JP2720637B2 - Apparatus for preventing overheating of compressor motor in two-stage refrigerator - Google Patents

Apparatus for preventing overheating of compressor motor in two-stage refrigerator

Info

Publication number
JP2720637B2
JP2720637B2 JP3175285A JP17528591A JP2720637B2 JP 2720637 B2 JP2720637 B2 JP 2720637B2 JP 3175285 A JP3175285 A JP 3175285A JP 17528591 A JP17528591 A JP 17528591A JP 2720637 B2 JP2720637 B2 JP 2720637B2
Authority
JP
Japan
Prior art keywords
motor
refrigerant
compressor
temperature
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3175285A
Other languages
Japanese (ja)
Other versions
JPH0526525A (en
Inventor
潔 増田
修身 片岡
典英 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP3175285A priority Critical patent/JP2720637B2/en
Publication of JPH0526525A publication Critical patent/JPH0526525A/en
Application granted granted Critical
Publication of JP2720637B2 publication Critical patent/JP2720637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21156Temperatures of a compressor or the drive means therefor of the motor
    • F25B2700/21157Temperatures of a compressor or the drive means therefor of the motor at the coil or rotor

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2段冷凍機における圧
縮機モ−タの過熱防止装置、詳しくは、低段圧縮機と高
段圧縮機と、これら各圧縮機を同軸駆動するモ−タとを
もち、前記低段圧縮機から吐出されるガス冷媒を前記モ
−タを介して前記高段圧縮機に吸入させるようにした圧
縮装置を備えた2段冷凍機における圧縮機モ−タの過熱
防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for preventing overheating of a compressor motor in a two-stage refrigerator, more specifically, a low-stage compressor and a high-stage compressor, and a motor for driving each of these compressors coaxially. The compressor motor in a two-stage refrigerator having a compression device having a compressor for sucking gas refrigerant discharged from the low-stage compressor through the motor into the high-stage compressor. Overheating prevention device.

【0002】[0002]

【従来の技術】従来、単段式冷凍機における圧縮機モ−
タの過熱防止装置としては、実開昭57−182058
号公報に記載されたものが知られており、この公報記載
のものは、図7に示した如く、圧縮機SCと、該圧縮機
SCを駆動するモ−タMとをもつ圧縮装置Cを備え、こ
の圧縮装置Cの冷媒吐出側に、凝縮器CDと膨張弁E及
び冷却器CLをそれぞれ冷媒配管を介して接続すると共
に、前記圧縮機SCとモ−タMとの間に、該モ−タMの
通過後の冷媒ガスの過熱度を検出する温度検出器(感温
筒)Sを設けて、この温度検出器Sで検出された冷媒ガ
スの過熱度が所定温度以上となったとき、前記膨張弁E
を過熱度が一定になるように、その開度を制御し前記圧
縮装置C側へのガス流量調整を行うことにより、前記モ
−タMの過熱を防止するようにしたものが提案されてい
る。
2. Description of the Related Art Conventionally, a compressor motor in a single-stage refrigerator has been used.
As a device for preventing overheating of the heater,
As shown in FIG. 7, a compressor C having a compressor SC and a motor M for driving the compressor SC is known. A condenser CD, an expansion valve E, and a cooler CL are connected to the refrigerant discharge side of the compressor C via refrigerant pipes, respectively, and the motor is connected between the compressor SC and the motor M. A temperature detector (temperature-sensitive cylinder) S for detecting the degree of superheat of the refrigerant gas after passing through the temperature sensor M, and when the degree of superheat of the refrigerant gas detected by the temperature detector S exceeds a predetermined temperature. , The expansion valve E
The motor M is prevented from being overheated by controlling its opening so that the degree of superheat is constant and adjusting the gas flow to the compressor C side. .

【0003】[0003]

【発明が解決しようとする課題】所で、以上のような圧
縮機モ−タ過熱防止装置では、前記冷却器CLにおける
蒸発温度が所定値以下で、前記凝縮器CDでの凝縮温度
が所定値以上のとき、前記モ−タMに常設するモ−タ保
護用サーモCTPが作動して、冷凍機の運転が停止され
るため、該冷凍機の運転範囲が制限される問題があるの
である。
However, in the above-described compressor motor overheating prevention device, the evaporation temperature in the cooler CL is lower than a predetermined value and the condensation temperature in the condenser CD is lower than a predetermined value. At this time, since the motor protection thermo-CTP permanently installed in the motor M is activated to stop the operation of the refrigerator, there is a problem that the operation range of the refrigerator is limited.

【0004】また、以上のモ−タ過熱防止手段を、低・
高段2つの圧縮機をもつ2段冷凍機に採用する場合に
も、前述した単段式の場合と同様に、蒸発温度が低い領
域(例えば−40℃以下)で、凝縮温度が高い場合、前
記保護用サーモが作動して、前記冷凍機が停止され、該
冷凍機の運転範囲が制限される問題がある。即ち、図5
に示したように、冷却器における蒸発温度Teが所定値
以下で、凝縮器での凝縮温度Tcが所定値以上のとき、
つまり、同図の斜線で示した領域Aにおいて、後述すよ
うに、モ−タに常設するモ−タ保護用サーモが作動し
て、冷凍機の運転が停止されるため、該冷凍機の運転範
囲が制限されることになるのである。
In addition, the above-mentioned motor overheating prevention means is provided with a low
Also in the case of adopting a two-stage refrigerator having two high-stage compressors, as in the case of the single-stage type described above, in the region where the evaporation temperature is low (for example, -40 ° C or lower) and the condensation temperature is high, There is a problem that the protection thermostat is activated, the refrigerator is stopped, and the operation range of the refrigerator is limited. That is, FIG.
As shown in the above, when the evaporation temperature Te in the cooler is equal to or lower than a predetermined value and the condensation temperature Tc in the condenser is equal to or higher than a predetermined value,
In other words, in the area A indicated by hatching in the figure, as will be described later, the motor protection permanent thermostat operates to stop the operation of the refrigerator, so that the operation of the refrigerator is stopped. The range will be limited.

【0005】しかして、モータの放熱量Qは、熱伝達率
をK、伝熱面積をA、前記モータのコイル表面温度Tと
通過ガス温度Tgとの温度差をΔTmとしたとき、
[0005] The amount of heat dissipation Q of the motor is represented by the following formula: K is the heat transfer coefficient, A is the heat transfer area, and ΔTm is the temperature difference between the coil surface temperature T of the motor and the passing gas temperature Tg.

【0006】[0006]

【数1】 (Equation 1)

【0007】となり、また、冷却器での蒸発温度Teが
低くなると、図6に示したように前記圧縮機SCに吸入
される吸入冷媒量Wが低下し、かつ、前記熱伝達率Kも
小さくなるのである。
When the evaporating temperature Te in the cooler decreases, the amount W of refrigerant sucked into the compressor SC decreases and the heat transfer coefficient K decreases as shown in FIG. It becomes.

