JP2722975B2 - Cutting method with multi-wire saw - Google Patents

Cutting method with multi-wire saw

Info

Publication number
JP2722975B2
JP2722975B2 JP4333598A JP33359892A JP2722975B2 JP 2722975 B2 JP2722975 B2 JP 2722975B2 JP 4333598 A JP4333598 A JP 4333598A JP 33359892 A JP33359892 A JP 33359892A JP 2722975 B2 JP2722975 B2 JP 2722975B2
Authority
JP
Japan
Prior art keywords
wire
temperature
work
cutting
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4333598A
Other languages
Japanese (ja)
Other versions
JPH06155450A (en
Inventor
孝 久保木
正康 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4333598A priority Critical patent/JP2722975B2/en
Publication of JPH06155450A publication Critical patent/JPH06155450A/en
Application granted granted Critical
Publication of JP2722975B2 publication Critical patent/JP2722975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は半導体材料、セラミッ
クス等の高精度切断が要求される材料をワイヤと砥粒に
より薄厚の多数のウエハに切断するマルチワイヤソー
(以下説明の便宜上「ワイヤソー」と略称する)の切断
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-wire saw (hereinafter, abbreviated as "wire saw" for convenience of explanation) for cutting a material such as a semiconductor material, ceramics or the like requiring high-precision cutting into a large number of thin wafers using wires and abrasive grains. C) cutting method.

【0002】[0002]

【従来の技術】ワイヤソーは、所定ピッチのワイヤ列に
被切断物(以下「ワーク」と称する)を押付け、砥粒を
含む加工液(以下「砥液」と称する)を注ぎつつワイヤ
とワークを相対運動せしめ、研削作用によって多数のウ
エハに切断する装置である。
2. Description of the Related Art A wire saw presses an object to be cut (hereinafter, referred to as a "work") against a wire row having a predetermined pitch, and pours a working liquid containing abrasive grains (hereinafter, referred to as a "polishing liquid") into a wire and a workpiece. This is a device that makes relative movement and cuts into a large number of wafers by a grinding action.

【0003】図2は一般的なワイヤソーの切断部を例示
したもので、(A)はワーク切断中の状態を示す切断部
の斜視図、(B)は同上ワイヤソーの溝ローラにワイヤ
が巻き付いた状態の溝ローラの一部を拡大して示す縦断
側面図である。すなわち、(A)に示すごとく、回転自
在に保持された3個の溝ローラ1、2、3の外周面に所
定ピッチpで刻設された多数のリング状の溝13に1本
のワイヤ4を巻き付けて所定ピッチのワイヤ列5を形成
し、このワイヤ列5を往復あるいは一方向に走行せし
め、ワーク6に砥液供給ノズル12より砥液7をかけな
がらワーク押上台10を徐々に上昇させて切断してい
く。図中、8はダミー板、9はベース、11はベース固
定ボルトである。
FIG. 2 illustrates a cut portion of a general wire saw, (A) is a perspective view of a cut portion showing a state where a work is being cut, and (B) is a wire wound around a groove roller of the wire saw. It is a longitudinal side view which expands and shows a part of groove roller of a state. That is, as shown in (A), one wire 4 is inserted into a large number of ring-shaped grooves 13 engraved at a predetermined pitch p on the outer peripheral surfaces of the three groove rollers 1, 2, and 3 rotatably held. Is wound to form a wire row 5 having a predetermined pitch, and the wire row 5 is reciprocated or moved in one direction. The work lifting table 10 is gradually raised while the abrasive liquid 7 is applied to the work 6 from the abrasive liquid supply nozzle 12. And cut it. In the figure, 8 is a dummy plate, 9 is a base, and 11 is a base fixing bolt.

【0004】砥液の供給方法としては、ワイヤ列5を往
復走行させて切断する方式の場合は、図3(A)に示す
ように、ワーク6の両側のワイヤ列5に砥液7をかける
方法や、ワイヤ列5を一方向に走行させて切断する方式
の場合は、(B)に示すようにワーク6の入側のワイヤ
列5のみに砥液7をかける方法がある。
As a method of supplying the abrasive liquid, in the case of a method in which the wire array 5 is reciprocated and cut, the abrasive fluid 7 is applied to the wire arrays 5 on both sides of the work 6 as shown in FIG. In the case of a method or a method of cutting by moving the wire row 5 in one direction, there is a method of applying the abrasive 7 only to the wire row 5 on the entry side of the work 6 as shown in FIG.

【0005】このようなワイヤソーによる研削切断で
は、ワーク6の材質、切断部に作用するワイヤからの面
圧、砥粒とワイヤ列5の走行速度によって決まる研削能
力(単位時間に研削し得る量)に見合ったワーク押上速
度vを設定するのが基本である。ワーク押上速度vを大
きくすればワイヤからの面圧が増加するので研削能力は
やや増加する傾向にあるが、vが大きすぎるとワイヤに
過大な負荷が作用し、切断精度が悪化するばかりか断線
の危険が高まる。そこで、ワーク6をワイヤ列5に押付
ける荷重を一定にして切断する方法が広く採用されてい
る。
In the grinding and cutting with such a wire saw, the grinding ability (the amount that can be ground in a unit time) determined by the material of the work 6, the surface pressure from the wire acting on the cut portion, the abrasive grains and the traveling speed of the wire row 5 Is basically set to a work lifting speed v that is appropriate to the above. If the work lifting speed v is increased, the surface pressure from the wire increases, so that the grinding ability tends to increase slightly. However, if the v is too large, an excessive load acts on the wire, which not only deteriorates the cutting accuracy but also breaks the wire. The danger increases. Therefore, a method of cutting the work 6 while keeping the load for pressing the work 6 against the wire row 5 constant has been widely adopted.

