JP2724649B2 - Low pressure CVD equipment - Google Patents

Low pressure CVD equipment

Info

Publication number
JP2724649B2
JP2724649B2 JP2073392A JP2073392A JP2724649B2 JP 2724649 B2 JP2724649 B2 JP 2724649B2 JP 2073392 A JP2073392 A JP 2073392A JP 2073392 A JP2073392 A JP 2073392A JP 2724649 B2 JP2724649 B2 JP 2724649B2
Authority
JP
Japan
Prior art keywords
heater
reaction chamber
inner tube
reaction
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2073392A
Other languages
Japanese (ja)
Other versions
JPH05190468A (en
Inventor
光三 本多
信一 戸丸
正健 片山
直之 高松
克典 小荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMASU HANDOTAI KOGYO KK
Shin Etsu Handotai Co Ltd
Original Assignee
MIMASU HANDOTAI KOGYO KK
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMASU HANDOTAI KOGYO KK, Shin Etsu Handotai Co Ltd filed Critical MIMASU HANDOTAI KOGYO KK
Priority to JP2073392A priority Critical patent/JP2724649B2/en
Publication of JPH05190468A publication Critical patent/JPH05190468A/en
Application granted granted Critical
Publication of JP2724649B2 publication Critical patent/JP2724649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Si単結晶から成る半
導体ウエーハ(以下、ウエーハと称す)の表面に、多結
晶Si膜等を形成せしめた半導体基板を製造するための
減圧CVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-pressure CVD apparatus for manufacturing a semiconductor substrate having a polycrystalline Si film or the like formed on a surface of a semiconductor wafer made of Si single crystal (hereinafter, referred to as a wafer).

【0002】[0002]

【従来の技術】半導体装置(以下、デバイスと称す)の
製造工程においては、ウエーハは種々の熱処理を受ける
が、各熱処理過程において、ウエーハに存在する炭素や
金属不純物、或いはデバイスの製造工程中にウエーハ表
面を汚染した金属不純物は、ウエーハ内で析出して種々
の結晶欠陥を引き起こす。これらの結晶欠陥は、ウエー
ハの表面及びその近傍にも発生し、リーク電流を増大さ
せたり、ウエーハのライフタイムを低下させ、当該ウエ
ーハによって製造されるデバイスの特性や歩留に悪影響
を及ぼす。
2. Description of the Related Art In a process of manufacturing a semiconductor device (hereinafter, referred to as a device), a wafer is subjected to various heat treatments. In each heat treatment process, carbon or metal impurities present in the wafer, or during a process of manufacturing a device. Metal impurities contaminating the wafer surface precipitate in the wafer and cause various crystal defects. These crystal defects also occur on the surface of the wafer and in the vicinity thereof, increasing the leak current and reducing the lifetime of the wafer, and adversely affect the characteristics and yield of devices manufactured using the wafer.

【0003】一方、ウエーハの裏面又は内部に形成した
歪や微少結晶欠陥は、デバイス特性に悪影響を及ぼす不
純物を捕獲、固着したり、或いは欠陥発生に関与してい
る点欠陥等を除去する作用を有する。この作用はゲッタ
リングと呼ばれ、前者はエクストリンシックゲッタリン
グ(EG)、後者はイントリンシックゲッタリング(I
G)と呼ばれている。
On the other hand, strains and microcrystalline defects formed on the back surface or inside of the wafer have the effect of capturing and fixing impurities that adversely affect device characteristics, or removing point defects or the like involved in defect generation. Have. This effect is called gettering, the former being extrinsic gettering (EG) and the latter being intrinsic gettering (I).
G).