【0008】従って、モ−タの放熱量Qが発熱量より大
きいとき、つまり前記熱伝達率K及び温度差ΔTmが大
きいときはモ−タMを充分冷却できるのであるが、蒸発
温度Teが低くなると、前記吸入冷媒量Wが減少し、か
つ、熱伝達率Kが小さくなるため、前記温度差ΔTmが
大きくなっても、放熱量Qは小さくなるのであり、この
結果、前記温度検出器Sによりモ−タMを通過した冷媒
ガスの温度に対して、モ−タMのコイル温度が高くなっ
てモ−タ保護用サーモが作動してしまい、図5に示した
前記領域Aつまり、蒸発温度Teが低く、凝縮温度Tc
が高い領域Aでの運転が不能となり、運転範囲が制限さ
れることになるのである。
Accordingly, when the heat radiation amount Q of the motor is larger than the heat generation amount, that is, when the heat transfer coefficient K and the temperature difference ΔTm are large, the motor M can be sufficiently cooled, but the evaporation temperature Te is low. Then, since the amount W of the intake refrigerant decreases and the heat transfer coefficient K decreases, the heat release amount Q decreases even if the temperature difference ΔTm increases. As a result, the temperature detector S The coil temperature of the motor M becomes higher than the temperature of the refrigerant gas that has passed through the motor M, and the motor for protecting the motor operates, so that the area A shown in FIG. Low Te, condensation temperature Tc
Therefore, the operation in the region A where the air pressure is high becomes impossible, and the operation range is limited.

【0009】更に詳記すると、2段冷凍機の運転を行う
場合で、蒸発温度Teが低下して前記圧縮装置側への吸
入冷媒量が小さくなるとき、ガスによる前記モータの冷
却効率が低下することから、このモータを通過したガス
温度と、該モータの実際のコイル温度との間に、大きな
温度ギャップが発生することになり、この結果、前記モ
ータを通過した後のガス温度を前記温度検出器で検出し
て、この検出結果に基づく前記膨張弁の開度制御による
ガス流量調整で、前記モータの過熱を防止するようにし
ても、該モータの実際のコイル温度に基づくことなく、
前記膨張弁の開度制御が行われるため、前記モータの正
確な過熱防止が行えず、該モータの温度が、その保護用
サーモで設定した設定温度以上に上昇して、図5の斜線
で示す領域Aにおいては、前記保護用サーモが作動し、
前記冷凍機の運転が中止されてしまい、該冷凍機の運転
範囲が制限されることになるのである。
More specifically, in the case of operating a two-stage refrigerator, when the evaporation temperature Te decreases and the amount of refrigerant sucked into the compressor decreases, the cooling efficiency of the motor by gas decreases. Therefore, a large temperature gap is generated between the gas temperature passing through the motor and the actual coil temperature of the motor, and as a result, the gas temperature after passing through the motor is detected by the temperature detection. It is detected by a detector, and even if the overheating of the motor is prevented by adjusting the gas flow rate by controlling the opening degree of the expansion valve based on the detection result, based on the actual coil temperature of the motor,
Since the opening degree control of the expansion valve is performed, accurate overheat prevention of the motor cannot be performed, and the temperature of the motor rises to a temperature equal to or higher than a set temperature set by the protection thermostat, and is indicated by a hatched portion in FIG. In the area A, the protection thermo operates,
The operation of the refrigerator is stopped, and the operation range of the refrigerator is limited.

【0010】本発明は以上のような問題に鑑みてなした
もので、その目的は、圧縮装置側での液圧縮を招いたり
することなく、モータの正確かつ確実な過熱防止を行っ
て、2段冷凍機の運転範囲を拡大することができる圧縮
機モータの過熱防止装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to prevent the motor from being overheated accurately and surely without causing liquid compression on the compression device side. An object of the present invention is to provide a compressor motor overheat prevention device capable of expanding the operation range of a stage refrigerator.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、図1〜図4に示すように、低段圧縮機
1aと高段圧縮機1bと、これら各圧縮機1a,1bを
同軸駆動するモータ1cとをもち、前記低段圧縮機1a
から吐出されるガス冷媒を前記モータ1cを介して前記
高段圧縮機1bに吸入させるようにした2段圧縮装置1
備えると共に、前記高段圧縮機1bの吐出側に接続す
る凝縮器2の出口側から分岐する分岐管31と該分岐管
31に介装する中間膨張弁33と中間冷却器32及び戻
り管34とから成る中間冷却装置3を設け、前記戻り管
34を、前記モータ1cを流れる冷媒流れのモータ上流
側に接続した冷凍機を前提構成とする
In order to achieve the above object, according to the present invention, as shown in FIGS. 1 to 4, a low-stage compressor 1a, a high-stage compressor 1b, and each of these compressors 1a, 1b having a motor 1c for coaxially driving the low-pressure compressor 1a.
-Stage compressor 1 in which gas refrigerant discharged from the compressor is sucked into the high-stage compressor 1b via the motor 1c.
And connected to the discharge side of the high-stage compressor 1b.
Pipe 31 branching from the outlet side of the condenser 2 and the branch pipe 31
An intermediate expansion valve 33, an intermediate cooler 32, and a return
An intermediate cooling device 3 comprising a return pipe 34;
34, the motor upstream of the refrigerant flow flowing through the motor 1c.
A refrigerator connected to the side is assumed .

【0012】そして、請求項1記載の発明では、図2に
示すように、前記膨張弁33は感温式膨張弁から成り、
該膨張弁の感温部33aを前記モータ1cのモータコイ
ル温度検出可能部位に配設すると共に、前記モータ1c
を流れる冷媒流れのモータ下流側に、該モータ下流側の
冷媒圧力を検出する前記膨張弁33の均圧管33bを接
続した
According to the first aspect of the present invention, FIG.
As shown, the expansion valve 33 comprises a temperature-sensitive expansion valve,
The temperature sensing part 33a of the expansion valve is connected to the motor coil of the motor 1c.
The motor 1c
Downstream of the motor of the refrigerant flow flowing through the
The pressure equalizing pipe 33b of the expansion valve 33 for detecting the refrigerant pressure is connected.
Continued .

【0013】請求項2記載の発明では、図3に示すよう
に、前記膨張弁33は電動弁から成り、前記モータ1c
のモータコイル温度を検出するコイル温度検出器7と前
記モータ1cを流れる冷媒流れのモータ下流側の圧力を
検出する圧力検出器8と、前記モータコイル温度が前記
圧力検出器8で検出する冷媒圧力の圧力相当飽和温度よ
り所定過熱度だけ高いとき前記膨張弁33の開度を調整
し、前記モータ1cを流れる冷媒流れのモータ上流側に
液冷媒を注入し、過熱度を抑制する過熱度制御器10と
設けた
According to the second aspect of the present invention, as shown in FIG.
The expansion valve 33 comprises an electric valve, and the motor 1c
A coil temperature detector 7 for detecting the temperature of the motor coil, a pressure detector 8 for detecting the pressure on the downstream side of the motor in the refrigerant flow flowing through the motor 1c, and a refrigerant pressure for which the motor coil temperature is detected by the pressure detector 8. A superheat controller that adjusts the opening of the expansion valve 33 when the superheat is higher than the pressure equivalent saturation temperature by a predetermined degree of superheat, injects liquid refrigerant upstream of the flow of refrigerant flowing through the motor 1c, and suppresses the degree of superheat. 10 was provided .