【0006】ところが、この方法の場合、設定する荷重
は経験的に決定せざるを得ないので、試行錯誤による無
駄があるほか、ワイヤ本数やワークの断面寸法毎に設定
する必要がある。また、荷重検出方法によってはワーク
6の重量分を補正する必要があり、荷重設定が繁雑とな
ることがある。
However, in the case of this method, the load to be set must be determined empirically, so there is waste in trial and error, and it is necessary to set the number of wires and the cross-sectional dimensions of the work. Further, depending on the load detection method, it is necessary to correct the weight of the work 6, and the load setting may be complicated.

【0007】[0007]

【発明が解決しようとする課題】従来のワイヤソーで
は、前記の切断荷重を小さく設定して切断精度を向上さ
せることが行われてきたが、この方法はワーク押上速度
が減少することになるため切断能率の低下を余儀なくさ
れる。
In a conventional wire saw, the cutting load is set to a small value to improve the cutting accuracy. However, this method reduces the work lifting speed, so that the cutting force is reduced. Efficiency must be reduced.

【0008】そこで、この発明者らは切断精度を悪化さ
せる原因について検討を重ねた結果、大きな原因の一つ
が研削によるワイヤの発熱現象であること、すなわち研
削によるワイヤ列の発熱が切断精度に大きく影響するこ
とを知見したのである。
The inventors of the present invention have repeatedly studied the causes of the deterioration of the cutting accuracy, and found that one of the major causes is the heat generation of the wire due to the grinding. We found that it had an effect.

【0009】以下に、ワイヤ列の発熱と切断精度劣化の
関係を、図3(B)に示す一方向走行タイプのワイヤソ
ーに基づいて説明する。ワイヤ列5は砥粒を介してワー
ク6と摺動するので、摩擦熱あるいは研削加工熱が発生
し、ワーク6出側のワイヤ列5の温度はワーク入側のワ
イヤ列5の温度よりも高くなる。この温度上昇したワー
ク6出側のワイヤ列5は、溝ローラ2に巻き付けられる
ので、当該溝ローラ2の表面温度を上昇させる。
Hereinafter, the relationship between the heat generation of the wire array and the deterioration of the cutting accuracy will be described with reference to a one-way traveling type wire saw shown in FIG. Since the wire row 5 slides on the work 6 via the abrasive grains, frictional heat or grinding heat is generated, and the temperature of the wire row 5 on the exit side of the work 6 is higher than the temperature of the wire row 5 on the entry side of the work. Become. Since the wire row 5 on the exit side of the work 6 whose temperature has risen is wound around the groove roller 2, the surface temperature of the groove roller 2 is increased.

【0010】一方、溝ローラの一般的な構造としては、
図4に示すごとく、一端にフランジ16−1を有する金
属製の軸16に、ワイヤ案内溝13が刻設された耐摩耗
性の樹脂スリーブ14が圧入され、金属製の軸16に螺
合した締付けナット15にて一体化された構造となって
いる。
On the other hand, a general structure of the groove roller is as follows.
As shown in FIG. 4, a wear-resistant resin sleeve 14 having a wire guide groove 13 cut therein is press-fitted into a metal shaft 16 having a flange 16-1 at one end, and screwed to the metal shaft 16. The structure is integrated with the fastening nut 15.

【0011】このような構造の溝ローラの場合、ワーク
6の長さが樹脂スリーブ14の長さよりも短い場合に
は、ワイヤ列の発熱は高々ワーク6の長さの範囲に限定
されるので、例えば図4のスパンaの範囲のみにワイヤ
の熱が伝わる。したがって、樹脂スリーブ14の軸方向
熱膨張はスパンaの領域で発生し、残りのスパンbの領
域では逆に軸方向に収縮することになる。
In the case of the groove roller having such a structure, when the length of the work 6 is shorter than the length of the resin sleeve 14, the heat generation of the wire row is limited at most to the range of the length of the work 6. For example, the heat of the wire is transmitted only to the range of the span a in FIG. Therefore, the thermal expansion of the resin sleeve 14 in the axial direction occurs in the area of the span a, and conversely contracts in the axial direction in the area of the remaining span b.

【0012】なお、ワーク6が樹脂スリーブ14と同程
度の長さである場合でも、樹脂スリーブ14の両端から
はフランジ16−1と締付けナット15によって熱が奪
われるので、樹脂スリーブ14の両端近傍の温度が中央
部よりも低く、両端部で軸方向の収縮が発生するという
状況には変わりない。
Even when the work 6 is about the same length as the resin sleeve 14, heat is removed from both ends of the resin sleeve 14 by the flange 16-1 and the tightening nut 15, so that the vicinity of both ends of the resin sleeve 14 The temperature remains lower than that in the center, and axial contraction occurs at both ends.