【0004】上記EG効果を付与した半導体基板の一つ
として、ウエーハの裏面に多結晶Si膜を形成し、この
多結晶Si膜の粒界に発生する歪場や格子不整合による
歪場をゲッタリング源として利用するものが知られてい
る(例えば、特開昭52−120777号、同55−1
3318号、同57−136331号公報参照)。ここ
で使用されるウエーハは、通常、Si単結晶棒よりスラ
イスした円板を、研磨後にエッチングした段階のもので
ある。
As one of the semiconductor substrates provided with the EG effect, a polycrystalline Si film is formed on the back surface of a wafer, and a strain field generated at a grain boundary of the polycrystalline Si film and a strain field due to lattice mismatch are gettered. Known ring sources are known (see, for example, JP-A-52-120777 and JP-A-55-1).
Nos. 3318 and 57-136331. The wafer used here is usually a wafer obtained by etching a disk sliced from a Si single crystal rod after polishing.

【0005】ところで、ウエーハ表面に多結晶Si膜を
形成するには、減圧CVD装置が通常使用される。この
減圧CVD装置は、減圧された反応室内にセットされた
ウエーハを加熱しつつ、反応室内にSiH4のようなS
i含有の反応ガスを供給し、ウエーハ表面に熱分解反応
による多結晶Si膜を形成する装置である。
In order to form a polycrystalline Si film on a wafer surface, a low pressure CVD apparatus is usually used. This low-pressure CVD apparatus heats a wafer set in a reaction chamber whose pressure has been reduced and, while heating a wafer such as SiH 4 into the reaction chamber.
This is an apparatus for supplying a reaction gas containing i and forming a polycrystalline Si film on a wafer surface by a thermal decomposition reaction.

【0006】[0006]

【発明が解決しようとする課題】斯かる減圧CVD装置
において形成される多結晶Si膜の性質及び膜厚は、当
該装置の内部に装填されるウエーハのそれぞれにおける
加熱温度、反応ガス濃度や反応時間によって左右される
ため、少なくとも加熱温度及び反応ガス濃度を反応室内
において均一化すれば、それらの不均一のために生ずる
前記多結晶Si膜の性質及び膜厚の不均一性が解消され
ると同時に、半導体基板の反りを大幅に抑制することが
可能となる。
The properties and thickness of the polycrystalline Si film formed in such a low-pressure CVD apparatus depend on the heating temperature, reaction gas concentration and reaction time of each of the wafers loaded in the apparatus. Therefore, if at least the heating temperature and the reaction gas concentration are made uniform in the reaction chamber, the non-uniformity of the properties and the thickness of the polycrystalline Si film caused by the non-uniformity of the heating gas and the reaction gas concentration are eliminated. In addition, it is possible to significantly suppress the warpage of the semiconductor substrate.

【0007】しかし、従来のような単一ヒーターによる
温度制御は、小規模な反応室内でウエーハを少数単位で
処理する場合、同室内の均熱化にさほどの支障は生じな
いが、数10枚から数100枚単位のウエーハを同時処
理する大型の量産装置では、単一型ヒーターが一見安定
しているように見えても、必ずしもその温度分布は均一
ではないことが判明した。その理由として反応室の保温
状態のむらや、反応室内における原料ガスの流れの影
響、又ヒーターが長尺になる場合、ヒーター自体におけ
る欠陥、若しくはヒーター劣化による欠陥の発生等がそ
の原因となっているものと推定される。
However, in the conventional temperature control using a single heater, when processing a small number of wafers in a small-sized reaction chamber, there is not much trouble in uniforming the temperature in the same chamber. It has been found that in a large-scale mass-production apparatus for simultaneously processing several hundred wafers, even if the single-type heater appears to be stable at first glance, its temperature distribution is not necessarily uniform. Reasons for this are irregular heating of the reaction chamber, the influence of the flow of the raw material gas in the reaction chamber, and, when the heater is long, defects in the heater itself or defects due to heater deterioration. It is presumed that.

【0008】特に抵抗加熱型のヒーターの場合、ヒータ
ーの温度むらが即ヒーター抵抗値の変動を呼び、これが
更に温度むらを増長させることは良く知られている。
Particularly, in the case of a resistance heating type heater, it is well known that the unevenness in the temperature of the heater immediately causes a change in the heater resistance, which further increases the unevenness in the temperature.

