, the moving direction and the direction perpendicular to the long slit, chemiluminescence measuring device according to claim 3 or 4 characterized by having a photomultiplier tube and amplifier.
JP3093964A 1991-04-24 1991-04-24 Chemiluminescence measuring method and measuring device Expired - Lifetime JP2728796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093964A JP2728796B2 (en) 1991-04-24 1991-04-24 Chemiluminescence measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093964A JP2728796B2 (en) 1991-04-24 1991-04-24 Chemiluminescence measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH04324345A JPH04324345A (en) 1992-11-13
JP2728796B2 true JP2728796B2 (en) 1998-03-18

Family

ID=14097095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093964A Expired - Lifetime JP2728796B2 (en) 1991-04-24 1991-04-24 Chemiluminescence measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP2728796B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228772A (en) * 1988-07-18 1990-01-30 Hitachi Electron Eng Co Ltd Method and device for identifying microorganism
JP2525894B2 (en) * 1989-04-07 1996-08-21 浜松ホトニクス株式会社 Fluorescence characteristic inspection device for semiconductor samples

Also Published As

Publication number Publication date
JPH04324345A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
US20210293793A1 (en) Interactive test device and apparatus with timing mechanism
CN106872420B (en) Kit and method for time-resolved fluorescence quantitative detection of microalbuminuria
US4626684A (en) Rapid and automatic fluorescence immunoassay analyzer for multiple micro-samples
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
EP0194102B1 (en) Luminescence measuring arrangement
US5945344A (en) Electrochemiluminescence method
US5061076A (en) Time-resolved fluorometer
WO1996041155A9 (en) An improved electrochemiluminescence method
US20160299076A1 (en) Method and system for multiplexed time-resolved fluorescence detection
US20190353664A1 (en) Method, system, reagent kit, and device for determining hd-hook-effect sample and immunoassay
US20030119030A1 (en) Immunoassay diagnostic probe and a method for use thereof
WO2002008762A1 (en) Apparatus and method for evanescent light fluoroassays
KR101957800B1 (en) Fluorescence reader in the form of insertion strip for the quantitative measurements
JP2728796B2 (en) Chemiluminescence measuring method and measuring device
JP2000507353A (en) Quantitative analysis and evaluation system for test elements
JP4838086B2 (en) Chemiluminescence measuring device
JP3039700B2 (en) Chemiluminescence measuring method and measuring device
US20050009199A1 (en) Method of measuring number of molecules or molecular density of a sample fixed on a substrate surface
JP2936931B2 (en) Photometric device for biological components
KR20200040417A (en) Fluorescence reader device and process in the form of insertion strip for the quantitative measurements
EP4099002A1 (en) Chromatographic inspection apparatus and control method thereof
Vesterberg A new luminometer for sensitive quantification by chemiluminescence of specific proteins in microtitre plates and on blot membranes
CN111077306A (en) Quantitative detection analyzer for fluorescence immunoassay reagent and detection method thereof
JPH042906B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 14