【0013】また、図3(B)に示す一方向走行タイプ
のワイヤソーの場合、ワイヤ列5からの入熱は溝ローラ
2で大きく、溝ローラ1を経由してくる間にワイヤが冷
却されるので、溝ローラ3への入熱は少ない。しかしな
がら、溝ローラ2のスパンaの領域が軸方向に膨張すれ
ば、溝ローラ2のワイヤ案内溝13の位置が軸方向に移
動し、溝ローラ2、3間に張設されたワイヤの位置がず
れるのでウエハの平坦度が損われる。この場合、ワイヤ
案内溝13の移動量はスパンaの領域の両端部付近で大
きく、この部分に位置するワイヤで切断されるウエハの
切断精度の劣化が著しい。
In the case of a one-way traveling type wire saw shown in FIG. 3B, the heat input from the wire row 5 is large at the groove roller 2, and the wire is cooled while passing through the groove roller 1. Therefore, heat input to the groove roller 3 is small. However, if the area of the span a of the groove roller 2 expands in the axial direction, the position of the wire guide groove 13 of the groove roller 2 moves in the axial direction, and the position of the wire stretched between the groove rollers 2 and 3 is changed. As a result, the flatness of the wafer is impaired. In this case, the amount of movement of the wire guide groove 13 is large near both ends of the area of the span a, and the cutting accuracy of the wafer cut by the wire located in this area is significantly deteriorated.

【0014】また、図3(A)に示す往復走行タイプの
ワイヤソーでも、ワイヤの発熱による精度劣化は同様で
ある。この場合、ワーク6の両側の溝ローラ2、3への
ワイヤからの入熱が交互に行われるので、溝ローラ2、
3の樹脂スリーブ14の温度上昇は図3(B)に示す一
方向走行タイプのワイヤソーの溝ローラ2よりも小さ
い。しかし、溝ローラ2、3にはワーク6の出側に位置
した場合のワイヤからの入熱と、ワーク6の入側に位置
した時の放冷が交互に繰返されることによるワイヤ軌道
の不安定さが切断精度を劣化させることに変わりはな
い。
In the reciprocating traveling type wire saw shown in FIG. 3 (A), the accuracy degradation due to the heat generation of the wire is the same. In this case, the heat input from the wire to the groove rollers 2 and 3 on both sides of the work 6 is performed alternately.
The temperature rise of the resin sleeve 14 is smaller than that of the groove roller 2 of the one-way traveling type wire saw shown in FIG. However, the groove rollers 2 and 3 alternately repeat the heat input from the wire when positioned on the exit side of the work 6 and the cooling of the wire when positioned on the entrance side of the work 6, resulting in an unstable wire trajectory. However, the cutting accuracy is still deteriorated.

【0015】一方、シリコンウエハに代表されるエレク
トロニクス分野の基板材料には、ますます高精度でかつ
高能率の切断技術が要求されるようになってきている。
しかし、従来のワイヤソーでは、ワイヤ列の発熱がもた
らす切断精度の低下の問題を解決しない限り、このよう
な要求に十分に応えることができない。
On the other hand, a substrate material in the field of electronics represented by a silicon wafer is required to have a cutting technology with higher precision and higher efficiency.
However, the conventional wire saw cannot sufficiently meet such a demand unless the problem of a decrease in cutting accuracy caused by heat generation of the wire row is solved.

【0016】この発明は、このような実状に鑑み、ワイ
ヤ列の発熱がもたらす切断精度の低下の問題を解決し、
高精度、高能率切断が可能なワイヤソーによる切断方法
を提案しようとするものである。
The present invention has been made in view of such circumstances, and has solved the problem of a decrease in cutting accuracy caused by heat generation of a wire row.
An object of the present invention is to propose a cutting method using a wire saw capable of high-precision and high-efficiency cutting.

【0017】[0017]

【課題を解決するための手段】この発明者らは、ワイヤ
ソーにおいて不可避的に発生するワイヤ列の発熱を完全
に防止することは不可能であるが、ワークの切断開始か
ら終了までワーク両側の溝ローラの表面温度を一定に保
つことにより切断精度の確保は可能であるとの判断に基
づき、検討した結果、一方向走行タイプのワイヤソーの
場合は、ワークを出たワイヤ列がはじめて巻き付く溝ロ
ーラの樹脂スリーブの表面温度を切断開始から終了まで
一定に保つことによって切断精度を向上できることを知
見し、高精度、高能率切断が可能なワイヤソーによる切
断方法を発明するに至った。
The inventors of the present invention cannot completely prevent heat generation of the wire row inevitably occurring in the wire saw, but the grooves on both sides of the work from the start to the end of the cut of the work. Based on the judgment that cutting accuracy can be secured by keeping the surface temperature of the roller constant, we examined the results and found that in the case of a one-way traveling type wire saw, a groove roller on which the wire row exiting the work is wound for the first time. It has been found that cutting accuracy can be improved by keeping the surface temperature of the resin sleeve constant from the start to the end of cutting, and the inventors have invented a cutting method using a wire saw capable of high-precision and high-efficiency cutting.

【0018】すなわち、この発明は、一方向走行タイプ
のマルチワイヤソーにおいて、ワーク出側のワイヤ列上
に供給された砥液の、当該ワイヤ列が最初に巻き付く
ローラの回転によって発生する飛沫の温度が一定になる
ように制御しつつ切断する方法であり、また、前記飛沫
の温度が一定になるように制御する手段として、ワーク
出側のワイヤ列上に供給される砥液の温度、または温度
と流量を制御することを特徴とし、さらに、ワークを該
ワイヤ列上に押付ける速度を制御することを特徴とする
マルチワイヤソーによる切断方法を要旨とする。
That is, the present invention is directed to a one-way traveling type multi-wire saw, in which the abrasive liquid supplied on the wire row on the work exit side is sprayed by the rotation of the groove roller around which the wire row is wound first . It is a method of cutting while controlling the temperature to be constant, and as a means for controlling the temperature of the droplets to be constant, the temperature of the abrasive liquid supplied onto the wire row on the work exit side, or The gist is a cutting method using a multi-wire saw, which is characterized by controlling a temperature and a flow rate, and further controlling a speed at which a work is pressed onto the wire row.