【0009】又、反応室内の反応ガス濃度を均一に保つ
ための有効な手段に乏しいのが実情であった。
[0009] In addition, there is a lack of effective means for keeping the reaction gas concentration in the reaction chamber uniform.

【0010】本発明は上記事情に鑑みてなされたもの
で、その目的とする処は、多数のウエーハを同時処理す
る場合に各ウエーハに所定厚さの膜を均一に形成せしめ
ることによって、基板間での品質上のバラツキを解消す
ると同時に、同基板の反り発生も均一化して抑制、改善
することができる減圧CVD装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to form a film having a predetermined thickness uniformly on each wafer when a large number of wafers are processed at the same time. It is an object of the present invention to provide a low-pressure CVD apparatus capable of eliminating variations in quality of the substrate and simultaneously suppressing and improving the occurrence of warpage of the substrate.

【0011】[0011]

【課題を解決するための手段】上記目的を達成すべく本
発明は、内外二重構造を成すインナーチューブ及びアウ
ターチューブと、これらを囲むヒーター等を有し、イン
ナーチューブ内の減圧された反応室内にセットされたウ
エーハを前記ヒーターで加熱しつつ、反応室内に反応ガ
スを供給してウエーハ表面に膜を形成する減圧CVD装
置において、前記ヒーターを複数に分割し、前記反応室
内の温度分布が均一となるよう各ヒーター分割片近傍の
温度を測定して各ヒーター分割片のパワーを制御すると
ともに、前記インナーチューブとアウターチューブとを
連通させ、前記反応室にこれの高さ方向複数箇所から反
応ガスを供給し、インナーチューブとアウターチューブ
の間の空間内の同一平面内に周方向等角度ピッチで開口
する複数の排気口から反応ガスを排気する構成としたこ
とを特徴とする。
In order to achieve the above object, the present invention provides an inner tube and an outer tube having a double inner / outer structure, a heater surrounding the inner tube and the outer tube, and a reduced pressure reaction chamber in the inner tube. In a low-pressure CVD apparatus that supplies a reaction gas into the reaction chamber and forms a film on the surface of the wafer while heating the wafer set in the reaction chamber with the heater, the heater is divided into a plurality of parts, and the temperature distribution in the reaction chamber is uniform. By controlling the power of each heater segment by measuring the temperature in the vicinity of each heater segment so that the inner tube and the outer tube communicate with each other, the reaction gas is introduced into the reaction chamber from a plurality of locations in the height direction thereof. And a plurality of exhaust ports that open at the same angular pitch in the circumferential direction in the same plane in the space between the inner tube and the outer tube Characterized by being configured for exhausting et reaction gas.

【0012】[0012]

【作用】本発明によれば、複数に分割されたヒーター分
割片近傍の温度を測定し、各分割片単位でそのパワーを
制御することによって、反応室内の温度分布が改善され
ると同時に、反応室内の高さ方向複数箇所から反応ガス
が供給され、この反応ガスは反応室からインナーチュー
ブとアウターチューブ間の空間へ流出し、該空間の複数
箇所に開口する排気口から装置外へ排出されるため、反
応室内の高さ方向における反応ガス濃度分布は略均一に
保たれ、反応室内の高さ方向に層状にセットされた多数
枚のウエーハには均一濃度の反応ガスが供給されること
となり、各ウエーハには所定厚さの膜が均一に形成され
ると同時に、半導体基板の反り発生は均一化され、且つ
減少、改善される。
According to the present invention, the temperature distribution in the reaction chamber is improved by measuring the temperature in the vicinity of a plurality of divided heater segments and controlling the power of each divided segment. Reaction gas is supplied from a plurality of locations in the chamber in the height direction, and the reaction gas flows out of the reaction chamber into a space between the inner tube and the outer tube, and is discharged out of the device from an exhaust port opened at a plurality of locations in the space. Therefore, the reaction gas concentration distribution in the height direction in the reaction chamber is kept substantially uniform, and a large number of wafers set in a layered manner in the height direction in the reaction chamber are supplied with a reaction gas having a uniform concentration. At the same time, a film having a predetermined thickness is uniformly formed on each wafer, and at the same time, the occurrence of warpage of the semiconductor substrate is made uniform, reduced, and improved.