【0014】請求項3記載の発明では、図4に示すよう
に、前記凝縮器2の出口側に接続する液冷媒注入管91
を、前記モータ1cを流れる冷媒流れのモータ上流側に
連通させて、この液冷媒注入管91に液冷媒注入弁92
介装すると共に、前記分岐管31に開閉弁11を設け
る一方、前記モータ1cのモータコイル温度を検出する
コイル温度検出器7と、前記冷媒流れのモータ下流側の
冷媒圧力を検出する圧力検出器8と、モータコイル温度
が前記圧力検出器8で検出する冷媒圧力の圧力相当飽和
温度より所定過熱度だけ高いとき、前記液冷媒注入弁
を開いて液冷媒を注入し、かつ、この状態で前記モー
タコイル温度が高いとき前記開閉弁11を閉じるコイル
温度制御器12とを設けた
According to the third aspect of the present invention, as shown in FIG.
The liquid refrigerant injection pipe 91 connected to the outlet side of the condenser 2
Is connected to the motor upstream side of the flow of the refrigerant flowing through the motor 1c, and the liquid refrigerant injection valve 91 is connected to the liquid refrigerant injection pipe 91.
While interposed, while providing an on-off valve 11 in the branch pipe 31, the coil temperature detector 7 for detecting a motor coil temperature of the motor 1c, a pressure detector for detecting the refrigerant pressure of the motor downstream of the refrigerant flow And the liquid refrigerant injection valve 9 when the motor coil temperature is higher than the saturation temperature corresponding to the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat.
2 injected liquid refrigerant open, and, and said coil temperature controller 12 to close the on-off valve 11 when the motor coil temperature is high is provided in this state.

【0015】[0015]

【作用】請求項1記載の発明では、図2に示すように、
中間冷却装置3を構成する中間膨張弁33をを感温式膨
張弁とし、その感温部33aによりモータコイル温度を
検出するようにすると共に、その均圧管33bをモータ
1cを流れる冷媒流れのモータ下流側に接続することに
より、中間冷却装置3を構成する膨張弁33を利用して
液冷媒を注入できることになり、この液冷媒により前記
モータ1cが冷却されて、該モータ1cの過熱が防止さ
れる。
According to the first aspect of the present invention, as shown in FIG.
The intermediate expansion valve 33 constituting the intermediate cooling device 3 is
The expansion valve is used, and its temperature sensing part 33a controls the motor coil temperature.
The pressure equalizing pipe 33b is connected to the motor
1c connected to the motor downstream of the refrigerant flow
By using the expansion valve 33 constituting the intermediate cooling device 3
The liquid refrigerant can be injected, and the liquid refrigerant cools the motor 1c, thereby preventing the motor 1c from being overheated.

【0016】しかして、以上のような冷凍運転時で、蒸
発温度が低く前記圧縮装置1側への吸入冷媒が少なくな
り、熱伝達率Kが小さくなっても、液冷媒が前記モータ
1cの冷媒流れの前部側に注入されるため、該モータ1
cの正確かつ確実な過熱防止が行われ、従って、前記モ
ータ1cの保護用サーモが、図5に示した斜線領域Aで
作動したりすることがなくなって、冷凍機の運転範囲が
拡大される。また、液冷媒が前記モータ1C側に注入さ
れるため、液冷媒が前記高段圧縮機1bに流入すること
はなく、該高段圧縮機1bでの液圧縮が防止される。
However, during the above-described refrigeration operation, even if the evaporation temperature is low and the refrigerant sucked into the compression device 1 side is small, and the heat transfer coefficient K is small, the liquid refrigerant is the refrigerant of the motor 1c. The motor 1 is injected into the front side of the flow.
c is prevented from overheating accurately and reliably. Therefore, the protection thermo for the motor 1c does not operate in the hatched area A shown in FIG. 5, and the operation range of the refrigerator is expanded. . Further, since the liquid refrigerant is injected into the motor 1C side, the liquid refrigerant does not flow into the high-stage compressor 1b, and the liquid compression in the high-stage compressor 1b is prevented.

【0017】また、中間冷却装置3を構成する前記膨張
弁33を利用して液冷媒を注入できることになり、前記
した通り運転範囲を広げることができながら、その構成
を簡略化できるのである。
[0017] will be able to inject the liquid refrigerant by using the expansion valve 33 constituting the intermediate cooling device 3, while it is possible to widen the street operating range described above, it can be simplified structure.

【0018】また、中間膨張弁33を電動弁とする請求
項2記載の発明では、図3に示すように、前記中間冷却
装置3を利用しながら、より高精度な過熱度制御が行え
るのであって、運転範囲を広げることができながら、そ
の構成を簡略化できるし、前記過熱度制御器10を利用
して、モータコイル温度の上限で、前記モータ1cの運
転停止の制御も行えるのである。
Further, the intermediate expansion valve 33 may be a motor operated valve.
In the invention described in Item 2, as shown in FIG. 3 , more precise superheat control can be performed while using the intermediate cooling device 3, and the configuration can be simplified while the operation range can be expanded. It is also possible to control the stop of the operation of the motor 1c at the upper limit of the motor coil temperature by using the superheat degree controller 10.

【0019】請求項3記載の発明では、図4に示すよう
に、前記注入弁92の開度調整によりモータ下流側の過
熱度制御によるモータ冷却の他に、前記開閉弁11を閉
じて中間冷却器32への冷媒流れを中止し、冷媒循環量
を減少して前記モータ1cの動力を減ずることによるコ
イル温度の低下制御を併用できるから、過熱度制御のみ
ではモータ冷却が不足しても、モータ過熱をより有効に
防止できて運転範囲をより確実に広げることができるの
である。
According to the third aspect of the present invention, as shown in FIG.
In addition to the motor cooling by controlling the degree of superheat on the downstream side of the motor by adjusting the opening of the injection valve 92, the on-off valve 11 is closed to stop the flow of the refrigerant to the intercooler 32, thereby reducing the amount of circulating refrigerant. Therefore, the control of the coil temperature by reducing the power of the motor 1c can be used together. Therefore, even if the motor cooling is insufficient with only the superheat control, the motor overheating can be more effectively prevented and the operation range can be more reliably expanded. You can do it.