【0019】[0019]

【作用】この発明において、ワーク出側のワイヤ列上に
供給された砥液の溝ローラの回転によって発生する飛沫
の温度が一定になるように制御しつつ切断するのは、以
下に示す理由による。すなわち、ワーク出側のワイヤ列
上に供給された砥液は該ワイヤ列に乗って走行し、この
ワイヤ列が最初に巻き付く溝ローラの表面に付着すると
同時に、該溝ローラの回転によって飛沫が発生する。こ
の飛沫の温度Tsは、この飛沫を発生させる溝ローラの
表面温度とほぼ一致するため、この飛沫の温度Tsを切
断開始から終了まで一定に保つことによりワーク出側の
溝ローラの温度の変動を抑制することが可能となり、ワ
イヤ列の発熱による切断中の溝ローラの膨張、収縮によ
るワイヤ案内溝の軸方向移動を防止することが可能とな
るからである。
In the present invention, the cutting is performed while controlling the temperature of the droplets generated by the rotation of the groove roller of the abrasive fluid supplied onto the wire row on the work exit side to be constant, for the following reason. . That is, the abrasive fluid supplied on the wire row on the work exit side travels on the wire row, and the wire row adheres to the surface of the groove roller around which the wire is wound first, and at the same time, droplets are generated by the rotation of the groove roller. Occur. Since the temperature Ts of the droplets substantially coincides with the surface temperature of the groove roller that generates the droplets, by keeping the temperature Ts of the droplets constant from the start to the end of cutting, the fluctuation of the temperature of the groove rollers on the work exit side is reduced. This is because it becomes possible to prevent the wire roller from moving in the axial direction due to expansion and contraction of the groove roller during cutting due to heat generation of the wire row.

【0020】この発明では、切断開始前のワイヤ走行状
態での立上がりの段階でワーク出側のワイヤ列上に供給
された砥液の温度を高く設定しておき、切断開始直前か
ら砥液の温度を下げ、研削に伴うワイヤ列の発熱と相殺
することによって前記飛沫の温度Tsの変化を最小限に
抑えることができる。勿論、砥液の温度降下と共に流量
増加を併用してもよい。また、砥液の温度低下、あるい
は流量増加との併用によってもワイヤ列の発熱による飛
沫の温度Tsの上昇を抑制できない場合は、ワーク押上
速度vを必要最小限度だけ減少させることにより、飛沫
の温度Tsを一定に保持することができる。
According to the present invention, the temperature of the abrasive fluid supplied onto the wire row on the work exit side is set high at the rising stage in the wire running state before the start of cutting, and the temperature of the abrasive fluid is set immediately before the start of cutting. And the change in the temperature Ts of the droplets can be minimized by offsetting the heat generation of the wire row due to the grinding. Of course, the flow rate may be increased together with the temperature drop of the polishing liquid. If the increase in the temperature Ts of the droplet due to the heat generation of the wire array cannot be suppressed even by using the temperature of the abrasive fluid or the flow rate increase together, the work lifting speed v is reduced by the minimum necessary to reduce the temperature of the droplet. Ts can be kept constant.

【0021】なお、ワークを出たワイヤ列が最初に巻き
付く溝ローラの回転によって発生する砥液の飛沫の温度
は、例えば抵抗温度計を当該溝ローラに近接設置して測
定することができる。
The temperature of the abrasive liquid splash generated by the rotation of the groove roller around which the wire row exits the work first can be measured, for example, by installing a resistance thermometer close to the groove roller.

【0022】[0022]

【実施例】図1はこの発明方法を実施するためのワイヤ
ソー切断部の装置構成例とその制御系を示す概略図で、
7−1はワーク入側カーテン状砥液、7−2はワーク出
側カーテン状砥液、12−1はワーク入側砥液供給スリ
ットノズル、12−2はワーク出側砥液供給スリットノ
ズル、17は抵抗温度計、18は砥液飛沫、20は砥液
供給系、21は飛沫温度制御装置、22は砥液温度制御
装置、23は砥液流量制御装置、24はワーク押上速度
制御装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing an example of a device configuration of a wire saw cutting unit for implementing the method of the present invention and a control system thereof.
7-1 is a workpiece entry side curtain-shaped abrasive liquid, 7-2 is a workpiece exit side curtain-shaped abrasive liquid, 12-1 is a workpiece entrance side abrasive liquid supply slit nozzle, 12-2 is a workpiece exit side abrasive liquid supply slit nozzle, 17 is a resistance thermometer, 18 is abrasive liquid splash, 20 is abrasive liquid supply system, 21 is splash temperature control device, 22 is abrasive liquid temperature control device, 23 is abrasive liquid flow rate control device, and 24 is work lifting speed control device. is there.

【0023】ワーク6の両側に配置したワーク入側砥液
供給スリットノズル12−1、ワーク出側砥液供給スリ
ットノズル12−2は、カーテン状の砥液を供給する細
長いスリット孔を有し、かつワイヤ列5の全幅をカバー
する長さを有している。なお、ワーク入側砥液供給スリ
ットノズル12−1は、ワーク6の直上に配置してもよ
い。このワーク入側および出側の砥液供給スリットノズ
ル12−1、12−2には砥液供給系20より砥液が供
給される構成となっている。
The work entry-side abrasive liquid supply slit nozzle 12-1 and the work exit-side abrasive liquid supply slit nozzle 12-2 arranged on both sides of the work 6 have elongated slit holes for supplying a curtain-like abrasive liquid. In addition, it has a length that covers the entire width of the wire row 5. The work entry-side abrasive liquid supply slit nozzle 12-1 may be arranged directly above the work 6. The abrasive liquid is supplied from the abrasive liquid supply system 20 to the abrasive liquid supply slit nozzles 12-1 and 12-2 on the work entrance side and the work exit side.