【0013】[0013]

【実施例】以下に本発明の一実施例を添付図面に基づい
て説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】図1は本発明に係る減圧CVD装置の概略
構成を示す縦断面図、図2は図1のA−A線断面図であ
る。
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a low pressure CVD apparatus according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG.

【0015】図1に示す減圧CVD装置1は、内外二重
構造を成す透明石英製のインナーチューブ2とアウター
チューブ3を有し、これらはヒーター4によって覆われ
ている。
A low-pressure CVD apparatus 1 shown in FIG. 1 has an inner tube 2 and an outer tube 3 made of transparent quartz and having a dual inner / outer structure, and these are covered by a heater 4.

【0016】上記インナーチューブ2とアウターチュー
ブ3の下部はステンレス製のキャップ5によって密閉さ
れており、インナーチューブ2内に形成される反応室R
内には、前記キャップ5を貫通する垂直の支持軸6が下
方から臨んでいる。そして、この支持軸6の上端にはス
テンレス製のターンテーブル7が支持されており、該タ
ーンテーブル7上には透明石英製のサセプター8が支持
されている。このサセプター8は、適当な間隔で上下方
向に層状に配列された多数のホルダー9を有し、各ホル
ダー9には複数枚のウエーハ(図示せず)がセットされ
ている。尚、ホルダー9上にセットされたウエーハは、
Si単結晶棒よりスライスした円板を、研磨後にエッチ
ングした段階のものである。
The lower portions of the inner tube 2 and the outer tube 3 are sealed by a stainless steel cap 5, and a reaction chamber R formed in the inner tube 2 is formed.
Inside, a vertical support shaft 6 penetrating through the cap 5 faces from below. A stainless steel turntable 7 is supported on the upper end of the support shaft 6, and a transparent quartz susceptor 8 is supported on the turntable 7. The susceptor 8 has a large number of holders 9 arranged in layers vertically at appropriate intervals, and a plurality of wafers (not shown) are set in each holder 9. The wafer set on the holder 9 is
A disk sliced from a Si single crystal rod is etched after polishing.

【0017】一方、前記支持軸6の下端部にはベベルギ
ヤ10が結着されており、該ベベルギヤ10には駆動モ
ーターMの出力軸に結着されたベベルギヤ11が噛合し
ている。
On the other hand, a bevel gear 10 is connected to the lower end of the support shaft 6, and a bevel gear 11 connected to the output shaft of the drive motor M meshes with the bevel gear 10.

【0018】又、前記インナーチューブ2の頂部には開
口部12が形成されており、インナーチューブ2とアウ
ターチューブ3との間に形成される空間Sと反応室Rと
は開口部12を介して互いに連通している。そして、空
間S内には、高さ方向に長い石英製の保護管13が垂直
に内装されており、該保護管13内には3つの熱電対T
1,T2,T3が高さ方向に所定の間隔で挿入されてい
る。尚、前記ヒーター4は高さ方向に3つの分割片4
A,4B,4Cに分割されており、これらの分割片4
A,4B,4C近傍の温度は前記熱電対T1,T2,T
3でそれぞれ計測され、反応室R内の高さ方向の温度分
布が略均一となるようにヒーター分割片4A,4B,4
Cへの電流供給量が制御される。
An opening 12 is formed at the top of the inner tube 2, and a space S formed between the inner tube 2 and the outer tube 3 and the reaction chamber R are formed through the opening 12. Communicating with each other. In the space S, a quartz protection tube 13 which is long in the height direction is vertically installed, and three thermocouples T are provided in the protection tube 13.
1, T2 and T3 are inserted at predetermined intervals in the height direction. The heater 4 has three divided pieces 4 in the height direction.
A, 4B, and 4C, and these divided pieces 4
The temperatures near A, 4B, and 4C depend on the thermocouples T1, T2, and T, respectively.
3 so that the temperature distribution in the height direction inside the reaction chamber R becomes substantially uniform.
The amount of current supplied to C is controlled.