【0020】[0020]

【実施例】図1〜4に示したものは、2段圧縮機構をも
ったレシプロ式圧縮装置1を用いた2段冷凍機を示して
おり、4気筒から成る低段及び高段2つの圧縮機1a,
1bと、該各圧縮機1a,1bを同軸駆動する1つのモ
ータ1cとをもつ2段圧縮装置1を備え、この圧縮装置
1における高段圧縮機1bの冷媒吐出側に、凝縮器2,
中間冷却装置3,膨張弁4及び冷却器5をそれぞれ冷媒
配管6を介して接続し、前記圧縮装置1の低段圧縮機1
aで圧縮した冷媒を、前記モータ1cから高段圧縮機1
bに供給して更に圧縮し、この高段圧縮機1bで圧縮し
た冷媒を、図の実線矢印で示したような経路で循環さ
せるようになすのである。また、前記冷媒配管6におけ
る前記凝縮器2の出口側に接続した高圧液管6aには、
該液管6aから液冷媒を分岐させる分岐管31を設け
て、該分岐管31を中間冷却器32に接続し、前記分岐
管31に中間冷却用膨張弁33を介装して前記凝縮器2
を通過した冷媒一部を、図の点線矢印で示したごと
く、前記中間冷却器32で熱交換して前記冷却器5に供
給の冷媒を過冷却し、また、前記中間冷却器32には、
前記モータ1cを流れる冷媒流れのモータ上流側に開口
する戻り管34を接続し、前記中間冷却器32で蒸発す
る冷媒が、戻り管34を介して前記低段圧縮機1aとモ
ータ1cとの間に戻るようにしており、前記分岐管3
1、中間冷却膨張弁33、中間冷却器32及び戻り管3
4により前記中間冷却装置3を形成している。
1 to 4 show a two-stage refrigerator using a reciprocating type compression apparatus 1 having a two-stage compression mechanism. Machine 1a,
1b and a two-stage compressor 1 having one motor 1c for driving the compressors 1a and 1b coaxially. A condenser 2 is provided on the refrigerant discharge side of the high- stage compressor 1b in the compressor 1.
The intermediate cooling device 3, the expansion valve 4, and the cooler 5 are connected via refrigerant pipes 6, respectively.
a from the motor 1c to the high-stage compressor 1
b, and further compressed, and the refrigerant compressed by the high-stage compressor 1b is circulated through the paths shown by solid arrows in each figure. The high-pressure liquid pipe 6a connected to the outlet side of the condenser 2 in the refrigerant pipe 6 includes:
A branch pipe 31 for branching the liquid refrigerant from the liquid pipe 6a is provided, the branch pipe 31 is connected to an intercooler 32, and an intermediate cooling expansion valve 33 is interposed in the branch pipe 31 to form the condenser 2
A part of the refrigerant having passed through is cooled by the intercooler 32 to supercool the refrigerant supplied to the cooler 5 as shown by a dotted arrow in each drawing. ,
A return pipe 34 that opens to the motor upstream side of the flow of the refrigerant flowing through the motor 1c is connected, and the refrigerant evaporating in the intercooler 32 passes between the low-stage compressor 1a and the motor 1c via the return pipe 34 The branch pipe 3
1. Intercooling expansion valve 33, intercooler 32 and return pipe 3
4, the intermediate cooling device 3 is formed.

【0021】尚、図1中、符号4aは前記膨張弁4の開
度制御を行う感温部、戻り管34側に引出し線が付され
た符号33は中間膨張弁33の開度制御を行う感温部で
ある。また、図1のものは特許請求の範囲から除外し、
非実施例となったが、同一符号をもつ図2〜4の実施例
との関係上、その構成を以下説明する。すなわち、次の
ように構成したのである。
In FIG. 1, reference numeral 4a denotes an opening of the expansion valve 4.
A temperature sensor that controls the temperature, a lead line is attached to the return pipe 34 side.
Reference numeral 33 denotes a temperature sensing part for controlling the opening degree of the intermediate expansion valve 33.
is there. 1 is excluded from the claims,
Although not a non-embodiment, the embodiment of FIGS.
The configuration will be described below in relation to the above. That is, the configuration is as follows.

【0022】即ち、圧縮装置1のモータ1cに、該モー
タ1cのコイル温度を検出するコイル温度検出器7を設
けると共に、前記モータ1cと高段圧縮機1bとの中間
部に、モータ後流側の冷媒圧力を検出する圧力検出器8
を設ける一方、前記温度検出器7で検出されるモータコ
イル温度が、前記圧力検出器8で検出される冷媒圧力の
圧力相当飽和温度より高いとき、前記低段圧縮機1aと
モータ1cとの間に液冷媒を注入する液冷媒注入手段9
を設けたのである。
That is, the motor 1c of the compressor 1 is provided with a coil temperature detector 7 for detecting the coil temperature of the motor 1c, and a motor downstream side is provided between the motor 1c and the high-stage compressor 1b. Pressure detector 8 for detecting refrigerant pressure
On the other hand, when the motor coil temperature detected by the temperature detector 7 is higher than the saturation temperature corresponding to the pressure of the refrigerant pressure detected by the pressure detector 8, when the low-stage compressor 1a and the motor 1c Refrigerant injection means 9 for injecting liquid refrigerant into
Was provided.

【0023】図1に示した前記液冷媒注入手段9は、前
記凝縮器2の出口側に接続される前記高圧液管6aと前
記モータ1cを流れる冷媒流れのモ−タ上流側との間
に、液冷媒注入管91を配管して、この注入管91の途
中に開度調整可能な電動弁から成る液冷媒注入弁92を
介装させると共に、前記コイル温度検出器7で検出され
るコイル検出温度T1と、前記圧力検出器8で検出され
る冷媒圧力の圧力相当飽和温度T2とを比較演算して、
前記注入弁92の開閉制御を行う過熱度制御器93を設
け、前記温度検出器7によるコイル検出温度T1が、前
記圧力検出器8で検出される冷媒圧力の圧力相当飽和温
度T2よりも所定過熱度だけ高いときに、即ち、T1>
T2のときに、前記過熱度制御器93からの出力信号で
前記注入弁92を開動作させて、前記注入管91から前
記高圧液管10aを流れる液冷媒の一部をモータ1cを
流れる冷媒流れのモ−タ上流側へ注入し、前記高段側圧
縮機1bに吸入する冷媒の過熱度を所定過熱度として、
前記モータ1cの過熱防止を行うようになしたものであ
る。尚、前記モ−タ1cの近くにはモ−タ保護用サーモ
を設け、このサーモの作動で前記モ−タ1cを停止する
ようにしている。
The liquid refrigerant injection means 9 shown in FIG. 1 is provided between the high pressure liquid pipe 6a connected to the outlet side of the condenser 2 and the motor upstream of the refrigerant flow flowing through the motor 1c. A liquid refrigerant injection pipe 91 is provided, and a liquid refrigerant injection valve 92 composed of an electric valve whose opening can be adjusted is interposed in the middle of the injection pipe 91, and the coil temperature detected by the coil temperature detector 7 is detected. The temperature T1 is compared with the pressure equivalent saturation temperature T2 of the refrigerant pressure detected by the pressure detector 8,
A superheat degree controller 93 for controlling the opening and closing of the injection valve 92 is provided. The coil detection temperature T1 detected by the temperature detector 7 is higher than the saturation temperature T2 of the refrigerant pressure detected by the pressure detector 8 by a predetermined degree. When the degree is high, that is, T1>
At the time of T2, the injection valve 92 is opened by the output signal from the superheat degree controller 93, and a part of the liquid refrigerant flowing from the injection pipe 91 through the high-pressure liquid pipe 10a flows through the motor 1c. The superheat degree of the refrigerant injected into the upstream of the motor and taken into the high-stage compressor 1b is defined as a predetermined superheat degree.
This is to prevent overheating of the motor 1c. A motor protection thermo is provided near the motor 1c, and the motor 1c is stopped by the operation of the thermo.