【0024】砥液飛沫18の温度を測定する抵抗温度計
17は、ワーク6を出たワイヤ列5が最初に巻き付く溝
ローラ2に沿って近接設置されている。
A resistance thermometer 17 for measuring the temperature of the abrasive liquid droplets 18 is arranged close to the groove roller 2 around which the wire row 5 that has exited the work 6 first winds.

【0025】ワーク入側砥液供給スリットノズル12−
1から供給される砥液7−1は、ワーク6の切断に供さ
れる。ワーク出側砥液供給スリットノズル12−2から
供給される砥液7−2は、ワイヤ列5に乗って走行し、
その一部が溝ローラ2の表面に付着すると同時に該溝ロ
ーラの回転によって飛沫18となる。この飛沫18の温
度Tsは抵抗温度計17によって測定され、飛沫温度制
御装置21により温度変動を検出し、この飛沫温度Ts
が切断開始前の立上がりの段階から切断終了まで一定に
保たれるように制御するのである。
Workpiece entry side abrasive liquid supply slit nozzle 12-
The polishing liquid 7-1 supplied from 1 is used for cutting the work 6. The abrasive fluid 7-2 supplied from the workpiece outlet-side abrasive fluid supply slit nozzle 12-2 travels on the wire row 5,
A part thereof adheres to the surface of the groove roller 2 and at the same time becomes a droplet 18 due to the rotation of the groove roller. The temperature Ts of the droplet 18 is measured by the resistance thermometer 17, and a temperature variation is detected by the droplet temperature control device 21.
Is controlled to be kept constant from the rising stage before the start of cutting to the end of cutting.

【0026】すなわち、この発明では切断開始前のワイ
ヤ走行状態での立上がりの段階で砥液温度制御装置22
によりワーク出側砥液供給スリットノズル12−2から
供給される砥液7−2の温度を高く設定しておき、切断
開始直前からこの砥液7−2の温度を下げて切断を開始
する。切断の開始によりワイヤ列5が発熱するが、事前
に砥液7−2の温度を下げているので研削に伴う発熱と
相殺され、飛沫温度Tsの変動を最小限に抑えることが
できる。この時、必要に応じて砥液流量制御装置23に
より砥液7−2の流量を増加させて、温度制御と併用し
てもよい。このようにして飛沫温度Tsを一定に保持し
て切断を行う。これによりワイヤ列5の発熱が一定とな
るので、溝ローラ2の熱的変動が防止される。
That is, according to the present invention, the grinding fluid temperature control device 22
The temperature of the abrasive fluid 7-2 supplied from the workpiece outlet-side abrasive fluid supply slit nozzle 12-2 is set high, and the cutting is started by lowering the temperature of the abrasive fluid 7-2 immediately before the start of cutting. Although the wire row 5 generates heat by the start of cutting, the temperature of the abrasive fluid 7-2 is lowered in advance, so that it is offset by the heat generated by grinding, and the fluctuation of the splash temperature Ts can be minimized. At this time, the flow rate of the polishing liquid 7-2 may be increased by the polishing liquid flow rate control device 23 as needed, and used together with the temperature control. In this manner, cutting is performed while maintaining the spray temperature Ts constant. As a result, the heat generation of the wire row 5 becomes constant, so that thermal fluctuation of the groove roller 2 is prevented.

【0027】ところで、ワーク6の断面形状が例えば図
1に示すように円形の場合には、ワーク断面内のワイヤ
長さLが変化し、それによってワイヤ列5の発熱量が変
化する。この発熱量が変化する過程では、段階的に砥液
温度、流量、ワーク押上速度を制御して飛沫温度Tsを
一定に保つ。
When the cross-sectional shape of the work 6 is circular, for example, as shown in FIG. 1, the length L of the wire in the cross section of the work changes, thereby changing the heat value of the wire row 5. In the process of changing the calorific value, the temperature of the abrasive fluid, the flow rate, and the work-up speed are controlled in a stepwise manner to keep the splash temperature Ts constant.

【0028】すなわち、第1ステップは砥液温度制御装
置22により砥液7−2の温度を低下させるか、または
砥液流量制御装置23により砥液7−2の流量を増加さ
せる。この温度または流量の制御により発熱による飛沫
温度Tsの上昇を抑えられない場合には、第2ステップ
としてワーク押上速度制御装置24によりワーク押上速
度vを必要最小限度だけ減少させる。ワーク押上速度v
を必要最小限度としたのは、切断能率を低下させないた
めである。
That is, in the first step, the temperature of the polishing liquid 7-2 is reduced by the polishing liquid temperature control device 22 or the flow rate of the polishing liquid 7-2 is increased by the polishing liquid flow control device 23. If the control of the temperature or the flow rate cannot suppress the rise of the splash temperature Ts due to heat generation, the work lifting speed control unit 24 reduces the work lifting speed v by a necessary minimum as a second step. Work lifting speed v
Is set to the minimum necessary in order not to lower the cutting efficiency.