【0019】更に、前記反応室R内には3本のガス供給
パイプ14,15,16が内装されており、これらは高
さ方向に所定間隔をあけて開口している。即ち、パイプ
14は反応室R内の最上位に開口しており、パイプ15
は中間位置に開口しており、パイプ16は最下位に開口
している。尚、これらのパイプ14,15,16は不図
示の反応ガス供給源に接続されている。
Further, three gas supply pipes 14, 15, 16 are provided in the reaction chamber R, and these are opened at predetermined intervals in the height direction. That is, the pipe 14 is open at the top in the reaction chamber R, and the pipe 15
Is opened at an intermediate position, and the pipe 16 is opened at the lowest position. These pipes 14, 15, 16 are connected to a reaction gas supply source (not shown).

【0020】他方、前記空間Sの下部の同一平面内に
は、図2に示すように、2つの排気口17が相対向して
(即ち、180°ピッチで)開口しており、該排気口1
7には排気パイプ18が接続されており、これら2本の
排気パイプ18は大径の1本の排気パイプ19に合流し
て不図示の真空ポンプに接続されている。
On the other hand, as shown in FIG. 2, two exhaust ports 17 are opened opposite to each other (ie, at a pitch of 180 °) in the same plane below the space S. 1
An exhaust pipe 18 is connected to 7, and these two exhaust pipes 18 join one large-diameter exhaust pipe 19 and are connected to a vacuum pump (not shown).

【0021】次に、本減圧CVD装置1の作用を説明す
る。
Next, the operation of the low pressure CVD apparatus 1 will be described.

【0022】図1に示すように、反応室R内に複数枚の
ウエーハをサセプター8にセットした状態で収納し、前
記駆動モーターMを駆動すれば、これの回転はベベルギ
ヤ11,10を介して支持軸6に伝達され、該支持軸6
及びこれに支持された前記ターンテーブル7とサセプタ
ー8が回転駆動され、この結果、サセプター8にセット
された複数枚のウエーハが反応室R内で所定の速度で回
転せしめられる。これと同時に、前記ヒーター4が駆動
され、反応室R内は所定の温度になるよう均一に保たれ
るとともに、不図示の真空ポンプが駆動されて反応室R
内が真空引きされ、反応室Rが1Torr未満〜0.0
1Torrの減圧下に保たれる。
As shown in FIG. 1, a plurality of wafers are accommodated in a reaction chamber R in a state set in a susceptor 8, and the drive motor M is driven to rotate the wafers via bevel gears 11 and 10. Transmitted to the support shaft 6,
The turntable 7 and the susceptor 8 supported on the susceptor 8 are rotationally driven. As a result, a plurality of wafers set on the susceptor 8 are rotated at a predetermined speed in the reaction chamber R. At the same time, the heater 4 is driven to keep the inside of the reaction chamber R uniform at a predetermined temperature, and a vacuum pump (not shown) is driven to drive the reaction chamber R.
The inside is evacuated and the reaction chamber R is set to less than 1 Torr to 0.0
It is kept under a reduced pressure of 1 Torr.

【0023】上記条件が満たされると、SiH4と他の
不活性ガスとを適当な割合で混合した反応ガスが前記3
本のガス供給パイプ14,15,16から反応室R内に
供給される。この場合、前述のように、ガス供給パイプ
14,15,16は反応室R内の高さ方向に所定間隔を
あけて開口しているため、反応ガスは反応室R内の上、
中、下段より同時に供給され、反応室R内のウエーハと
の間に熱分解反応を起こしてウエーハの全表面に多結晶
Si膜を形成する。そして、各ウエーハの生膜に供され
た反応ガスは、図1に矢印にて示すように、排気系の負
圧に引かれて反応室Rから開口部12を経て空間S内に
流入し、空間Sの下部に開口する2つの排気口17から
排気パイプ18,19を経て装置1外へ排出される。
When the above conditions are satisfied, a reaction gas obtained by mixing SiH 4 and another inert gas at an appropriate ratio becomes
The gas is supplied from the gas supply pipes 14, 15, 16 into the reaction chamber R. In this case, as described above, since the gas supply pipes 14, 15, and 16 are opened at predetermined intervals in the height direction in the reaction chamber R, the reaction gas is
It is supplied simultaneously from the middle and lower stages, and causes a thermal decomposition reaction with the wafer in the reaction chamber R to form a polycrystalline Si film on the entire surface of the wafer. Then, the reaction gas supplied to the raw film of each wafer is drawn by the negative pressure of the exhaust system and flows into the space S from the reaction chamber R through the opening 12 as shown by an arrow in FIG. The air is exhausted from the apparatus 1 through two exhaust ports 17 opening at the lower part of the space S via exhaust pipes 18 and 19.