【0024】しかして以上の構成において、前記温度検
出器7でモータ1cの実際のコイル温度が、また、前記
圧力検出器8でモータ1cを流れる冷媒流れのモ−タ下
流側の冷媒圧力が検出され、前記温度検出器7により検
出されるコイル温度T1が、前記圧力検出器8で検出さ
れる冷媒圧力の圧力相当飽和温度T2よりも所定過熱度
だけ高いとき、前記過熱制御器93からの出力信号で前
記注入弁92が開動作されて、前記注入管91から前記
高圧液管6aを流れる液冷媒の一部が、前記モータ1c
を流れる冷媒流れのモ−タ上流側へ注入され、この液冷
媒の注入でモータ1cが冷却されるのである。従って、
前記モ−タ1cの過熱防止が行われるのであって、前記
モータ1aのモ−タ保護用サーモが動作して圧縮機の運
転が停止されるのを回避でき、図5に示した斜線領域A
での冷凍運転が可能となり、それだけ2段冷凍機の運転
範囲が拡大されるのである。また、以上のように、前記
温度検出器7によるコイル温度T1が、前記圧力検出器
8で検出される冷媒圧力の圧力相当飽和温度T2よりも
所定過熱度だけ高いとき、前記モータ1c側への液冷媒
注入が行われるために、液冷媒が前記高段圧縮機1bに
流入することはなく、従って、この高段圧縮機1bでの
液圧縮が防止される。
In the above construction, the temperature detector 7 detects the actual coil temperature of the motor 1c, and the pressure detector 8 detects the refrigerant pressure downstream of the motor of the refrigerant flowing through the motor 1c. When the coil temperature T1 detected by the temperature detector 7 is higher than the saturation temperature T2 of the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat, the output from the superheat controller 93 is output. The injection valve 92 is opened by the signal, and a part of the liquid refrigerant flowing from the injection pipe 91 through the high-pressure liquid pipe 6a is removed by the motor 1c.
Is injected into the motor upstream of the flow of the refrigerant flowing through the motor 1c, and the injection of the liquid refrigerant cools the motor 1c. Therefore,
Since overheating of the motor 1c is prevented, the operation of the motor for protecting the motor 1a can be prevented from being operated to stop the operation of the compressor, and the hatched area A shown in FIG.
And the operating range of the two-stage refrigerator can be expanded accordingly. As described above, when the coil temperature T1 detected by the temperature detector 7 is higher than the saturation temperature T2 corresponding to the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat, the temperature of the motor 1c is reduced. Since the liquid refrigerant is injected, the liquid refrigerant does not flow into the high-stage compressor 1b, and therefore, the liquid compression in the high-stage compressor 1b is prevented.

【0025】尚、前記コイル温度検出器7は、前記モー
タ1cに常設する前記モ−タ保護用サーモで兼用するこ
とも可能であり、斯くするときには、前記保護用サーモ
に2段冷凍機の運転停止を所定時間だけ遅らせる遅延回
路を別途接続して、前記保護用サーモと前記圧力検出器
8との作動で前記モータ1c側に液冷媒を注入するよう
になし、また、液冷媒を注入するにも拘らず前記モータ
1cの温度が、前記所定時間経過しても低下がないと
き、前記保護用サーモで冷凍運転を停止するようになす
のである。
It should be noted that the coil temperature detector 7 can also be used as the motor protection thermo that is permanently installed in the motor 1c. In this case, the protection thermo is used to operate the two-stage refrigerator. A delay circuit for delaying the stop by a predetermined time is separately connected, and the operation of the protection thermostat and the pressure detector 8 causes the liquid refrigerant to be injected into the motor 1c side. Nevertheless, when the temperature of the motor 1c does not decrease even after the lapse of the predetermined time, the refrigeration operation is stopped by the protection thermo.

【0026】又、図1に示したものは、前記液冷媒注入
手段9として、前記注入弁92をもった前記注入管91
を用いたが、その他前記注入管91を用いることなく、
前記中間冷却装置3における前記分岐管31と戻り管3
4及び中間膨張弁33を利用して構成してもよい。
[0026] Further, those shown in FIG. 1, the liquid as a refrigerant injection means 9, the injection pipe 91 having the injection valve 92
However, without using the injection tube 91,
The branch pipe 31 and the return pipe 3 in the intermediate cooling device 3
4 and the intermediate expansion valve 33.

【0027】この場合、図2に示したように前記膨張弁
33を感温式膨張弁とし、その感温部33aを、前記モ
−タ1cにおけるモ−タコイル温度検出可能部位、例え
ばコイルエンドやステータのスロット溝部に配設すると
共に、前記膨張弁33の均圧管33bを、前記モ−タ1
cを流れる冷媒流れのモ−タ下流側に接続するのであ
る。
In this case, as shown in FIG. 2, the expansion valve 33 is a temperature-sensitive expansion valve, and its temperature-sensing portion 33a is used as a portion of the motor 1c where a motor coil temperature can be detected, such as a coil end or the like. The pressure equalizing pipe 33b of the expansion valve 33 is disposed in the slot groove of the stator and the motor 1
c, and is connected to the downstream side of the motor in the flow of the refrigerant flowing through c.

【0028】従って、この実施例でもモ−タコイル温度
が上昇するとモ−タ下流側の過熱度が所定過熱度になる
ように前記膨張弁33の開度が制御され、前記分岐管3
1から中間冷却器32を介して前記戻り管34から液冷
媒がモ−タ上流側に注入されることになり、この液冷媒
により前記モ−タ1cが冷却されるのであって、凝縮温
度Tcが所定温度以上で蒸発温度Teが低くなっても、
つまり図5に示した斜線の領域Aにおいても冷凍機の運
転が停止されることなく継続でき、その運転範囲を広げ
られるのである。
Therefore, also in this embodiment, when the motor coil temperature rises, the opening degree of the expansion valve 33 is controlled so that the superheat degree downstream of the motor becomes a predetermined superheat degree, and the branch pipe 3
1, the liquid refrigerant is injected from the return pipe 34 to the upstream side of the motor through the intercooler 32, and the motor 1c is cooled by the liquid refrigerant, and the condensing temperature Tc Is higher than a predetermined temperature and the evaporation temperature Te is low,
In other words, the operation of the refrigerator can be continued without being stopped even in the hatched area A shown in FIG. 5, and the operation range can be expanded.