【0029】次に、発熱量が減少する過程では、上記と
逆のステップで飛沫温度Tsを一定に保つ。すなわち、
第1ステップではワーク押上速度vを増加して切断能率
を向上させ、第2ステップで砥液7−2の温度上昇、あ
るいは流量を減少させる。
Next, in the process of decreasing the calorific value, the splash temperature Ts is kept constant in the reverse steps. That is,
In the first step, the workpiece lifting speed v is increased to improve the cutting efficiency, and in the second step, the temperature of the abrasive fluid 7-2 is increased or the flow rate is decreased.

【0030】実施例1 図1に示す一方向走行タイプのワイヤソーを用い、断面
寸法縦125mm×横125mm、長さ200mmの石
英インゴット(矩形断面)をGC#600砥粒とラッピ
ングオイルからなる砥液をワークの入側および出側より
ワイヤ列上に供給し、ワイヤ列数96、ワイヤピッチ
2.0mm、ワイヤ径0.20mmの条件で切断し、ウ
エハの精度測定を行った。
EXAMPLE 1 A one-way traveling type wire saw shown in FIG. 1 was used to grind a quartz ingot (rectangular cross section) having a cross-sectional dimension of 125 mm × 125 mm and a length of 200 mm with GC # 600 abrasive grains and lapping oil. Was supplied onto the wire rows from the entry side and the exit side of the work, and cut under the conditions of 96 wire rows, a wire pitch of 2.0 mm, and a wire diameter of 0.20 mm, and the accuracy of the wafer was measured.

【0031】本実施例ではワイヤ走行速度400m/m
in、ワーク押上速度0.4mm/min、ワーク入側
供給砥液温度を25℃一定とし、ワーク出側供給砥液温
度は立上り中は31℃、切断開始直前から温度を降下さ
せて25℃一定とした。その結果、砥液飛沫の温度は、
立上り中、切断中ともほぼ28℃一定となった。ウエハ
の切断開始部近傍の平坦不良は大幅に減少し、すべてウ
エハの反りは10μm以下であった。
In this embodiment, the wire traveling speed is 400 m / m
In, work lifting speed 0.4mm / min, work inlet side supply abrasive liquid temperature is constant at 25 ° C, work outlet side supply abrasive liquid temperature is 31 ° C during rising, and the temperature is reduced from just before cutting start to 25 ° C constant. And As a result, the temperature of the abrasive droplets is
The temperature was almost constant at 28 ° C. during the rising and cutting. The flat defect near the cutting start portion of the wafer was greatly reduced, and the warpage of all the wafers was 10 μm or less.

【0032】また比較のため、従来法によりワイヤ走行
速度400m/min、ワーク押上速度0.4mm/m
in、ワークの入側および出側の砥液温度を25℃一定
として切断を行った。その結果、砥液飛沫温度は切断開
始後15分間で28℃に達し、その後一定となった。ウ
エハの切断開始部近傍には凸形の反りが発生し、特に端
部のウエハに最大で40μmの反りが認められ、25枚
のウエハの反りが20μmを超えた。
For comparison, a wire running speed of 400 m / min and a work lifting speed of 0.4 mm / m were obtained by a conventional method.
In, the cutting was performed with the temperature of the polishing liquid on the entrance side and the exit side of the work kept constant at 25 ° C. As a result, the abrasive liquid splash temperature reached 28 ° C. in 15 minutes after the start of cutting, and became constant thereafter. In the vicinity of the cutting start portion of the wafer, a convex warpage was generated. Particularly, a warp of 40 μm at the maximum was observed in the edge wafer, and the warpage of 25 wafers exceeded 20 μm.

【0033】実施例2 図1示す一方向走行タイプのワイヤソーにより、直径2
00mm、長さ150mmのシリコンインゴット(円形
断面)を実施例1と同様の砥液を用い、ワイヤ列数12
0、ワイヤピッチ1.15mm、ワイヤ径0.18mm
の条件で切断し、ウエハの精度測定を行った。
Example 2 A one-way traveling type wire saw shown in FIG.
A silicon ingot (circular cross section) having a length of 00 mm and a length of 150 mm was prepared using the same polishing liquid as in Example 1 and the number of wire rows was 12
0, wire pitch 1.15mm, wire diameter 0.18mm
Was cut under the following conditions, and the accuracy of the wafer was measured.

【0034】本実施例では、ワイヤ走行速度400m/
min、ワークの入側および出側の砥液温度を25℃一
定とし、砥液飛沫の温度Tsが一定となるように、ワー
ク押上速度を0.1〜0.9mm/minの範囲で変化
させた。その結果、砥液飛沫の温度は27〜28℃の範
囲で変化し、すべてのウエハの反りは15μm以下であ
った。
In this embodiment, the wire traveling speed is 400 m /
min, the temperature of the abrasive fluid on the entrance and exit sides of the workpiece is kept constant at 25 ° C., and the lifting speed of the workpiece is changed in the range of 0.1 to 0.9 mm / min so that the temperature Ts of the abrasive fluid is kept constant. Was. As a result, the temperature of the abrasive liquid changed in the range of 27 to 28 ° C., and the warpage of all wafers was 15 μm or less.