【0024】以上のように、本実施例では、反応室R内
の高さ方向複数箇所から反応ガスが供給され、この反応
ガスは反応室Rから空間Sへ流出し、該空間Sの複数箇
所に開口する排気口17から装置1外へ排出されるた
め、反応室R内の高さ方向における反応ガス濃度分布は
略均一に保たれ、反応室R内の高さ方向に層状にセット
された多数枚のウエーハには均一濃度の反応ガスが供給
されることとなり、この結果、各ウエーハには所定厚さ
の膜が均一に形成されると同時に、半導体基板の反り発
生が均一化され、且つ減少、改善される。又、Si膜厚
の基板間でのバラツキが解消される。
As described above, in the present embodiment, the reaction gas is supplied from a plurality of locations in the height direction inside the reaction chamber R, and the reaction gas flows out of the reaction chamber R into the space S, and The reaction gas concentration distribution in the height direction inside the reaction chamber R is kept substantially uniform because the exhaust gas is exhausted from the apparatus 1 through the exhaust port 17 opening to the inside, and the reaction gas is set in a layered manner in the height direction inside the reaction chamber R. A reaction gas having a uniform concentration is supplied to a large number of wafers. As a result, a film of a predetermined thickness is uniformly formed on each wafer, and at the same time, the warpage of the semiconductor substrate is made uniform, and Reduced and improved. In addition, variations in the Si film thickness between the substrates are eliminated.

【0025】尚、以上の実施例では、反応ガスの供給パ
イプを3本とし、排気口の数を2個としたが、これらの
数は限定されたものではなく、反応ガスの供給パイプを
4本以上とし、排気口の数を3個以上としても良いこと
は勿論である。但し、反応ガスのスムーズな流れを考慮
すると、排気口は円周上等角度ピッチに配置するのが望
ましい。
In the above embodiment, the number of reaction gas supply pipes is three and the number of exhaust ports is two. However, the number is not limited, and the number of reaction gas supply pipes is four. Needless to say, the number of exhaust ports may be three or more, and the number of exhaust ports may be three or more. However, in consideration of the smooth flow of the reaction gas, it is desirable to arrange the exhaust ports at equal angular pitches on the circumference.

【0026】[0026]