【0029】また、前記液冷媒注入手段9として、図2
のように前記分岐管31と戻り管34及び中間膨張弁3
3を利用する場合、前記膨張弁33を電動弁としてもよ
い。
As the liquid refrigerant injection means 9, FIG.
The branch pipe 31, the return pipe 34 and the intermediate expansion valve 3
When utilizing 3, the expansion valve 33 may be an electric valve.

【0030】この場合、図3に示したように前記モ−タ
1cのモ−タコイル温度を検出するコイル温度検出器7
と前記モ−タ1cを流れる冷媒流れのモ−タ下流側の冷
媒圧力を検出する圧力検出器8と、モ−タコイル温度が
前記圧力検出器8で検出する冷媒圧力の圧力相当飽和温
度より所定過熱度だけ高いとき、前記膨張弁33の開度
を調整し、前記モ−タ1cを流れる冷媒流れのモ−タ上
流側に液冷媒を注入して過熱度を制御する過熱度制御器
10とを設けるのである。
In this case, as shown in FIG. 3, a coil temperature detector 7 for detecting the motor coil temperature of the motor 1c.
And a pressure detector 8 for detecting the refrigerant pressure on the downstream side of the motor in the flow of the refrigerant flowing through the motor 1c, and the motor coil temperature is determined from the saturation temperature corresponding to the pressure of the refrigerant pressure detected by the pressure detector 8. When the degree of superheat is high, the degree of opening of the expansion valve 33 is adjusted, and a superheat degree controller 10 for controlling the degree of superheat by injecting a liquid refrigerant into the motor upstream of the refrigerant flow flowing through the motor 1c. Is provided.

【0031】従って、この実施例でも、モ−タコイル温
度が上昇すると、モ−タ下流側の過熱度が所定過熱度に
なるように前記膨張弁33の開度が前記過熱度制御器1
0の出力のもとに制御され、前記分岐管31から中間冷
却器32を介して前記戻り管34から液冷媒がモ−タ上
流側に注入されることになり、この液冷媒により前記モ
−タ1cが冷却されるのである。また、この場合、前記
過熱度制御器10には、その入力部に前記コイル温度検
出器7を接続しているから、図1の実施例と同様、モ−
タコイル温度が上限温度になったとき、前記モ−タ1c
を停止する制御システムを組込むことができる。
Therefore, also in this embodiment, when the motor coil temperature rises, the degree of opening of the expansion valve 33 is adjusted by the superheat degree controller 1 so that the degree of superheat downstream of the motor becomes a predetermined degree.
Under the output of 0, liquid refrigerant is injected from the branch pipe 31 through the intercooler 32 to the upstream side of the motor from the return pipe 34, and the liquid refrigerant is injected by the liquid refrigerant. The heater 1c is cooled. In this case, since the coil temperature detector 7 is connected to the input portion of the superheat degree controller 10 as in the embodiment of FIG.
When the motor coil temperature reaches the upper limit temperature, the motor 1c
A control system for shutting down can be incorporated.

【0032】更に、図1に示した実施例のように液冷媒
注入弁92をもった液冷媒注入管91を形成する場合、
前記中間冷却装置3の分岐管31に開閉弁11を設け、
モ−タコイル温度が前記圧力検出器8で検出する冷媒圧
力の圧力相当飽和温度より所定過熱度だけ高いとき、前
記液冷媒注入弁92を開き、前記モ−タコイル温度が更
に高いとき前記開閉弁11を閉じるようにしてもよい。
Further, when forming a liquid refrigerant injection pipe 91 having a liquid refrigerant injection valve 92 as in the embodiment shown in FIG.
An on-off valve 11 is provided in a branch pipe 31 of the intermediate cooling device 3,
The liquid refrigerant injection valve 92 is opened when the motor coil temperature is higher than the saturation temperature corresponding to the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat, and when the motor coil temperature is higher, the on-off valve 11 is opened. May be closed.

【0033】即ち、この場合図4に示したように、前記
高圧液管6aに液冷媒注入管91を接続して、この注入
管91をモ−タ上流側、つまり図4では前記戻り管34
に連通させると共に前記注入管91に液冷媒注入弁92
を介装し、また、前記分岐管31に前記開閉弁11を設
ける一方、図1及び図3に示した実施例と同様コイル温
度検出器7と圧力検出器8を設け、かつ、モ−タコイル
温度が前記圧力検出器8で検出する冷媒圧力の圧力相当
飽和温度より所定過熱度だけ高いとき、前記液冷媒注入
弁92を開いて液冷媒を注入し、また、前記モ−タコイ
ル温度が更に高いとき、前記開閉弁11を閉じるコイル
温度制御器12を設けるのである。
That is, in this case, as shown in FIG. 4, a liquid refrigerant injection pipe 91 is connected to the high-pressure liquid pipe 6a, and this injection pipe 91 is connected to the motor upstream side, that is, in FIG.
And a liquid refrigerant injection valve 92 is connected to the injection pipe 91.
In addition, the on-off valve 11 is provided on the branch pipe 31, and the coil temperature detector 7 and the pressure detector 8 are provided similarly to the embodiment shown in FIGS. 1 and 3, and the motor coil is provided. When the temperature is higher than the saturation temperature corresponding to the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat, the liquid refrigerant injection valve 92 is opened to inject the liquid refrigerant, and the motor coil temperature is further higher. At this time, a coil temperature controller 12 for closing the on-off valve 11 is provided.

【0034】従って、この実施例では、モ−タコイル温
度が上昇すると、前記コイル温度制御器12からの出力
に基づきモ−タ下流側の過熱度が所定過熱度になるよう
に前記液冷媒注入弁92の開度が制御され、前記液冷媒
注入管91から液冷媒がモ−タ上流側に注入され、この
液冷媒によりモ−タ1cは冷却されるのであり、しか
も、過熱度制御している状態でモ−タコイル温度が高く
なった場合、つまり過熱度制御のみではモ−タ冷却が不
充分の場合には前記開閉弁11を閉じることにより、前
記中間冷却器32に流れる冷媒流れを中止でき、それだ
け冷媒循環量を減少できるのであるから、中間冷却器3
2による機能は犠牲になるけれども、モ−タ1cの動力
は減少し、それだけモ−タ1cの発熱量を抑えて冷却を
効果的に行えることになるのである。
Therefore, in this embodiment, when the motor coil temperature rises, the liquid refrigerant injection valve is controlled so that the superheat degree downstream of the motor becomes a predetermined superheat degree based on the output from the coil temperature controller 12. The opening of 92 is controlled, and the liquid refrigerant is injected from the liquid refrigerant injection pipe 91 to the upstream side of the motor, and the motor 1c is cooled by the liquid refrigerant, and the degree of superheat is controlled. If the motor coil temperature rises in this state, that is, if the supercooling control alone does not provide sufficient motor cooling, the flow of the refrigerant flowing through the intercooler 32 can be stopped by closing the on-off valve 11. Since the amount of circulating refrigerant can be reduced accordingly, the intercooler 3
Although the function of 2 is sacrificed, the power of the motor 1c is reduced, and the amount of heat generated by the motor 1c can be suppressed and cooling can be performed effectively.