【0035】また比較のため、従来法によりワイヤ走行
速度400m/min、ワーク押上速度0.4mm/m
in、ワークの入側および出側の砥液温度を25℃一定
として切断を行った。その結果、砥液飛沫温度は切断開
始後ワーク断面内のワイヤ長さLの増加に伴い徐々に増
加して33℃に達し、Lの減少に伴い徐々に減少した。
ウエハには前記と同様凸形の反りが発生し、特に端部の
ウエハに最大で40μmの反りが認められ、26枚のウ
エハの反りが20μmを超えた。
For comparison, a wire running speed of 400 m / min and a work lifting speed of 0.4 mm / m were obtained by the conventional method.
In, the cutting was performed with the temperature of the polishing liquid on the entrance side and the exit side of the work kept constant at 25 ° C. As a result, the abrasive liquid splash temperature gradually increased with the increase of the wire length L in the cross section of the work after the start of cutting, reached 33 ° C., and gradually decreased with the decrease of L.
The wafer was warped in a convex shape in the same manner as described above. In particular, the wafer at the end had a maximum warpage of 40 μm, and the warpage of 26 wafers exceeded 20 μm.

【0036】[0036]

【発明の効果】以上説明したごとく、この発明方法によ
れば、一方向走行タイプのワイヤソーにおけるワイヤの
発熱に伴う溝ローラの熱変形を抑制することができるの
で、高精度切断が可能となり、またワーク押上速度をほ
とんど減少させることなく切断できるので、高品質のウ
エハを高能率で切断できる。さらに、この発明方法は、
いかなる断面形状のワークに対しても有効であり、エレ
クトロニクス分野の基板材料に代表されるウエハの高精
度切断に大なる効果を奏する。
As described above, according to the method of the present invention, it is possible to suppress the thermal deformation of the groove roller due to the heat generation of the wire in the one-way traveling type wire saw, thereby enabling high-precision cutting. Since cutting can be performed with almost no reduction in the work lifting speed, a high quality wafer can be cut with high efficiency. Further, the method of the invention comprises:
It is effective for a work having any cross-sectional shape, and has a great effect in high-precision cutting of a wafer represented by a substrate material in the field of electronics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明方法を実施するためのワイヤソー切断
部の装置構成例とその制御系を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a device configuration of a wire saw cutting unit for carrying out the method of the present invention and a control system thereof.

【図2】この発明の対象とする一般的なワイヤソーの切
断部を例示したもので、(A)はワーク切断中の状態を
示す切断部の斜視図、(B)は同上ワイヤソーの溝ロー
ラにワイヤが巻き付いた状態の溝ローラの一部を拡大し
て示す縦断側面図である。
FIGS. 2A and 2B illustrate a cut portion of a general wire saw to which the present invention is applied. FIG. 2A is a perspective view of the cut portion showing a state where a workpiece is being cut, and FIG. It is a longitudinal side view which expands and shows a part of groove roller in the state where the wire was wound.

【図3】ワイヤソーにおける砥液の供給方法を例示した
もので、(A)はワイヤ列を往復走行させて切断する方
式における砥液の供給方法、(B)はワイヤ列を一方向
に走行させて切断する方式における砥液の供給方法であ
る。
3A and 3B illustrate a method of supplying an abrasive liquid in a wire saw, in which (A) is a method of supplying an abrasive liquid in a method of cutting by reciprocating a wire array, and (B) is a method of operating the wire array in one direction. This is a method of supplying the abrasive liquid in the cutting method.

【図4】ワイヤソーの一般的な溝ローラの構造を示す概
略縦断面図である。
FIG. 4 is a schematic longitudinal sectional view showing the structure of a general groove roller of a wire saw.

【符号の説明】[Explanation of symbols]

1、2、3 溝ローラ 4 ワイヤ 5 ワイヤ列 6 ワーク 7−1 ワーク入側カーテン状砥液 7−2 ワーク出側カーテン状砥液 10 ワーク押上台 12−1 ワーク入側砥液供給スリットノズル 12−2 ワーク出側砥液供給スリットノズル 17 抵抗温度計 18 砥液飛沫 20 砥液供給系 21 飛沫温度制御装置 22 砥液温度制御装置 23 砥液流量制御装置 24 ワーク押上速度制御装置 1, 2, 3 Groove roller 4 Wire 5 Wire row 6 Work 7-1 Work entry-side curtain-shaped abrasive 7-2 Work exit-side curtain-shaped abrasive 10 Work lifter 12-1 Work entry-side abrasive liquid supply slit nozzle 12 -2 Work-side exit-side abrasive fluid supply slit nozzle 17 Resistance thermometer 18 Abrasive fluid splash 20 Abrasive fluid supply system 21 Splash temperature control device 22 Abrasive fluid temperature control device 23 Abrasive fluid flow control device 24 Work lifting speed control device