【発明の効果】以上の説明で明らかな如く、本発明によ
れば、内外二重構造を成すインナーチューブ及びアウタ
ーチューブと、これらを囲むヒーター等を有し、インナ
ーチューブ内の減圧された反応室内にセットされたウエ
ーハを前記ヒーターで加熱しつつ、反応室内に反応ガス
を供給してウエーハ表面に膜を形成する減圧CVD装置
において、前記ヒーターを複数に分割し、前記反応室内
の温度分布が均一となるよう各ヒーター分割片近傍の温
度を測定して各ヒーター分割片のパワーを制御するとと
もに、前記インナーチューブとアウターチューブとを連
通させ、前記反応室にこれの高さ方向複数箇所から反応
ガスを供給し、インナーチューブとアウターチューブの
間の空間内の同一平面内に周方向等角度ピッチで開口す
る複数の排気口から反応ガスを排気する構成としたた
め、各ウエーハには所定厚さの膜が均一に形成されると
同時に、半導体基板の反り発生は均一化され、且つ減
少、改善され、更には膜厚の基板間でのバラツキも解消
されるという効果が得られる。
As apparent from the above description, according to the present invention, the inner tube and the outer tube having the inner / outer double structure, the heater surrounding the inner tube and the outer tube, etc., and the depressurized reaction chamber in the inner tube are provided. In a low-pressure CVD apparatus that supplies a reaction gas into the reaction chamber and forms a film on the surface of the wafer while heating the wafer set in the reaction chamber with the heater, the heater is divided into a plurality of parts, and the temperature distribution in the reaction chamber is uniform. By controlling the power of each heater segment by measuring the temperature in the vicinity of each heater segment so that the inner tube and the outer tube communicate with each other, the reaction gas is introduced into the reaction chamber from a plurality of locations in the height direction thereof. And a plurality of exhaust ports opening at the same angular pitch in the circumferential direction in the same plane in the space between the inner tube and the outer tube. Since the reaction gas is exhausted, a film of a predetermined thickness is uniformly formed on each wafer, and at the same time, the occurrence of warpage of the semiconductor substrate is made uniform, reduced, and improved. The effect of eliminating the variation in the above is obtained.

【0027】又、本発明によれば、ヒーターは複数の分
割片に分割されるため、何れかの分割片に異常が発見さ
れた場合には、その異常が発見された分割片のみを交換
することで対処できるという効果も得られる。
According to the present invention, since the heater is divided into a plurality of divided pieces, when an abnormality is found in any of the divided pieces, only the divided piece in which the abnormality is found is replaced. This also has the effect of being able to cope.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る減圧CVD装置の概略構成を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a low pressure CVD apparatus according to the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

1 減圧CVD装置 2 インナーチューブ 3 アウターチューブ 4 ヒーター 12 開口部 14,15,16 ガス供給パイプ 17 排気口 18,19 排気パイプ R 反応室 S 空間 DESCRIPTION OF SYMBOLS 1 Decompression CVD apparatus 2 Inner tube 3 Outer tube 4 Heater 12 Opening 14, 15, 16 Gas supply pipe 17 Exhaust port 18, 19 Exhaust pipe R Reaction chamber S space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 正健 群馬県安中市磯部2丁目13番1号信越半 導体株式会社 半導体磯部研究所内 (72)発明者 高松 直之 福島県西白河郡西郷村大字小田倉字大平 150番地信越半導体株式会社 半導体白 河工場内 (72)発明者 小荒井 克典 福島県西白河郡西郷村大字小田倉字大平 150番地信越半導体株式会社 半導体白 河工場内 (56)参考文献 特開 平5−144746(JP,A) 特開 平1−109714(JP,A) 実開 平4−131933(JP,U) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masatake Katayama 2-13-1, Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Semiconductor Incorporated Semiconductor Isobe Research Laboratory (72) Inventor Naoyuki Takamatsu Nagoyuki Nishigomura, Nishishirakawa-gun, Fukushima Prefecture Odakura Ohira 150, Shin-Etsu Semiconductor Co., Ltd. Semiconductor Shirakawa Plant (72) Inventor Katsunori Koarai Fukushima, Nishishirakawa-gun, Nishigo-mura O-Cha, Odakura Character 150, Shin-Etsu Semiconductor Co., Ltd. Semiconductor Shirakawa Plant (56) References JP 5-144746 (JP, A) JP-A-1-109714 (JP, A) JP-A 4-131933 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内外二重構造を成すインナーチューブ及
びアウターチューブと、これらを囲むヒーター等を有
し、インナーチューブ内の減圧された反応室内にセット
されたウエーハを前記ヒーターで加熱しつつ、反応室内
に反応ガスを供給してウエーハ表面に膜を形成する減圧
CVD装置において、前記ヒーターを複数に分割し、前
記反応室内の温度分布が均一となるよう各ヒーター分割
片近傍の温度を測定して各ヒーター分割片のパワーを制
御するとともに、前記インナーチューブとアウターチュ
ーブとを連通させ、前記反応室にこれの高さ方向複数箇
所から反応ガスを供給し、インナーチューブとアウター
チューブの間の空間内の同一平面内に周方向等角度ピッ
チで開口する複数の排気口から反応ガスを排気する構成
としたことを特徴とする減圧CVD装置。
An inner tube and an outer tube having an inner / outer dual structure, a heater surrounding the inner tube and an outer tube, and the like. A heater set in a reduced pressure reaction chamber in the inner tube is heated by the heater to perform a reaction. In a low-pressure CVD apparatus that supplies a reaction gas into a chamber and forms a film on a wafer surface, the heater is divided into a plurality of parts, and the temperature near each heater divided part is measured so that the temperature distribution in the reaction chamber becomes uniform. In addition to controlling the power of each heater segment, the inner tube and the outer tube are communicated with each other, and a reaction gas is supplied to the reaction chamber from a plurality of positions in the height direction of the inner tube and the inner tube and the outer tube. The reaction gas is exhausted from a plurality of exhaust ports that open at the same angular pitch in the circumferential direction in the same plane. Reduced pressure CVD apparatus.
JP2073392A 1992-01-10 1992-01-10 Low pressure CVD equipment Expired - Fee Related JP2724649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073392A JP2724649B2 (en) 1992-01-10 1992-01-10 Low pressure CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073392A JP2724649B2 (en) 1992-01-10 1992-01-10 Low pressure CVD equipment