【0035】以上説明した実施例は、何れもレシプロ式
圧縮装置1を用いたものであるが、その他、低段圧縮機
1aと高段圧縮機1bとをもち、これら各圧縮機1a,
1bを一つのモ−タ1cにより同軸駆動するようにした
スクリュー圧縮装置を用いた2段冷凍機にも適用でき
る。
The above-described embodiments all use the reciprocating compressor 1, but have a low-stage compressor 1a and a high-stage compressor 1b.
The present invention can also be applied to a two-stage refrigerator using a screw compression device in which 1b is driven coaxially by one motor 1c.

【0036】[0036]

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の前提構成を示す2段冷凍機の配管系
統図である。
FIG. 1 is a piping diagram of a two-stage refrigerator showing a premise of the present invention.

【図2】 本発明の第1実施例を示す2段冷凍機の配管
系統図である。
FIG. 2 is a piping diagram of a two-stage refrigerator showing a first embodiment of the present invention.

【図3】 本発明の第2実施例を示す2段冷凍機の配管
系統図である。
FIG. 3 is a piping diagram of a two-stage refrigerator showing a second embodiment of the present invention.

【図4】 本発明の第3実施例を示す2段冷凍機の配管
系統図である。
FIG. 4 is a piping diagram of a two-stage refrigerator showing a third embodiment of the present invention.

【図5】本発明を適用する冷凍機の運転領域を示す説明
図である。
FIG. 5 is an explanatory diagram showing an operation region of a refrigerator to which the present invention is applied.

【図6】吸入冷媒量と蒸発温度との関係を示すグラフで
ある。
FIG. 6 is a graph showing a relationship between a suctioned refrigerant amount and an evaporation temperature.

【図7】従来例を示す冷媒配管系統図である。FIG. 7 is a refrigerant piping system diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 2段圧縮装置 1a 低段圧縮機 1b 高段圧縮機 1c モ−タ 2 凝縮器 3 中間冷却装置 7 コイル温度検出器 8 圧力検出器 9 液冷媒注入手段 10 過熱度制御器 11 開閉弁 12 コイル温度制御器 31 分岐管 32 中間冷却器 33 中間膨張弁 34 戻り管 91 液冷媒注入管 92 液冷媒注入弁 DESCRIPTION OF SYMBOLS 1 2 stage compressor 1a Low stage compressor 1b High stage compressor 1c Motor 2 Condenser 3 Intercooler 7 Coil temperature detector 8 Pressure detector 9 Liquid refrigerant injection means 10 Superheat degree controller 11 Open / close valve 12 Coil Temperature controller 31 Branch pipe 32 Intercooler 33 Intermediate expansion valve 34 Return pipe 91 Liquid refrigerant injection pipe 92 Liquid refrigerant injection valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実公 昭39−1081(JP,Y1) 実公 昭56−15485(JP,Y2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Jikken 39-1081 (JP, Y1) Jigoku 56-15485 (JP, Y2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低段圧縮機1aと高段圧縮機1bと、こ
れら各圧縮機1a,1bを同軸駆動するモータ1cとを
もち、前記低段圧縮機1aから吐出されるガス冷媒を前
記モータ1cを介して前記高段圧縮機1bに吸入させる
ようにした2段圧縮装置1を備えると共に、前記高段圧
縮機1bの吐出側に接続する凝縮器2の出口側から分岐
する分岐管31と該分岐管31に介装する中間膨張弁3
3と中間冷却器32及び戻り管34とから成る中間冷却
装置3を設け、前記戻り管34を、前記モータ1cを流
れる冷媒流れのモータ上流側に接続した冷凍機における
圧縮機モータの過熱防止装置であって、前記膨張弁33
は感温式膨張弁から成り、該膨張弁の感温部33aを前
記モータ1cのモータコイル温度検出可能部位に配設す
ると共に、前記モータ1cを流れる冷媒流れのモータ下
流側に、該モータ下流側の冷媒圧力を検出する前記膨張
弁33の均圧管33bを接続していることを特徴とする
2段冷凍機における圧縮機モータの過熱防止装置。
1. A low-stage compressor 1a, a high-stage compressor 1b, and a motor 1c for driving the compressors 1a and 1b coaxially, and a gas refrigerant discharged from the low-stage compressor 1a is supplied to the motor. A branch pipe 31 that branches off from the outlet side of the condenser 2 that is connected to the discharge side of the high-stage compressor 1b; Intermediate expansion valve 3 interposed in branch pipe 31
3. An apparatus for preventing overheating of a compressor motor in a refrigerator in which an intermediate cooling device 3 including an intermediate cooler 32, an intermediate cooler 32, and a return pipe 34 is provided, and the return pipe 34 is connected to a motor upstream side of a refrigerant flow flowing through the motor 1c. And the expansion valve 33
Comprises a temperature-sensitive expansion valve, and a temperature-sensitive portion 33a of the expansion valve is disposed at a position where the temperature of the motor coil of the motor 1c can be detected. An overheating prevention device for a compressor motor in a two-stage refrigerator, wherein an equalizing pipe 33b of the expansion valve 33 for detecting a refrigerant pressure on a side of the compressor is connected.
【請求項2】 低段圧縮機1aと高段圧縮機1bと、こ
れら各圧縮機1a,1bを同軸駆動するモータ1cとを
もち、前記低段圧縮機1aから吐出されるガス冷媒を前
記モータ1cを介して前記高段圧縮機1bに吸入させる
ようにした2段圧縮装置1を備えると共に、前記高段圧
縮機1bの吐出側に接続する凝縮器2の出口側から分岐
する分岐管31と該分岐管31に介装する中間膨張弁3
3と中間冷却器32及び戻り管34とから成る中間冷却
装置3を設け、前記戻り管34を、前記モータ1cを流
れる冷媒流れのモータ上流側に接続した冷凍機における
圧縮機モータの過熱防止装置であって、前記膨張弁33
は電動弁から成り、前記モータ1cのモータコイル温度
を検出するコイル温度検出器7と、前記モータ1cを流
れる冷媒流れにおけるモータ下流側の冷媒圧力を検出す
る圧力検出器8と、モータコイル温度が前記圧力検出器
8で検出する冷媒圧力の圧力相当飽和温度より所定過熱
度だけ高いとき、前記膨張弁33の開度を調整し、前記
モータ1cを流れる冷媒流れのモータ上流側に液冷媒を
注入して過熱度を制御する過熱度制御器10とを備えて
いることを特徴とする2段冷凍機における圧縮機モータ
の過熱防止装置。
2. A low-stage compressor 1a, a high-stage compressor 1b, and a motor 1c for driving the compressors 1a and 1b coaxially. The gas refrigerant discharged from the low-stage compressor 1a is supplied to the motor. A branch pipe 31 that branches off from the outlet side of the condenser 2 that is connected to the discharge side of the high-stage compressor 1b; Intermediate expansion valve 3 interposed in branch pipe 31
3. An apparatus for preventing overheating of a compressor motor in a refrigerator in which an intermediate cooling device 3 including an intermediate cooler 32, an intermediate cooler 32, and a return pipe 34 is provided, and the return pipe 34 is connected to a motor upstream side of a refrigerant flow flowing through the motor 1c. And the expansion valve 33
Comprises a motor-operated valve, a coil temperature detector 7 for detecting a motor coil temperature of the motor 1c, a pressure detector 8 for detecting a refrigerant pressure on a downstream side of the motor in a refrigerant flow flowing through the motor 1c, and a motor coil temperature of When the degree of superheat is higher than the saturation temperature of the refrigerant pressure detected by the pressure detector 8 by a predetermined degree of superheat, the opening degree of the expansion valve 33 is adjusted, and the liquid refrigerant is injected upstream of the flow of the refrigerant flowing through the motor 1c. And a superheat controller 10 for controlling the degree of superheat by controlling the superheat of the compressor motor in the two-stage refrigerator.
【請求項3】 低段圧縮機1aと高段圧縮機1bと、こ
れら各圧縮機1a,1bを同軸駆動するモータ1cとを
もち、前記低段圧縮機1aから吐出されるガス冷媒を前
記モータ1cを介して前記高段圧縮機1bに吸入させる
ようにした2段圧縮装置1を備えると共に、前記高段圧
縮機1bの吐出側に接続する凝縮器2の出口側から分岐
する分岐管31と該分岐管31に介装する中間膨張弁3
3と中間冷却器32及び戻り管34とから成る中間冷却
装置3を設け、前記戻り管34を、前記モータ1cを流
れる冷媒流れのモータ上流側に接続した冷凍機における
圧縮機モータの過熱防止装置であって、前記凝縮器2の
出口側に接続する液冷媒注入管91を前記モータ1cを
流れる冷媒流れのモータ上流側に連通させて、この液冷
媒注入管91に液冷媒注入弁92を介装すると共に、前
記分岐管31に開閉弁11を設ける一方、前記モータ1
cのモータコイル温度を検出するコイル温度検出器7
と、前記冷媒流れのモータ下流側の冷媒圧力を検出する
圧力検出器8と、モータコイル温度が前記圧力検出器8
で検出する冷媒圧力の圧力相当飽和温度より所定過熱度
だけ高いとき、前記液冷媒注入弁92を開いて液冷媒を
注入し、かつ、この状態で前記モータコイル温度が高い
とき前記開閉弁11を閉じるコイル温度制御器12とを
備えていることを特徴とする2段冷凍機における圧縮機
モータの過熱防止装置。
3. A low-stage compressor 1a, a high-stage compressor 1b, and a motor 1c for driving the compressors 1a and 1b coaxially. The gas refrigerant discharged from the low-stage compressor 1a is supplied to the motor. A branch pipe 31 that branches off from the outlet side of the condenser 2 that is connected to the discharge side of the high-stage compressor 1b; Intermediate expansion valve 3 interposed in branch pipe 31
3. An apparatus for preventing overheating of a compressor motor in a refrigerator in which an intermediate cooling device 3 including an intermediate cooler 32, an intermediate cooler 32, and a return pipe 34 is provided, and the return pipe 34 is connected to a motor upstream side of a refrigerant flow flowing through the motor 1c. A liquid refrigerant injection pipe 91 connected to the outlet side of the condenser 2 is connected to a motor upstream side of a refrigerant flow flowing through the motor 1c, and the liquid refrigerant injection pipe 91 is connected to the liquid refrigerant injection pipe 91 through a liquid refrigerant injection valve 92. While the on-off valve 11 is provided in the branch pipe 31, the motor 1
C coil temperature detector 7 for detecting the motor coil temperature of c
A pressure detector 8 for detecting a refrigerant pressure on the downstream side of the motor in the refrigerant flow;
The liquid refrigerant injection valve 92 is opened to inject the liquid refrigerant when the superheat is higher than the pressure equivalent saturation temperature of the refrigerant pressure detected by the above, and the on-off valve 11 is turned on when the motor coil temperature is high in this state. An overheating prevention device for a compressor motor in a two-stage refrigerator, comprising a closing coil temperature controller 12.
JP3175285A 1991-07-16 1991-07-16 Apparatus for preventing overheating of compressor motor in two-stage refrigerator Expired - Fee Related JP2720637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175285A JP2720637B2 (en) 1991-07-16 1991-07-16 Apparatus for preventing overheating of compressor motor in two-stage refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175285A JP2720637B2 (en) 1991-07-16 1991-07-16 Apparatus for preventing overheating of compressor motor in two-stage refrigerator