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定ピッチのワイヤ案内溝を有する溝ロ
ーラ間に張設された多条ワイヤ列を一方向に走行せし
め、被切断物上あるいは被切断物入側、出側のワイヤ列
上に砥粒を含む加工液を供給しつつ被切断物を該ワイヤ
列上に押付けて研削作用によって多数のウエハに切断す
るマルチワイヤソーにおいて、被切断物出側のワイヤ列
上に供給した加工液の、当該ワイヤ列が最初に巻き付く
溝ローラの回転によって発生する飛沫の温度が一定にな
るように制御しつつ切断することを特徴とするマルチワ
イヤソーによる切断方法。
1. A multi-strand wire string stretched between groove rollers having wire guide grooves of a predetermined pitch is caused to travel in one direction, and is placed on a workpiece or on a wire row on an entrance side and an exit side of a workpiece. In a multi-wire saw that cuts an object to be cut into a large number of wafers by pressing the object to be cut onto the wire row while supplying a processing liquid containing abrasive grains, the processing liquid supplied to the wire row on the side of the object to be cut , A cutting method using a multi-wire saw, wherein cutting is performed while controlling the temperature of droplets generated by the rotation of a groove roller around which the wire row is wound first so as to be constant.
【請求項2】 前記ワイヤ列が最初に巻き付く溝ローラ
の回転によって発生する飛沫の温度が一定になるよう
に、被切断物出側のワイヤ列上に供給される加工液の温
度、または温度と流量を制御することを特徴とする請求
項1記載のマルチワイヤソーによる切断方法。
2. The groove roller on which the wire array is wound first.
So that the temperature of the droplets generated by the rotation of
2. The cutting method using a multi-wire saw according to claim 1, wherein the temperature, or the temperature and the flow rate, of the working fluid supplied onto the wire row on the cut object exit side are controlled.
【請求項3】 前記ワイヤ列が最初に巻き付く溝ローラ
の回転によって発生する飛沫の温度が一定になるよう
に、被切断物を該ワイヤ列上に押付ける速度を制御する
ことを特徴とする請求項1記載のマルチワイヤソーによ
る切断方法。
3. A groove roller on which said wire array is wound first.
So that the temperature of the droplets generated by the rotation of
2. The method according to claim 1 , further comprising controlling a speed of pressing an object to be cut onto the wire row.
JP4333598A 1992-11-19 1992-11-19 Cutting method with multi-wire saw Expired - Lifetime JP2722975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4333598A JP2722975B2 (en) 1992-11-19 1992-11-19 Cutting method with multi-wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4333598A JP2722975B2 (en) 1992-11-19 1992-11-19 Cutting method with multi-wire saw

Publications (2)

Publication Number Publication Date
JPH06155450A JPH06155450A (en) 1994-06-03
JP2722975B2 true JP2722975B2 (en) 1998-03-09

Family

ID=18267836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4333598A Expired - Lifetime JP2722975B2 (en) 1992-11-19 1992-11-19 Cutting method with multi-wire saw

Country Status (1)

Country Link
JP (1) JP2722975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120192848A1 (en) * 2009-10-07 2012-08-02 Akira Nakashima Method of slicing silicon ingot using wire saw and wire saw

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923107B2 (en) * 1995-07-03 2007-05-30 株式会社Sumco Silicon wafer manufacturing method and apparatus
JP3734018B2 (en) * 1999-01-20 2006-01-11 信越半導体株式会社 Wire saw and cutting method
US20030170948A1 (en) * 2002-03-07 2003-09-11 Memc Electronic Materials, Inc. Method and apparatus for slicing semiconductor wafers
JP4083152B2 (en) * 2004-07-29 2008-04-30 日本碍子株式会社 Wire saw equipment
JP2009029078A (en) * 2007-07-30 2009-02-12 Toyo Advanced Technologies Co Ltd Wire saw device
JP4998241B2 (en) 2007-12-11 2012-08-15 信越半導体株式会社 Method of cutting workpiece by wire saw and wire saw
WO2009104222A1 (en) * 2008-02-19 2009-08-27 信越半導体株式会社 Wire saw, and work cutting method
CN105313230A (en) * 2014-05-28 2016-02-10 海太半导体(无锡)有限公司 Semiconductor cutting pure water spraying control system
WO2017141382A1 (en) * 2016-02-17 2017-08-24 三菱電機株式会社 Multi-wire traveling module, method for using multi-wire traveling module, and wire electrical dischage machine
CN107553763A (en) * 2016-06-30 2018-01-09 广东先导先进材料股份有限公司 A kind of method and cutter device of multi-wire saw chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120192848A1 (en) * 2009-10-07 2012-08-02 Akira Nakashima Method of slicing silicon ingot using wire saw and wire saw

Also Published As

Publication number Publication date
JPH06155450A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
KR100607188B1 (en) Wire saw and cutting method
JP2722975B2 (en) Cutting method with multi-wire saw
US6773333B2 (en) Method for cutting slices from a workpiece
TWI382905B (en) Cutting method and wire saw using wire saw
US20100279435A1 (en) Temperature control of chemical mechanical polishing
KR101460992B1 (en) Cutting method, and wire-saw apparatus
KR101552895B1 (en) Method for Cutting Work
KR101362864B1 (en) Cutting Method
KR20100020463A (en) Cutting method and wire saw device
JP2755907B2 (en) Groove roller for wire saw
KR20220014877A (en) A method for slicing a plurality of wafers from a workpiece during a plurality of slicing operations using a wire saw and a semiconductor wafer of single crystal silicon
JPH09286021A (en) Cutting method of semiconductor ingot
JPH10217095A (en) Wire saw and work cutting method by wire saw
JPH09300343A (en) Cutting method by multi-wire saw
CN115023328A (en) Method for separating a plurality of wafers from a workpiece by means of a wire saw during a series of separation processes
JP2000141220A (en) Work plate temperature control device of wire saw
JP2671728B2 (en) Cutting method with wire saw
JPH0616985B2 (en) Cutting method in wire saw
CN114311354B (en) Device for cutting silicon rod
JP2000084824A (en) Slurry supplying method for wire saw and its device
JP2005276851A (en) Wire saw
JP2731309B2 (en) Wire saw and temperature control method of roller support device
JP2000141364A (en) Ingot-cutting method and wire saw apparatus
JPH068234A (en) Wire saw and cutting method therewith
JPH09225932A (en) Control of temperatures of working liquid for wire saw and device therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

A131 Notification of reasons for refusal

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040517

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20040517

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

Effective date: 20040518

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Effective date: 20040714

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250