Publications (2)

Publication Number Publication Date
JPH05190468A JPH05190468A (en) 1993-07-30
JP2724649B2 true JP2724649B2 (en) 1998-03-09

Family

ID=12035392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073392A Expired - Fee Related JP2724649B2 (en) 1992-01-10 1992-01-10 Low pressure CVD equipment

Country Status (1)

Country Link
JP (1) JP2724649B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017633A (en) * 2000-08-31 2002-03-07 윤종용 A chemical vapor deposition apparatus
KR100705423B1 (en) * 2001-04-24 2007-04-09 삼성전자주식회사 Method for forming layer in semiconductor device
JP4215977B2 (en) * 2001-11-30 2009-01-28 東京エレクトロン株式会社 Film formation control apparatus, film formation apparatus, film formation method, film thickness flow coefficient calculation method, and program
WO2007108401A1 (en) * 2006-03-20 2007-09-27 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
KR102630347B1 (en) * 2018-12-17 2024-01-30 주식회사 원익아이피에스 Apparatus for processing wafer

Also Published As

Publication number Publication date
JPH05190468A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US5246500A (en) Vapor phase epitaxial growth apparatus
JP4633269B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP3598032B2 (en) Vertical heat treatment apparatus, heat treatment method, and heat insulation unit
TWI445090B (en) Longitudinal heat treatment device and heat treatment method
JPS61191015A (en) Semiconductor vapor growth and equipment thereof
WO2014192870A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP2724649B2 (en) Low pressure CVD equipment
JP2014060327A (en) Substrate processing apparatus, substrate processing method, and manufacturing method of semiconductor device
JP5228857B2 (en) Manufacturing method of silicon epitaxial wafer
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JPH0786173A (en) Film deposition
TWI788399B (en) Manufacturing method of epitaxial wafer
JP2935468B2 (en) Vertical heat treatment equipment
JP2004221227A (en) Substrate treating apparatus
JP2634424B2 (en) Vapor phase growth furnace and processing method
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JP2511845B2 (en) Processing equipment for vapor phase growth
JP5832173B2 (en) Vapor growth apparatus and vapor growth method
JP2009289807A (en) Method of manufacturing semiconductor device
JP2009111216A (en) Heat treatment apparatus
JP2004296484A (en) Substrate processing apparatus
JPH1041235A (en) Manufacturing equipment of semiconductor device
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JP2000156349A (en) Semiconductor manufacturing apparatus
KR100303566B1 (en) Temperature measuring apparatus and temperature measuring method of rapid thermal chemical vapor deposition for semiconductor device manufacturing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081205

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101205

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101205

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111205

LAPS Cancellation because of no payment of annual fees