Publications (2)

Publication Number Publication Date
JPH0526525A JPH0526525A (en) 1993-02-02
JP2720637B2 true JP2720637B2 (en) 1998-03-04

Family

ID=15993453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175285A Expired - Fee Related JP2720637B2 (en) 1991-07-16 1991-07-16 Apparatus for preventing overheating of compressor motor in two-stage refrigerator

Country Status (1)

Country Link
JP (1) JP2720637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010014817A (en) * 1999-07-06 2001-02-26 다카노 야스아키 refrigerant compressor and refrigeration cooling apparatus using the same
JP4244999B2 (en) 2006-02-09 2009-03-25 トヨタ自動車株式会社 Vehicle stabilizer system
KR101139760B1 (en) * 2011-06-29 2012-04-26 안동철 An air conditioning system with prevent the overheat of compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615485U (en) * 1979-07-13 1981-02-10

Also Published As

Publication number Publication date
JPH0526525A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2007051841A (en) Refrigeration cycle device
JP2720637B2 (en) Apparatus for preventing overheating of compressor motor in two-stage refrigerator
JP4427310B2 (en) Refrigeration apparatus and operation control method thereof
JPH01239350A (en) Refrigerating cycle device
CN107328002A (en) The air conditioner heat pump system and its working method of a kind of temperature control throttling
JP6472510B2 (en) Refrigeration air conditioner
JP3993540B2 (en) Refrigeration equipment
JP2964705B2 (en) Air conditioner
JP2004278961A (en) Refrigerating machine
JP2923133B2 (en) Refrigeration equipment
JP3303689B2 (en) Binary refrigeration equipment
JP3836092B2 (en) Refrigeration equipment
JP3348465B2 (en) Binary refrigeration equipment
JPH0460345A (en) Device of preventing over-heating of compressor motor in freezer device
JP2757689B2 (en) Refrigeration equipment
JP2004317034A (en) Refrigerating device
JP3060444B2 (en) Air conditioner
JP3010908B2 (en) Refrigeration equipment
KR880000935B1 (en) Control device for refrigeration cycle
JP2927230B2 (en) Binary refrigeration equipment
JP2004324930A (en) Vapor compression refrigerator
JPH09264620A (en) Cooling device employing combinedly natural circulation loop and operating method thereof
JPH09159287A (en) Refrigerator
JPH03233261A (en) Over-heat preventing device for compressor motor in freezer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees