JP4427310B2 - Refrigeration apparatus and operation control method thereof - Google Patents

Refrigeration apparatus and operation control method thereof Download PDF

Info

Publication number
JP4427310B2
JP4427310B2 JP2003420565A JP2003420565A JP4427310B2 JP 4427310 B2 JP4427310 B2 JP 4427310B2 JP 2003420565 A JP2003420565 A JP 2003420565A JP 2003420565 A JP2003420565 A JP 2003420565A JP 4427310 B2 JP4427310 B2 JP 4427310B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compressor
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003420565A
Other languages
Japanese (ja)
Other versions
JP2005180751A (en
Inventor
孝史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003420565A priority Critical patent/JP4427310B2/en
Publication of JP2005180751A publication Critical patent/JP2005180751A/en
Application granted granted Critical
Publication of JP4427310B2 publication Critical patent/JP4427310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、保冷庫内の保冷(冷却)だけでなく保温(加熱)も行える冷凍装置及びその運転制御方法に関し、たとえば車両用冷凍装置に適用して有用なものである。   The present invention relates to a refrigeration apparatus capable of performing not only cold insulation (cooling) in a cold box but also heat insulation (heating) and an operation control method thereof, and is useful when applied to, for example, a vehicle refrigeration apparatus.

従来より、保冷庫内の保冷(冷却)だけでなく保温(加熱)も行える車両用冷凍装置において、保温のための加熱を行う方式には次の2つが挙げられる。
(1)温水加熱方式
(2)ホットガス冷媒加熱方式
2. Description of the Related Art Conventionally, in a vehicle refrigeration apparatus that can not only keep cold (cool) in a cool box but also keep warm (heated), there are the following two methods for heating for keeping warm.
(1) Hot water heating method (2) Hot gas refrigerant heating method

温水加熱方式は、車両用エンジンの冷却水(その温度は90℃前後になる)を、保冷庫内に導入し、この温水から放熱させることによって保冷庫内を加熱する方式である(たとえば、特許文献1参照)。
ホットガス冷媒加熱方式は、圧縮機から吐出された冷媒(高温高圧の気相状態であり、一般的には「ホットガス」と呼ばれている)を直接エバポレータに導入し、エバポレータにおいてホットガスから放熱させることにより保冷庫内を加熱する方式である。このホットガス冷媒加熱方式は、圧縮機から吐出された高温高圧のガス冷媒が保有する熱を利用して冷凍庫内を加熱するので、ガス冷媒の凝縮熱を利用する加熱方式と区別するため、非凝縮加温サイクルとも呼ばれている。
The hot water heating system is a system in which cooling water of a vehicle engine (its temperature is around 90 ° C.) is introduced into the cold storage chamber and the inside of the cold storage chamber is heated by dissipating heat from the hot water (for example, patents). Reference 1).
In the hot gas refrigerant heating method, refrigerant discharged from a compressor (in a high-temperature and high-pressure gas-phase state, generally referred to as “hot gas”) is directly introduced into the evaporator, and from the hot gas in the evaporator. This is a method of heating the inside of the cool box by dissipating heat. This hot gas refrigerant heating method uses the heat held by the high-temperature and high-pressure gas refrigerant discharged from the compressor to heat the inside of the freezer, so that it is different from the heating method that uses the condensation heat of the gas refrigerant. It is also called a condensation heating cycle.

このような非凝縮加温サイクルでは、圧縮機から吐出される冷媒を庫内温度飽和圧力以下に減圧し、過熱域の顕熱で庫内を加温する。そして、加温サイクル中を循環する冷媒ガス量を調整することにより、圧縮機から吐出される冷媒の高低圧を制御する。すなわち、吐出圧力が設定値以上の高圧となって余剰冷媒が生じると吐出圧力調整弁を開き、コンデンサ及びレシーバ側に余剰冷媒を分流させて逃がすことで冷媒量を調整し、これとは反対に加温サイクルの冷媒ガス量が不足し、吐出圧力が設定値以下の低圧まで低下した場合には、たとえば低圧リリーフ弁を開いてレシーバから加温サイクル中に冷媒を戻して吐出圧力を回復させるという制御が行われている。
特開平10−160321号公報(段落[0016]及び図4)
In such a non-condensation heating cycle, the refrigerant discharged from the compressor is depressurized to a temperature equal to or lower than the internal temperature saturation pressure, and the interior is heated with sensible heat in the overheated region. And the high-low pressure of the refrigerant | coolant discharged from a compressor is controlled by adjusting the refrigerant | coolant gas amount circulated through a heating cycle. That is, when the discharge pressure becomes higher than the set value and surplus refrigerant is generated, the discharge pressure adjustment valve is opened, and the refrigerant amount is adjusted by diverting the surplus refrigerant to the condenser and the receiver side and letting it escape. When the amount of refrigerant gas in the heating cycle is insufficient and the discharge pressure drops to a low pressure below the set value, for example, the low pressure relief valve is opened and the refrigerant is returned from the receiver during the heating cycle to recover the discharge pressure. Control is taking place.
JP-A-10-160321 (paragraph [0016] and FIG. 4)

上記2つの加熱方式には、次のような問題点が指摘されている。
一方の温水加熱方式においては、冷却水を保冷庫内に導入するための配管を別途施工する必要があり、車両に対する冷凍装置の架装が複雑になる。
The following problems have been pointed out in the above two heating methods.
On the other hand, in the hot water heating method, it is necessary to separately construct a pipe for introducing the cooling water into the cold storage, and the mounting of the refrigeration apparatus on the vehicle becomes complicated.

また、通常の非凝縮冷媒加温サイクルでは、圧縮機とコンデンサとの間に設けられた吐出圧力調整弁の開閉動作による高圧制御と、定圧膨脹弁による低圧制御とにより、一定の加熱能力を得ることができる。
従来の吐出圧力調整弁では、加温サイクル中の冷媒ガス量(ホットガス量)を調整しながら、すなわち、コンデンサやレシーバに余剰冷媒を分流させてチャージしながら高圧を抑えるように制御している。
Further, in a normal non-condensed refrigerant heating cycle, a constant heating capacity is obtained by high pressure control by opening / closing operation of a discharge pressure adjusting valve provided between the compressor and the condenser and low pressure control by a constant pressure expansion valve. be able to.
In the conventional discharge pressure regulating valve, the refrigerant gas amount (hot gas amount) during the heating cycle is adjusted, that is, control is performed so as to suppress the high pressure while charging by diverting the surplus refrigerant to the condenser and the receiver. .

ここで、吐出圧力調整弁の開閉制御を図6に基づいて具体的に説明する。
この開閉制御では、諸条件に応じて第1の設定圧力P1及び第2の設定圧力P2を予め定め(P1<P2)ておき、圧縮機出口の圧力(高圧)が第2の設定圧力P2まで圧力上昇した時点で、余剰冷媒があると判断して吐出圧力調整弁を開く(弁開度100%)。そして、吐出圧力調整弁を通って冷媒ガスがコンデンサ側へチャージされると、冷媒ガス量の減少により圧縮機出口の圧力が低下していくので、第2のヒステリシス設定圧力P2h(P2h<P2)まで圧力低下した時点で吐出圧力調整弁を閉じる(弁開度0%)。すなわち、吐出圧力調整弁は、第2の設定圧力P2及び第2のヒステリシス設定圧力Ph2によるヒステリシスを設けて、図6に矢印で示すような反時計廻りの開閉制御がなされている。
Here, the opening / closing control of the discharge pressure regulating valve will be specifically described with reference to FIG.
In this open / close control, the first set pressure P1 and the second set pressure P2 are determined in advance according to various conditions (P1 <P2), and the pressure (high pressure) at the compressor outlet reaches the second set pressure P2. When the pressure rises, it is determined that there is excess refrigerant, and the discharge pressure adjustment valve is opened (valve opening degree 100%). Then, when the refrigerant gas is charged to the condenser side through the discharge pressure regulating valve, the pressure at the compressor outlet decreases due to the decrease in the refrigerant gas amount, so the second hysteresis set pressure P2h (P2h <P2) When the pressure drops to the point, the discharge pressure adjustment valve is closed (valve opening 0%). That is, the discharge pressure regulating valve is provided with hysteresis by the second set pressure P2 and the second hysteresis set pressure Ph2, and is controlled to open and close in the counterclockwise direction as indicated by an arrow in FIG.

さて、このような従来の運転制御では、冷凍装置が運転停止状態から加熱運転を開始する時(以下、「加熱運転起動時」と呼ぶ)、あるいは、冷却運転から加熱運転に運転切換した時(以下、「加熱運転切換時」と呼ぶ)において、吐出圧力調整弁を開いて比較的多量の余剰冷媒をコンデンサ側へチャージする必要がある。このため、加熱運転起動時及び加熱運転切換時に吐出圧力調整弁を開くと、空間容量の大きなコンデンサやレシーバに余剰冷媒が分流されるため急激な圧力低下を生じるので、第2のヒステリシス設定圧力P2h以下に低下して吐出圧力調整弁は短時間で閉となる。しかし、充分な量の余剰冷媒が分流されずに加温サイクル側に残るため、圧縮機の吐出圧力はすぐに第2の設定圧力P2まで上昇してしまい、再度吐出圧力調整弁が開となる。   In such conventional operation control, when the refrigeration apparatus starts the heating operation from the operation stop state (hereinafter referred to as “heating operation start time”), or when the operation is switched from the cooling operation to the heating operation ( Hereinafter, it is necessary to charge a relatively large amount of excess refrigerant to the capacitor side by opening the discharge pressure adjustment valve. For this reason, when the discharge pressure adjustment valve is opened at the time of starting the heating operation or switching to the heating operation, the surplus refrigerant is diverted to the condenser or the receiver having a large space capacity, so that a sudden pressure drop occurs. Therefore, the second hysteresis setting pressure P2h The discharge pressure adjusting valve closes in a short period of time. However, since a sufficient amount of excess refrigerant remains on the heating cycle side without being diverted, the discharge pressure of the compressor immediately rises to the second set pressure P2, and the discharge pressure adjustment valve is opened again. .

以下同様にして、たとえば図7に示すように、吐出圧力(高圧)の変動により吐出圧力調整弁が短時間の開閉を頻繁に繰り返した後、加温サイクル中の余剰冷媒がなくなって吐出圧力が静定した時点で開閉も安定する。
このように、吐出圧力調整弁の開閉動作が頻繁に繰り返されると、その耐久性が問題になるばかりか、開閉動作により生じる開閉音が運転騒音ともなって好ましくない。このため、冷凍装置の商品性を向上させるためには、冷凍装置の加熱性能を損なうことなく吐出圧力調整弁の頻繁な開閉を低減することが望まれる。
Similarly, for example, as shown in FIG. 7, after the discharge pressure regulating valve frequently opens and closes for a short time due to fluctuations in the discharge pressure (high pressure), the surplus refrigerant in the heating cycle disappears and the discharge pressure When it settles, the opening and closing is stable.
As described above, if the opening / closing operation of the discharge pressure regulating valve is frequently repeated, not only the durability becomes a problem, but also the opening / closing sound generated by the opening / closing operation is not preferable as operation noise. For this reason, in order to improve the merchantability of the refrigeration apparatus, it is desired to reduce frequent opening and closing of the discharge pressure regulating valve without impairing the heating performance of the refrigeration apparatus.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、加熱運転起動時及び加熱運転切換時における吐出圧力調整弁の頻繁な開閉動作を改善することができる冷凍装置及びその運転制御方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a refrigeration apparatus capable of improving frequent opening and closing operations of a discharge pressure regulating valve at the time of heating operation start-up and at the time of heating operation switching. And an operation control method thereof.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る冷凍装置は、圧縮機から吐出された高温高圧で気相状態の冷媒を、コンデンサ、レシーバ及び膨張弁をバイパスし、かつ、減圧手段により保冷庫の庫内温度飽和圧力以下まで減圧してエバポレータに導入することにより、前記エバポレータで前記保冷庫内に放熱させて前記保冷庫内を加熱し、この放熱で低温低圧の気相状態となった冷媒を前記圧縮機へと戻す非凝縮冷媒加熱運転を行う冷凍装置であって、前記圧縮機の高圧を検出する圧力検出手段と、前記非凝縮加熱運転時に開閉し、余剰冷媒を前記コンデンサ側へ分流させて高圧制御を行う吐出圧力調整弁と、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長する余剰冷媒分流促進制御手段と、を備えていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The refrigeration apparatus according to the present invention bypasses the condenser, the receiver and the expansion valve, and depressurizes the high-temperature and high-pressure refrigerant discharged from the compressor to a temperature equal to or lower than the internal temperature saturation pressure of the cold storage by the decompression means. By introducing into the evaporator, the evaporator heats the inside of the cool box and heats the inside of the cool box, thereby returning the refrigerant that has become a low-temperature and low-pressure gas phase state to the compressor by this heat release. A refrigeration apparatus that performs a refrigerant heating operation, a pressure detection unit that detects a high pressure of the compressor, and a discharge pressure adjustment that opens and closes during the non-condensing heating operation and performs a high pressure control by diverting excess refrigerant to the condenser side a valve, the operation when switching to the heating operation from start-up and the cooling operation of the heating operation from the operation stop state, a predetermined pressure drop when the detected value of the pressure detecting means detects the high voltage of a predetermined value And is characterized in that it comprises a, a surplus refrigerant flow acceleration control means for forcibly extending the opening time of the normal control for opening the discharge pressure regulating valve until the.

このような本発明の冷凍装置によれば、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長する余剰冷媒分流促進制御手段を備えているので、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時には、余剰冷媒を強制的にコンデンサ側へ分流させて圧縮機の高圧を効率よく下げることができる。 According to the refrigeration apparatus of the present invention, when the detected value of the pressure detecting means detects a high pressure that is equal to or higher than a predetermined value when the heating operation is started from the operation stop state and when the operation is switched from the cooling operation to the heating operation. In order to forcibly extend the open time during normal control that opens the discharge pressure adjustment valve until a predetermined pressure drop occurs, a surplus refrigerant distribution promotion control means is provided. When the operation is switched from the operation to the heating operation, the excess refrigerant can be forcibly diverted to the condenser side, and the high pressure of the compressor can be lowered efficiently.

また、上述した本発明の冷凍装置においては、前記余剰冷媒分流促進制御手段は、前記吐出圧力調整弁を開状態から閉状態に切り換える時、開状態を維持する所定の遅延時間を設けることが好ましく、これにより、遅延時間内に余剰冷媒をコンデンサ側へ分流させて圧縮機の高圧を効率よく下げることができる。   In the above-described refrigeration apparatus of the present invention, it is preferable that the surplus refrigerant distribution promotion control means provide a predetermined delay time for maintaining the open state when the discharge pressure regulating valve is switched from the open state to the closed state. Thus, it is possible to efficiently reduce the high pressure of the compressor by diverting the surplus refrigerant to the condenser side within the delay time.

また、上述した本発明の冷凍装置においては、前記余剰冷媒分流促進制御手段は、前記加熱運転起動時及び冷却運転からの運転切換時に前記吐出圧力調整弁を閉状態とする前に所定の開状態維持時間を設けることが好ましく、これにより、開状態維持時間内に余剰冷媒をコンデンサ側へ分流させて圧縮機の高圧を効率よく下げることができる。   Further, in the above-described refrigeration apparatus of the present invention, the surplus refrigerant flow promotion control means is in a predetermined open state before closing the discharge pressure adjusting valve when the heating operation is started and when the operation is switched from the cooling operation. It is preferable to provide a maintenance time, whereby the excess refrigerant can be diverted to the condenser side within the open state maintenance time, and the high pressure of the compressor can be lowered efficiently.

本発明に係る冷凍装置の運転制御方法は、圧縮機から吐出された高温高圧で気相状態の冷媒を、コンデンサ、レシーバ及び膨張弁をバイパスし、かつ、減圧手段により保冷庫の庫内温度飽和圧力以下まで減圧してエバポレータに導入することにより、前記エバポレータで前記保冷庫内に放熱させて前記保冷庫内を加熱し、この放熱で低温低圧の気相状態となった冷媒を前記圧縮機へと戻す非凝縮冷媒加熱運転を行う冷凍装置の運転制御方法であって、前記非凝縮加熱運転時に、前記圧縮機の高圧を検出する圧力検出手段の検出値に応じて吐出圧力調整弁を開閉し、余剰冷媒を前記コンデンサ側へ分流させて高圧制御を行うと共に、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長して余剰冷媒の分流を促進することを特徴とするものである。 The operation control method of the refrigeration apparatus according to the present invention is a high-temperature and high-pressure refrigerant discharged from a compressor, bypasses a condenser, a receiver, and an expansion valve, and the inside temperature of the cool box is saturated by a decompression unit. By reducing the pressure to below the pressure and introducing it into the evaporator, the evaporator releases heat into the cool box and heats the inside of the cool box, and the refrigerant that has become a low-temperature and low-pressure gas phase by this heat release is sent to the compressor. The operation control method of the refrigeration apparatus performing the non-condensed refrigerant heating operation to return to the open and close state, and opens and closes the discharge pressure adjustment valve according to the detected value of the pressure detecting means for detecting the high pressure of the compressor during the non-condensed heating operation , by diverting excess refrigerant to the condenser side performs high-voltage control, the operation when switching to the heating operation from startup and the cooling operation of the heating operation from the operation stop state, the detection value of the pressure detecting means Characterized in that to facilitate the diversion of excess refrigerant by forcibly extending the opening time of the normal control for opening the discharge pressure regulating valve until a predetermined pressure drop when detecting more high value is there.

このような冷凍装置の運転制御方法によれば、非凝縮加熱運転時に、圧縮機の高圧を検出する圧力検出手段の検出値に応じて吐出圧力調整弁を開閉し、余剰冷媒をコンデンサ側へ分流させて高圧制御を行うと共に、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長して余剰冷媒の分流を促進するので、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時には、強制的に延長した開時間内に余剰冷媒をコンデンサ側へ分流させて圧縮機の高圧を効率よく下げることができる。
According to such an operation control method of the refrigeration apparatus, during the non-condensing heating operation, the discharge pressure adjustment valve is opened and closed according to the detected value of the pressure detecting means for detecting the high pressure of the compressor, and the surplus refrigerant is diverted to the condenser side. The high pressure control is performed, and the predetermined pressure is detected when the detected value of the pressure detecting means detects a high pressure equal to or higher than a predetermined value when the operation is stopped to start the heating operation and when the operation is switched from the cooling operation to the heating operation. Opening the discharge pressure adjustment valve until it drops, forcibly extending the open time during normal control to promote the diversion of surplus refrigerant, so when starting the heating operation from the shutdown state and from the cooling operation to the heating operation At the time of operation switching, excess refrigerant can be diverted to the condenser side within the forcedly extended open time, and the high pressure of the compressor can be lowered efficiently.

上述した本発明の冷凍装置及びその運転制御方法によれば、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時においては、余剰冷媒を強制的にコンデンサ側へ分流させて圧縮機の高圧を十分に下げることができるので、下記のような効果が得られる。
(1)吐出圧力調整弁(たとえば電磁弁)の頻繁な開閉動作を防ぎ、吐出圧力調整弁の信頼性や耐久性を向上させる。
(2)吐出圧力調整弁(たとえば電磁弁)の開閉回数が減少するので、開閉音による騒音の発生を低減することができる。
(3)吐出圧力調整弁を閉じる前に所定の遅延時間を設ける方式の場合、所定の開状態維持時間を設けるという一定時間停止方式において、外気が低い時に生じることが懸念される加温サイクルのガス不足を防止することができる。
According to the refrigeration apparatus and its operation control method of the present invention described above, the surplus refrigerant is forcibly diverted to the condenser side when starting the heating operation from the operation stop state and when switching the operation from the cooling operation to the heating operation. Since the high pressure of the compressor can be lowered sufficiently, the following effects can be obtained.
(1) The frequent opening and closing operation of the discharge pressure adjusting valve (for example, a solenoid valve) is prevented, and the reliability and durability of the discharge pressure adjusting valve are improved.
(2) Since the number of opening and closing of the discharge pressure adjusting valve (for example, a solenoid valve) is reduced, the generation of noise due to the opening and closing noise can be reduced.
(3) In the case of a method in which a predetermined delay time is provided before closing the discharge pressure regulating valve, a heating cycle that is likely to occur when the outside air is low in a fixed time stop method in which a predetermined open state maintenance time is provided. Gas shortage can be prevented.

このように、吐出圧力調整弁の信頼性や耐久性の向上に加えて、運転騒音の低減も可能になることから、冷凍装置の商品性向上に顕著な効果を奏する。   In this way, in addition to improving the reliability and durability of the discharge pressure regulating valve, it is possible to reduce the operating noise, so that there is a significant effect on the improvement of the commerciality of the refrigeration apparatus.

以下、本発明に係る冷凍装置及びその制御方法について、一実施形態を図面に基づいて説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る冷凍装置として、車両用冷凍装置の構成図を示したものである。また、図2は前記車両用冷凍装置の冷却サイクルを示す説明図、図3は前記車両用冷凍装置の加温(加熱)サイクルを示す説明図、図4は前記車両用冷凍装置における吐出圧力調整弁の開閉制御を示す説明図である。
Hereinafter, an embodiment of a refrigeration apparatus and a control method thereof according to the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 shows a configuration diagram of a vehicular refrigeration apparatus as a refrigeration apparatus according to a first embodiment of the present invention. 2 is an explanatory diagram showing a cooling cycle of the refrigeration apparatus for vehicles, FIG. 3 is an explanatory diagram showing a heating (heating) cycle of the refrigeration apparatus for vehicles, and FIG. 4 is a discharge pressure adjustment in the refrigeration apparatus for vehicles. It is explanatory drawing which shows the opening / closing control of a valve.

図1に示す車両用冷凍装置1は、トラック等の車両に搭載されてコンテナ(荷室)内の冷却及び加熱を行う装置である。この車両用冷凍装置1は、2つの保冷庫3A,3Bを有しており、保冷庫3A,3B内の保冷(冷却)だけでなく保温(加熱)も行えるものである。保冷庫3Aは車両の前側に配置されており、前室とも称する。保冷庫3Bは車両の後側に配置されており、後室とも称する。   A vehicle refrigeration apparatus 1 shown in FIG. 1 is an apparatus that is mounted on a vehicle such as a truck and cools and heats a container (loading room). The vehicular refrigeration apparatus 1 includes two cold storages 3A and 3B, and can perform not only cold storage (cooling) but also heat retention (heating) in the cold storages 3A and 3B. The cool box 3A is disposed on the front side of the vehicle and is also referred to as a front chamber. The cool box 3B is disposed on the rear side of the vehicle and is also referred to as a rear chamber.

図1に示すように、車両用冷凍装置1は、圧縮機4、コンデンサ5、レシーバ6、膨張弁7A,7B、エバポレータ8A,8B、アキュムレータ9を有しており、これらの各機器が図1中に太い実線で示す冷媒配管L1を介して順次接続されることにより、冷媒を用いた冷却(冷凍)サイクルを実現する閉回路の冷媒循環系統を構成している。また、車両用冷凍装置1には制御装置10が装備されており、制御装置10は制御部10A、記憶部10B及び入力部10Cを有している。   As shown in FIG. 1, the vehicular refrigeration apparatus 1 includes a compressor 4, a condenser 5, a receiver 6, expansion valves 7A and 7B, evaporators 8A and 8B, and an accumulator 9. These devices are shown in FIG. The refrigerant circulation system of the closed circuit which implement | achieves the cooling (refrigeration) cycle using a refrigerant | coolant is comprised by connecting sequentially through the refrigerant | coolant piping L1 shown inside with a thick continuous line. Moreover, the control apparatus 10 is equipped in the vehicle refrigeration apparatus 1, and the control apparatus 10 has 10 A of control parts, the memory | storage part 10B, and the input part 10C.

2つのエバポレータ8A,8Bは、膨張弁7A,7Bなどとともに前記系統内に並列に接続されている。詳述すると、冷媒配管L1は、レシーバ6の出口側とエバポレータ8A,8Bの出口側との間において、冷媒配管L1−1と冷媒配管L1−2とに並列に分岐されている。
一方の冷媒配管L1−1には、膨張弁7Aとエバポレータ8Aとが冷媒流れ方向の下流側から順に設けられ、かつ、開閉弁SV1(電磁弁)が膨張弁7Aの上流側に設けられている。開閉弁SV1は冷媒流路(冷媒配管L1−1)を開閉して、エバポレータ8Aへの冷媒の導入を断続するものである。
The two evaporators 8A and 8B are connected in parallel in the system together with the expansion valves 7A and 7B. More specifically, the refrigerant pipe L1 is branched in parallel with the refrigerant pipe L1-1 and the refrigerant pipe L1-2 between the outlet side of the receiver 6 and the outlet sides of the evaporators 8A and 8B.
One refrigerant pipe L1-1 is provided with an expansion valve 7A and an evaporator 8A in order from the downstream side in the refrigerant flow direction, and an on-off valve SV1 (electromagnetic valve) is provided on the upstream side of the expansion valve 7A. . The on-off valve SV1 opens and closes the refrigerant flow path (refrigerant pipe L1-1), and intermittently introduces the refrigerant to the evaporator 8A.

他方の冷媒配管L1−2には、膨張弁7Bとエバポレータ8Bとが下流側から順に設けられ、かつ、開閉弁SV2が膨張弁7Bの上流側に設けられている。開閉弁SV2は冷媒流路(冷媒配管L1−2)を開閉して、エバポレータ8Bへの冷媒の導入を断続するものである。
この場合、エバポレータ8Aは保冷庫(前室)3A側に配置され、エバポレータ8Bは保冷庫(後室)3B側に配置されている。
The other refrigerant pipe L1-2 is provided with an expansion valve 7B and an evaporator 8B in order from the downstream side, and an on-off valve SV2 is provided on the upstream side of the expansion valve 7B. The on-off valve SV2 opens and closes the refrigerant flow path (refrigerant pipe L1-2), and intermittently introduces the refrigerant to the evaporator 8B.
In this case, the evaporator 8A is disposed on the cold storage (front chamber) 3A side, and the evaporator 8B is disposed on the cold storage (rear chamber) 3B side.

また、冷媒配管L1には、図1中に細い実線で示すバイパス配管L2が、上述したコンデンサ5、レシーバ6及び膨張弁7A,7Bをバイパスして接続されている。バイパス配管L2の一端側(上流側)は圧縮機4の吐出側に接続される一方、バイパス配管L2の他端側(下流側)はバイパス配管L2−1,L2−2の2つに分岐され、その一方のバイパス配管L2−1がエバポレータ8Aの入口側に接続され、他方のバイパス配管L2−2がエバポレータ8Bの入口側に接続されている。
さらに、一方のバイパス配管L2−1には、冷媒流路(バイパス配管L2−1)を開閉してエバポレータ8Aへの冷媒の導入を断続する開閉弁SV3(電磁弁)が設けられ、他方のバイパス配管L2−2には、冷媒流路(バイパス配管L2−2)を開閉してエバポレータ8Bへの冷媒の導入を断続する開閉弁SV4(電磁弁)が設けられている。
Further, a bypass pipe L2 indicated by a thin solid line in FIG. 1 is connected to the refrigerant pipe L1 so as to bypass the condenser 5, the receiver 6, and the expansion valves 7A and 7B described above. One end side (upstream side) of the bypass pipe L2 is connected to the discharge side of the compressor 4, while the other end side (downstream side) of the bypass pipe L2 is branched into two bypass pipes L2-1 and L2-2. One bypass pipe L2-1 is connected to the inlet side of the evaporator 8A, and the other bypass pipe L2-2 is connected to the inlet side of the evaporator 8B.
Further, one bypass pipe L2-1 is provided with an open / close valve SV3 (solenoid valve) that opens and closes the refrigerant flow path (bypass pipe L2-1) and intermittently introduces the refrigerant into the evaporator 8A. The pipe L2-2 is provided with an on-off valve SV4 (solenoid valve) that opens and closes the refrigerant flow path (bypass pipe L2-2) and intermittently introduces the refrigerant to the evaporator 8B.

従って、加熱運転の際、開閉弁SV3,SV4を開けば、バイパス配管L2により、圧縮機1から吐出された高温高圧で気相状態の冷媒(ホットガス)を、コンデンサ5、レシーバ6及び膨張弁7A,7Bをバイパスして、エバポレータ8A,8Bに導入することができる。
また、バイパス配管L2には減圧手段としての定圧膨張弁11が設けられている。この定圧膨張弁11では、加熱運転の際、圧縮機4から吐出された高温高圧で気相状態の冷媒を、過熱状態におかれる保冷庫3A,3Bの庫内温度飽和圧力以下まで気相状態を保ったままで減圧する。
Therefore, when the on-off valves SV3 and SV4 are opened during the heating operation, the high-temperature and high-pressure refrigerant (hot gas) discharged from the compressor 1 is discharged from the compressor 1 by the bypass pipe L2, and the condenser 5, the receiver 6, and the expansion valve. 7A and 7B can be bypassed and introduced into the evaporators 8A and 8B.
The bypass pipe L2 is provided with a constant pressure expansion valve 11 as a pressure reducing means. In the constant pressure expansion valve 11, during the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 4 is in a gas phase state up to a temperature equal to or lower than the internal temperature saturation pressure of the cold storage chambers 3 </ b> A and 3 </ b> B placed in an overheated state. While maintaining the pressure, the pressure is reduced.

すなわち、圧縮機4、定圧膨張弁11、エバポレータ8A,8Bが冷媒配管L1及びバイパス配管L2を介して順次接続されることにより、一般的にはホットガスとも呼ばれている非凝縮冷媒による加温サイクルを実現する冷媒循環系統を構成している。   That is, the compressor 4, the constant pressure expansion valve 11, and the evaporators 8A and 8B are sequentially connected via the refrigerant pipe L1 and the bypass pipe L2, so that heating by a non-condensing refrigerant, which is generally called hot gas, is performed. The refrigerant circulation system that realizes the cycle is configured.

また、冷媒配管L1には、吐出圧力調整手段としての吐出圧力調整弁12が設けられている。この吐出圧力調整弁12は、圧縮機4の高圧側(吐出側)とコンデンサ5の入口側との間に設けられており、圧縮機4の高圧側(圧縮機4の吐出側から定圧膨張弁11及び吐出圧力調整弁12までの間)の冷媒圧力、すなわち、圧縮機4から吐出された高温高圧で気相状態にある冷媒(ホットガス)の圧力が、第2の設定圧力(以下、所定圧力)P2よりも高い場合に開く電磁弁である。ここで使用する吐出圧力調整弁12の電磁弁には、消費電力の低減を可能にする通電閉(ノーマルオープン)タイプが好ましい。
なお、バイパス配管L2の一端側は、吐出圧力調整弁12の上流側において、圧縮機1から吐出された高圧側の冷媒が流れる冷媒配管L1に接続されている。
The refrigerant pipe L1 is provided with a discharge pressure adjusting valve 12 as discharge pressure adjusting means. The discharge pressure adjusting valve 12 is provided between the high pressure side (discharge side) of the compressor 4 and the inlet side of the condenser 5, and the high pressure side of the compressor 4 (constant pressure expansion valve from the discharge side of the compressor 4). 11 and the discharge pressure adjustment valve 12), that is, the pressure of the refrigerant (hot gas) in a gas phase at high temperature and high pressure discharged from the compressor 4 is a second set pressure (hereinafter referred to as a predetermined pressure). This is a solenoid valve that opens when the pressure is higher than P2. The solenoid valve of the discharge pressure regulating valve 12 used here is preferably an energized closed (normally open) type that enables reduction of power consumption.
Note that one end side of the bypass pipe L2 is connected to the refrigerant pipe L1 through which the high-pressure side refrigerant discharged from the compressor 1 flows upstream of the discharge pressure regulating valve 12.

従って、バイパス配管L2に冷媒を流す加熱運転の際、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高い場合には、吐出圧力調整弁12が開いて高圧側の冷媒の一部を余剰冷媒として、冷媒配管L1に分流させる。この余剰冷媒は、コンデンサ5及びレシーバ6に導かれてチャージ(貯留)されるので、上述した高圧側の冷媒圧力を所定圧力P2以下に下げることができる。このことによって、圧縮機4の高圧側の冷媒圧力が高くなり過ぎないように調整されている。   Therefore, when the refrigerant pressure on the high pressure side of the compressor 4 is higher than the predetermined pressure P2 during the heating operation in which the refrigerant flows through the bypass pipe L2, the discharge pressure adjustment valve 12 is opened and a part of the high pressure side refrigerant is removed. As an excess refrigerant, the refrigerant is diverted to the refrigerant pipe L1. Since this surplus refrigerant is led to the capacitor 5 and the receiver 6 and charged (stored), the above-described refrigerant pressure on the high-pressure side can be lowered to a predetermined pressure P2 or less. Thus, the refrigerant pressure on the high pressure side of the compressor 4 is adjusted so as not to become too high.

そして、レシーバ6と圧縮機4の低圧側(エバポレータ8A,8Bの出口側からアキュムレータ9または圧縮機4の吸い込み側までの間)とは、冷媒流路としての冷媒配管L3によってつながれており、この冷媒配管L3には、冷媒流路(冷媒配管L3)を開閉して冷媒の流通を断続する開閉手段としての低圧リリーフ弁13と、開閉弁SV5(電磁弁)とが設けられている。   The receiver 6 and the low pressure side of the compressor 4 (between the outlet side of the evaporators 8A and 8B and the suction side of the accumulator 9 or the compressor 4) are connected by a refrigerant pipe L3 as a refrigerant flow path. The refrigerant pipe L3 is provided with a low-pressure relief valve 13 as an opening / closing means for opening and closing the refrigerant flow path (refrigerant pipe L3) and intermittently circulating the refrigerant, and an on-off valve SV5 (electromagnetic valve).

低圧リリーフ弁13は、細い配管L4によって圧縮機4の高圧側と接続されており、細い配管L4を介して得られる前記高圧側の冷媒圧力が第1の設定圧力(以下、所定圧力)P1よりも低い場合に開く弁である。従って、加熱運転の際(この時、開閉弁SV5は開とされる)、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低い場合には、低圧リリーフ弁13が開いて、レシーバ6に保持されている冷媒の一部が圧縮機4の低圧側に戻されると、エバポレータ8A,8Bから圧縮機4へと戻る低温低圧で気相状態の冷媒に加えられることにより、上述した高圧側の冷媒圧力を所定圧力P1以上に高くすることができる。
この時、レシーバ6に保持されている冷媒は、レシーバ6の冷媒圧力と、圧縮機4の低圧側の冷媒圧力との差圧によって、レシーバ6から前記低圧側へと流れる(戻される)。なお、この場合のレシーバ6の冷媒圧力は、冷媒が単にレシーバ6内に保持されている状態であるため、外気温度によって決まることとなる。
The low pressure relief valve 13 is connected to the high pressure side of the compressor 4 by a thin pipe L4, and the refrigerant pressure on the high pressure side obtained through the thin pipe L4 is from a first set pressure (hereinafter referred to as a predetermined pressure) P1. It is a valve that opens when it is low. Therefore, during the heating operation (at this time, the on-off valve SV5 is opened), when the refrigerant pressure on the high pressure side of the compressor 4 is lower than the predetermined pressure P1, the low pressure relief valve 13 opens and the receiver 6 When a part of the refrigerant held in the refrigerant is returned to the low pressure side of the compressor 4, the refrigerant is added to the refrigerant in the gas phase at a low temperature and low pressure returning from the evaporators 8 </ b> A and 8 </ b> B to the compressor 4. The refrigerant pressure can be made higher than the predetermined pressure P1.
At this time, the refrigerant held in the receiver 6 flows (returns) from the receiver 6 to the low pressure side due to the differential pressure between the refrigerant pressure of the receiver 6 and the refrigerant pressure on the low pressure side of the compressor 4. In this case, the refrigerant pressure of the receiver 6 is determined by the outside air temperature because the refrigerant is simply held in the receiver 6.

また、圧縮機4の高圧側には、高圧側の圧力検出手段としての圧力センサ16が設置されており、この圧力センサ16による高圧側の冷媒の圧力検出値と所定圧力P2とを比較して、吐出圧力調整弁12の開閉制御を行うようになっている。
また、圧縮機4と吐出圧力調整弁12との間、レシーバ6と開閉弁SV1,SV2との間、及びエバポレータ8A,8Bとアキュムレータ9との間には、冷媒の流れを一方向に規制する逆止弁14A,14B,14C,14Dがそれぞれ設置されている。
また、保冷庫3A,3Bには、保冷庫3A,3B内の温度(庫内温)を検出する温度センサ15A,15Bが設置されている。
Further, a pressure sensor 16 is installed on the high pressure side of the compressor 4 as pressure detection means on the high pressure side, and the pressure detection value of the refrigerant on the high pressure side by the pressure sensor 16 is compared with a predetermined pressure P2. The opening / closing control of the discharge pressure adjusting valve 12 is performed.
Further, the flow of the refrigerant is restricted in one direction between the compressor 4 and the discharge pressure adjusting valve 12, between the receiver 6 and the on-off valves SV1 and SV2, and between the evaporators 8A and 8B and the accumulator 9. Check valves 14A, 14B, 14C, and 14D are respectively installed.
Moreover, temperature sensors 15A and 15B that detect temperatures (internal temperatures) in the cold storages 3A and 3B are installed in the cold storages 3A and 3B.

制御装置10の制御部10Aは、吐出圧力調整弁12、コンデンサ用ファンFM2、エバポレータ用ファンFM1F,FM1R、圧縮機4の駆動源となる図示しないエンジンと圧縮機4との間に介設された圧縮機クラッチMCL、開閉弁SV1〜SV5、温度センサ15A,15B及び圧力センサ16と、それぞれ図1中に点線で示す信号線で接続されており、車両用冷凍装置1の各運転モード(詳細後述)において、各温度センサ15A,15Bの庫内温度検出信号(庫内温度検出値)と庫内温度設定値とに基づき、吐出圧力調整弁12及び開閉弁SV1〜SV5の開閉制御、コンデンサ用ファンFM2及びエバポレータ用ファンFM1F,FM1Rの運転/停止制御、さらには圧縮機クラッチMCLの断続制御(圧縮機4の運転/停止制御)を行う。   The control unit 10A of the control device 10 is interposed between the compressor 4 and a discharge pressure regulating valve 12, a condenser fan FM2, an evaporator fan FM1F, FM1R, and an engine (not shown) serving as a drive source for the compressor 4. The compressor clutch MCL, the on-off valves SV1 to SV5, the temperature sensors 15A and 15B, and the pressure sensor 16 are connected to each other by signal lines indicated by dotted lines in FIG. ), The open / close control of the discharge pressure adjusting valve 12 and the open / close valves SV1 to SV5, the condenser fan based on the internal temperature detection signal (internal temperature detection value) and the internal temperature set value of each temperature sensor 15A, 15B Operation / stop control of the FM2 and evaporator fans FM1F and FM1R, and further, intermittent control of the compressor clutch MCL (operation / stop control of the compressor 4) ) Is performed.

制御部10Aでは、通常は前述のように圧力センサ16の圧力検出値と所定圧力P2とを比較し、圧力検出値が所定値P2以上であれば吐出圧力調整弁12を開く。
しかし、後述する各運転モードの中で、車両用冷凍装置1が運転停止状態から加熱運転を開始する時(以下、「加熱運転起動時」と呼ぶ)、あるいは、冷却運転から加熱運転に運転切換する時(以下、「加熱運転切換時」と呼ぶ)には、吐出圧力調整弁12の開時間を強制的に延長することにより、余剰冷媒をコンデンサ5側へ積極的に分流させて定圧膨張弁11側へ流れる冷媒量を減少させる制御を実施する。以下の説明では、このような制御を「余剰冷媒分流促進制御手段」と呼ぶこととし、この余剰冷媒分流促進制御手段は、たとえば制御回路として制御部10A内に組み込まれている。
The control unit 10A normally compares the pressure detection value of the pressure sensor 16 with the predetermined pressure P2 as described above, and opens the discharge pressure adjustment valve 12 if the pressure detection value is equal to or greater than the predetermined value P2.
However, in each operation mode to be described later, when the vehicle refrigeration apparatus 1 starts the heating operation from the operation stop state (hereinafter referred to as “heating operation start”), or the operation is switched from the cooling operation to the heating operation. When the operation is performed (hereinafter referred to as “heating operation switching”), the open pressure of the discharge pressure adjusting valve 12 is forcibly extended to positively divert excess refrigerant to the condenser 5 side, thereby maintaining a constant pressure expansion valve. The control which reduces the refrigerant | coolant amount which flows into the 11 side is implemented. In the following description, such control is referred to as “excess refrigerant distribution promotion control means”, and this excess refrigerant distribution promotion control means is incorporated in the control unit 10A as a control circuit, for example.

制御装置10の入力部10Cは、保冷庫3A,3Bそれぞれの庫内温度設定値、運転モードの選択、各保冷庫3A,3Bの1回当りの加熱/冷却時間(エバポレータ8A,8Bへの冷媒導入時間)などの情報を入力するために使用される。制御装置10の記憶部10Bでは、温度センサ15A,15Bの庫内温度検出値及び保冷庫3A,3Bそれぞれの庫内温度設定値や、その他の情報を記憶しておくようになっている。   The input unit 10C of the control device 10 is configured to select the internal temperature setting value of each of the cold storages 3A and 3B, the selection of the operation mode, and the heating / cooling time for each cooling storage 3A and 3B (refrigerant to the evaporators 8A and 8B) Used to enter information such as the introduction time). In the storage unit 10B of the control device 10, the internal temperature detection values of the temperature sensors 15A and 15B, the internal temperature setting values of the cold storage units 3A and 3B, and other information are stored.

ここで車両用冷凍装置1の各運転モードについて、[表1]を参照して説明する。
なお、表1において、前室サーモ「ON」は、冷却運転の場合には温度センサ15Aの庫内温度検出値が保冷庫3Aの庫内温度設定値よりも高いと判断して保冷庫3Aの冷却運転を実行することを意味し、加熱運転の場合には温度センサ15Aの庫内温度検出値が保冷庫3Aの庫内温度設定値よりも低いと判断して保冷庫3Aの加熱運転を実行することを意味する。同様に、後室サーモ「ON」は、冷却運転の場合には温度センサ15Bの庫内温度検出値が保冷庫3Bの庫内温度設定値よりも高いと判断して保冷庫3Bの冷却運転を実行することを意味し、加熱運転の場合には温度センサ15Bの庫内温度検出値が保冷庫3Bの庫内温度設定値よりも低いと判断して保冷庫3Bの加熱運転を実行することを意味する。
Here, each operation mode of the vehicle refrigeration apparatus 1 will be described with reference to [Table 1].
In Table 1, the front chamber thermo “ON” indicates that in the cooling operation, the temperature detection value of the temperature sensor 15A is higher than the temperature setting value of the cold storage 3A, and the temperature of the cold storage 3A is determined. This means that the cooling operation is executed. In the case of the heating operation, it is determined that the detected temperature value of the temperature sensor 15A is lower than the set value of the temperature in the cool box 3A, and the heating operation of the cool box 3A is executed. It means to do. Similarly, in the case of the cooling operation, the rear chamber thermo “ON” determines that the temperature detection value of the temperature sensor 15B is higher than the temperature setting value of the cold storage 3B and performs the cooling operation of the cold storage 3B. In the case of the heating operation, it is determined that the temperature detection value of the temperature sensor 15B is lower than the temperature setting value of the cool box 3B, and the heating operation of the cool box 3B is executed. means.

また、前室サーモ「OFF」は、冷却運転の場合には温度センサ15Aの庫内温度検出値が保冷庫3Aの庫内温度設定値以下になったと判断して保冷庫3Aの冷却運転を停止すること(温度管理停止)を意味し、加熱運転の場合には温度センサ15Aの庫内温度検出値が保冷庫3Aの庫内温度設定値以上になったと判断して保冷庫3Aの加熱運転を停止すること(温度管理停止)を意味する。同様に、後室サーモ「OFF」は、冷却運転の場合には温度センサ15Bの庫内温度検出値が保冷庫3Bの庫内温度設定値以下になったと判断して保冷庫3Bの冷却運転を停止すること(温度管理停止)を意味し、加熱運転の場合には温度センサ15Bの庫内温度検出値が保冷庫3Bの庫内温度設定値以上になったと判断して保冷庫3Bの加熱運転を停止すること(温度管理停止)を意味する。   In addition, in the case of the cooling operation, the front chamber thermo “OFF” determines that the temperature detection value of the temperature sensor 15A is equal to or lower than the temperature setting value of the cold storage 3A and stops the cooling operation of the cold storage 3A. In the case of heating operation, it is determined that the temperature detection value of the temperature sensor 15A is equal to or higher than the temperature setting value of the cold storage 3A, and the heating operation of the cold storage 3A is performed. It means stopping (temperature control stop). Similarly, in the case of the cooling operation, the rear chamber thermometer “OFF” determines that the internal temperature detection value of the temperature sensor 15B is equal to or lower than the internal temperature setting value of the cold storage 3B, and performs the cooling operation of the cold storage 3B. It means to stop (temperature control stop), and in the case of heating operation, it is determined that the temperature detection value of the temperature sensor 15B is equal to or higher than the temperature setting value of the cool box 3B, and the heating operation of the cool box 3B. Is stopped (temperature control is stopped).

また、「◎」と「×」のマークは、吐出圧力調整弁12及び開閉弁SV1〜SV5に関しては「開」と「閉」、コンデンサ用ファンFM2及びエバポレータ用ファンFM1F,FM1Rに関しては「運転」と「停止」、圧縮機クラッチMCLに関しては「接続」(圧縮機4の運転)と「切り離し」(圧縮機4の停止)を意味する。   The marks “◎” and “×” indicate “open” and “closed” for the discharge pressure adjusting valve 12 and the on-off valves SV1 to SV5, and “operation” for the condenser fan FM2 and the evaporator fans FM1F and FM1R. And “stop”, and the compressor clutch MCL means “connected” (operation of the compressor 4) and “disengagement” (stop of the compressor 4).

Figure 0004427310
Figure 0004427310

表1に示すように、車両用冷凍装置1では、次の(1)〜(5)の運転モードを選択することができる。
(1)前室・後室とも冷却運転モード
(2)前室・後室とも加熱運転モード
(3)前室冷却・後室加熱運転モード
(4)前室加熱・後室冷却運転モード
(5)デフロスト運転モード
As shown in Table 1, in the vehicle refrigeration apparatus 1, the following operation modes (1) to (5) can be selected.
(1) Cooling operation mode for both the front and rear chambers (2) Heating operation mode for both the front and rear chambers (3) Cooling for the front chamber and heating for the rear chamber (4) Heating for the front chamber and cooling for the rear chamber (5 ) Defrost operation mode

そして、制御装置10では、運転モード(1)〜(5)の何れかが選択されたとき、次の(A)〜(L)の運転モードを選択的に実行する。
(A)前室冷却・後室冷却交互運転モード ((B)と(C)の交互運転)
(B)前室のみ冷却(後室は温度管理停止)運転モード
(C)後室のみ冷却(前室は温度管理停止)運転モード
(D)前室加熱・後室加熱同時運転モード
(E)前室のみ加熱(後室は温度管理停止)運転モード
(F)後室のみ加熱(前室は温度管理停止)運転モード
(G)前室冷却・後室加熱交互運転モード ((B)と(F)の交互運転)
(H)前室加熱・後室冷却交互運転モード ((E)と(C)の交互運転)
(I)前室のみデフロスト運転モード
(J)後室のみデフロスト運転モード
(K)前室・後室同時デフロスト運転モード
Then, in the control device 10, when any of the operation modes (1) to (5) is selected, the following operation modes (A) to (L) are selectively executed.
(A) Front chamber cooling / rear chamber cooling alternate operation mode (alternate operation of (B) and (C))
(B) Cooling of the front chamber only (temperature control stopped for the rear chamber) (C) Cooling of the rear chamber only (temperature control stopped for the front chamber) Operation mode (D) Simultaneous heating mode of front chamber heating and rear chamber heating (E) Only the front chamber is heated (temperature control is stopped for the rear chamber) (F) Only the rear chamber is heated (temperature control is stopped for the front chamber) Operation mode (G) Front chamber cooling and rear chamber heating alternate operation mode ((B) and ( F) Alternate operation)
(H) Front chamber heating / rear chamber cooling alternate operation mode (alternate operation of (E) and (C))
(I) Defrost operation mode for front chamber only (J) Defrost operation mode for rear chamber only (K) Simultaneous defrost operation mode for front and rear chambers

すなわち、運転モード(1)が選択されたときには運転モード(A),(B),(C)が選択的に実行され、運転モード(2)が選択されたときには運転モード(D),(E),(F)が選択的に実行され、運転モード(3)が選択されたときには運転モード(G),(B),(F)が選択的に実行され、運転モード(4)が選択されたときには運転モード(H),(E),(C)が選択的に実行される。また、運転モード(5)が選択されたときには、さらに運転モード(I),(J),(K)の何れかが選択されて実行される。なお、運転モード(A)〜(K)の詳細は次のとおりである。   That is, when the operation mode (1) is selected, the operation modes (A), (B), (C) are selectively executed, and when the operation mode (2) is selected, the operation modes (D), (E ), (F) are selectively executed, and when the operation mode (3) is selected, the operation modes (G), (B), (F) are selectively executed, and the operation mode (4) is selected. When this occurs, the operation modes (H), (E), and (C) are selectively executed. When the operation mode (5) is selected, any one of the operation modes (I), (J), and (K) is further selected and executed. The details of the operation modes (A) to (K) are as follows.

運転モード(1)が選択されているとき、前室サーモ及び後室サーモがONであれば、運転モード(A)が実行される。運転モード(A)では、運転モード(B)と運転モード(C)の交互運転が行われる。この交互運転はたとえば2分間隔で行われる。なお、この時同時運転は行わず、交互運転を行うのは、冷却運転では2室の温度が異なる場合、冷媒の蒸発圧力も異なるためである。   When the operation mode (1) is selected, the operation mode (A) is executed if the front chamber thermo and the rear chamber thermo are ON. In the operation mode (A), the operation mode (B) and the operation mode (C) are alternately operated. This alternate operation is performed at intervals of, for example, 2 minutes. Note that the simultaneous operation is not performed at this time, and the alternate operation is performed because, in the cooling operation, when the temperatures of the two chambers are different, the evaporation pressure of the refrigerant is also different.

運転モード(1)が選択されているとき、前室サーモがONで後室サーモがOFFであれば、運転モード(B)が実行される。なお、運転モード(A)は前述の運転モード(A)や、後述する運転モード(G)においても実行される。   When the operation mode (1) is selected, the operation mode (B) is executed if the front chamber thermo is ON and the rear chamber thermo is OFF. The operation mode (A) is also executed in the above-described operation mode (A) and the operation mode (G) described later.

運転モード(B)では、次のような冷却運転が行われる。すなわち、開閉弁SV2,SV3,SV4,SV5が閉じられ、開閉弁SV1及び吐出圧力調整弁12が開けられる。また、エバポレータ用ファンFM1F,FM1R及びコンデンサ用ファンFM2は運転され、圧縮機クラッチMCLは接続される(圧縮機4は運転される)。   In the operation mode (B), the following cooling operation is performed. That is, the on-off valves SV2, SV3, SV4, SV5 are closed, and the on-off valve SV1 and the discharge pressure adjusting valve 12 are opened. Further, the evaporator fans FM1F and FM1R and the condenser fan FM2 are operated, and the compressor clutch MCL is connected (the compressor 4 is operated).

圧縮機4から吐出された高温高圧で気相状態の冷媒は、吐出圧力調整弁12を流通してコンデンサ5に流入する。コンデンサ2に流入した冷媒は外部の空気に熱を与え、自らは凝縮して高温高圧の液冷媒となる。この液冷媒はレシーバ6、開閉弁SV1を流通し、膨張弁7Aを流通する過程で断熱膨張して低温低圧の液冷媒となった後にエバポレータ8Aに流入する。エバポレータ8Aに流入した液冷媒は、保冷庫3A内の空気を冷却し、自らは蒸発して低温低圧のガス冷媒(気相状態の冷媒)となる。この低温低圧のガス冷媒はエバポレータ8Aから流出した後、アキュムレータ9を流通し、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。   The high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 4 flows through the discharge pressure regulating valve 12 and flows into the capacitor 5. The refrigerant flowing into the condenser 2 gives heat to the outside air, and condenses itself into a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant flows through the receiver 6 and the on-off valve SV1, adiabatically expands in the process of flowing through the expansion valve 7A, becomes a low-temperature and low-pressure liquid refrigerant, and then flows into the evaporator 8A. The liquid refrigerant that has flowed into the evaporator 8A cools the air in the cool box 3A, and evaporates to become a low-temperature and low-pressure gas refrigerant (vapor-phase refrigerant). This low-temperature and low-pressure gas refrigerant flows out of the evaporator 8A, then flows through the accumulator 9, and is sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

図2に示すように、飽和線を表すモリエル線図Iに対して、この時の冷却サイクルは図中にIIで示すようになる。すなわち、冷却サイクルIIにおいてa点からb点までが圧縮機4による冷媒の圧縮、b点からc点までがコンデンサ5による冷媒の凝縮、c点からd点までが膨張弁7Aによる冷媒の膨張(減圧)、d点からa点までがエバポレータ8Aにおける冷媒の蒸発(保冷庫内の冷却)である。   As shown in FIG. 2, for the Mollier diagram I representing the saturation line, the cooling cycle at this time is as indicated by II in the figure. That is, in the cooling cycle II, the refrigerant is compressed by the compressor 4 from the point a to the point b, the refrigerant is condensed by the condenser 5 from the point b to the point c, and the refrigerant is expanded by the expansion valve 7A from the point c to the point d ( Decompression), from point d to point a is the evaporation of the refrigerant in the evaporator 8A (cooling in the cool box).

運転モード(1)が選択されているとき、前室サーモがOFFで後室サーモがONであれば、運転モード(C)が実行される。なお、運転モード(B)は前述の運転モード(A)や、後述する運転モード(H)においても実行される。   When the operation mode (1) is selected, the operation mode (C) is executed if the front chamber thermo is OFF and the rear chamber thermo is ON. The operation mode (B) is also executed in the above-described operation mode (A) and the operation mode (H) described later.

運転モード(C)でも、上記の運転モード(b)と同様に次のような冷却運転が行われる。すなわち、開閉弁SV1,SV3,SV4,SV5が閉じられ、開閉弁SV2及び吐出圧力調整弁12が開けられる。また、エバポレータ用ファンFM1F,FM1R及びコンデンサ用ファンFM2は運転され、圧縮機クラッチMCLは接続される(圧縮機4は運転される)。
圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出され、吐出圧力調整弁12を流通してコンデンサ5に流入する。コンデンサ2に流入した冷媒は庫外の空気に熱を与え、自らは凝縮して高温高圧の液冷媒(液相状態の冷媒)となる。この液冷媒はレシーバ6、開閉弁SV2を流通し、膨張弁7Bを流通する過程で断熱膨張して低温低圧の液冷媒となった後にエバポレータ8Bに流入する。エバポレータ8Bに流入した液冷媒は、保冷庫3B内の空気を冷却し、自らは蒸発して低温低圧のガス冷媒(気相状態の冷媒)となる。この低温低圧のガス冷媒はエバポレータ8Bから流出した後、アキュムレータ9を流通し、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。
In the operation mode (C), the following cooling operation is performed in the same manner as in the operation mode (b). That is, the on-off valves SV1, SV3, SV4, SV5 are closed, and the on-off valve SV2 and the discharge pressure adjusting valve 12 are opened. Further, the evaporator fans FM1F and FM1R and the condenser fan FM2 are operated, and the compressor clutch MCL is connected (the compressor 4 is operated).
The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase, is discharged from the compressor 4, flows through the discharge pressure adjustment valve 12, and flows into the capacitor 5. The refrigerant that has flowed into the condenser 2 gives heat to the air outside the box, and condenses itself to become a high-temperature and high-pressure liquid refrigerant (liquid phase refrigerant). This liquid refrigerant flows through the receiver 6 and the on-off valve SV2, adiabatically expands in the process of flowing through the expansion valve 7B, becomes a low-temperature and low-pressure liquid refrigerant, and then flows into the evaporator 8B. The liquid refrigerant that has flowed into the evaporator 8B cools the air in the cool box 3B, and evaporates to become a low-temperature and low-pressure gas refrigerant (vapor-phase refrigerant). This low-temperature and low-pressure gas refrigerant flows out of the evaporator 8B, then flows through the accumulator 9, and is sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

そして、運転モード(2)が選択されているとき、前室サーモ及び後室サーモがONであれば、運転モード(D)が実行される。   When the operation mode (2) is selected, the operation mode (D) is executed if the front chamber thermo and the rear chamber thermo are ON.

運転モード(D)では、次のような非凝縮冷媒加熱運転が行われる。すなわち、開閉弁SV1,SV2及び吐出圧力調整弁12が閉じられ、開閉弁SV3,SV4,SV5が開けられる。また、エバポレータ用ファンFM1F,FM1Rは運転され、圧縮機クラッチMCLは接続される(圧縮機4は運転される)。なお、コンデンサ用ファンFM2は停止される。   In the operation mode (D), the following non-condensed refrigerant heating operation is performed. That is, the on-off valves SV1, SV2 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV3, SV4, SV5 are opened. Further, the evaporator fans FM1F and FM1R are operated, and the compressor clutch MCL is connected (the compressor 4 is operated). The capacitor fan FM2 is stopped.

圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い状態で吐出圧力調整弁12を閉じているため、コンデンサ5には流入せず、全量が定圧膨張弁11に流入する。この定圧膨脹弁11に導かれた冷媒は、保冷庫3A,3Bの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV3,SV4を流通してエバポレータ8A,8Bに導入される。エバポレータ8A,8Bでは、導入された気相状態の冷媒が、凝縮を伴わないで放熱し、保冷庫3A,3B内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となってエバポレータ8A,8Bから流出し、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。   The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. This high-temperature, high-pressure, gas-phase refrigerant closes the discharge pressure regulating valve 12 with its pressure lower than the predetermined pressure P2, and therefore does not flow into the capacitor 5, but flows entirely into the constant pressure expansion valve 11. . The refrigerant guided to the constant pressure expansion valve 11 is depressurized while maintaining a gas phase state below the interior temperature saturation pressure of the cold storage chambers 3A and 3B, and then flows through the on-off valves SV3 and SV4 to the evaporators 8A and 8B. be introduced. In the evaporators 8A and 8B, the introduced refrigerant in the gas phase state dissipates heat without condensing, and heats the air in the cold storages 3A and 3B. The radiated refrigerant becomes a low-temperature and low-pressure gas phase, flows out of the evaporators 8A and 8B, flows through the accumulator 9, and is sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

かくして、非凝縮の冷媒による加熱運転が行われる。図3に示すように、飽和線や等温線を表すモリエル線図Iに対して、この時の加温サイクルはIIIのようになる。加温サイクルIIIにおいて、a点からb点までが圧縮機4による冷媒の圧縮、b点からc点までが定圧膨張弁11による冷媒の減圧、c点からa点までがエバポレータ8A,8Bにおける冷媒の放熱(保冷庫内の加熱)である。   Thus, the heating operation with the non-condensing refrigerant is performed. As shown in FIG. 3, with respect to the Mollier diagram I representing a saturation line and an isotherm, the heating cycle at this time is as shown in III. In the heating cycle III, the refrigerant is compressed by the compressor 4 from the point a to the point b, the refrigerant is depressurized by the constant pressure expansion valve 11 from the point b to the point c, and the refrigerant in the evaporators 8A and 8B is from the point c to the point a. Heat dissipation (heating in the cold storage).

この非凝縮冷媒加熱運転の際、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、すなわち圧力センサ16で検出した冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部が分流してコンデンサ6に導入される。その結果、前記高圧側の冷媒圧力が所定圧力P2以下に低減される。こうしてコンデンサ6に導入された冷媒は、レシーバ6に保持される。
また、図6に示すように、吐出圧力調整弁12は、冷媒圧力が所定圧力P2まで上昇した時点で開となり、第2のヒステリシス設定圧力P2hまで圧力低下した時点で閉となるように、ヒステリシスが設けられている。
When the refrigerant pressure on the high pressure side of the compressor 4 becomes higher than the predetermined pressure P2 during the non-condensed refrigerant heating operation, that is, when the refrigerant pressure detected by the pressure sensor 16 becomes higher than the predetermined pressure P2. The discharge pressure regulating valve 12 is opened, and a part of the high-pressure side refrigerant is diverted and introduced into the condenser 6. As a result, the high-pressure side refrigerant pressure is reduced to a predetermined pressure P2 or less. The refrigerant thus introduced into the capacitor 6 is held by the receiver 6.
Further, as shown in FIG. 6, the discharge pressure adjusting valve 12 is opened when the refrigerant pressure rises to a predetermined pressure P2, and is closed when the pressure drops to the second hysteresis setting pressure P2h. Is provided.

一方、この非凝縮冷媒加熱運転の際、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8A,8Bから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記高圧側の冷媒圧力を所定圧力P1以上に高くすることができる。
すなわち、図6に示すように、低圧リリーフ弁13は冷媒圧力が所定圧力P1まで低下した時点で開き始め、さらに冷媒圧力が低くなるにしたがって弁開度が増加する。なお、低圧リリーフ弁13は、図示のように開と閉の特性が一致せず、すなわち、閉時には第1のヒステリシス設定圧力P1hで全閉となるようにヒステリシスが設けられている。
On the other hand, when the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1 during the non-condensed refrigerant heating operation, the low pressure relief valve 13 is opened and one of the refrigerant held in the receiver 6 is opened. By returning the part to the low pressure side of the compressor 4, it is added to the refrigerant in the gas phase state at a low temperature and low pressure returning from the evaporators 8 </ b> A and 8 </ b> B to the compressor 4. Thereby, the refrigerant pressure on the high-pressure side can be increased to a predetermined pressure P1 or higher.
That is, as shown in FIG. 6, the low-pressure relief valve 13 starts to open when the refrigerant pressure drops to the predetermined pressure P1, and the valve opening increases as the refrigerant pressure further decreases. Note that the low-pressure relief valve 13 is provided with hysteresis so that the opening and closing characteristics do not match as shown in the figure, that is, when the low-pressure relief valve is closed, it is fully closed at the first hysteresis setting pressure P1h.

また、図6に示すように、所定圧力P1,P2は、P2よりもP1のほうが低く設定され、かつ、ヒステリシスも考慮して(P1h<P2h)、吐出圧力調整弁12が開いている時期と、低圧リリーフ弁13が開いている時期とが重ならないように設定されている。   Further, as shown in FIG. 6, the predetermined pressures P1 and P2 are set to be lower in P1 than in P2, and in consideration of hysteresis (P1h <P2h), the timing when the discharge pressure adjustment valve 12 is open The time when the low-pressure relief valve 13 is open is set so as not to overlap.

上記のような非凝縮冷媒による加熱運転では、定圧膨張弁11の絞り量と、圧縮機4、定圧膨張弁11及びエバポレータ8A,8Bを有してなる非凝縮冷媒加温サイクルの系統を循環する冷媒の循環流量とによって、圧縮機4の高圧側の冷媒圧力(圧縮機4の吐出圧力)が決まる。従って、吐出圧力調整弁12が開いてレシーバ6に保持される冷媒の量が増えることにより、前記冷媒の循環流量が低下すると、前記高圧側の冷媒圧力が低下してしまう。そこで、前記高圧側の冷媒圧力の低下を抑制するため、前記高圧側の冷媒圧力が所定圧力P1より低くなると低圧リリーフ弁13が開いて、レシーバ6に保持されている冷媒の一部を、非凝縮冷媒加温サイクルの系統に戻して同系統を流れる冷媒に加えることにより、前記冷媒の循環流量を増やすようになっている。   In the heating operation using the non-condensed refrigerant as described above, the amount of throttle of the constant pressure expansion valve 11 and the system of the non-condensed refrigerant heating cycle including the compressor 4, the constant pressure expansion valve 11 and the evaporators 8A and 8B are circulated. The refrigerant pressure on the high pressure side of the compressor 4 (discharge pressure of the compressor 4) is determined by the circulation flow rate of the refrigerant. Accordingly, when the discharge flow rate adjustment valve 12 is opened and the amount of the refrigerant held in the receiver 6 is increased, the refrigerant pressure on the high-pressure side is lowered when the circulation flow rate of the refrigerant is lowered. Therefore, in order to suppress a decrease in the refrigerant pressure on the high-pressure side, when the refrigerant pressure on the high-pressure side becomes lower than the predetermined pressure P1, the low-pressure relief valve 13 is opened, and a part of the refrigerant held in the receiver 6 By returning to the system of the condensed refrigerant heating cycle and adding it to the refrigerant flowing through the system, the circulation flow rate of the refrigerant is increased.

冷媒圧力の低下についてさらに詳述すると、定圧膨張弁11はエバポレータ8A,8Bに導入される冷媒の圧力を保冷庫3A,3Bの庫内温度飽和圧力以下まで減圧するため、圧縮機4の高圧側の冷媒圧力が高くなるほど開度が減少し(絞られ)、逆に前記冷媒圧力が低くなるほど開度が増加する。従って、前記冷媒の循環流量の低下により前記高圧側の冷媒圧力が低下してきても、定圧膨張弁11の働きにより、圧縮機4の低圧側の冷媒圧力は直ぐには低下せず、定圧膨張弁11が全開してから低下し始める。このため、非凝縮冷媒加温サイクルにおける冷媒圧力の低下をできるだけ早期に抑制するには、前記高圧側の冷媒圧力の低下に応じて冷媒を補充することが非常に有効であると考えられる。
このため、細い配管L4で連通させた高圧側の冷媒圧力を監視して、上記のように前記高圧側の冷媒圧力が所定圧力P1より低くなると低圧リリーフ弁13を開いてレシーバ6に保持されている冷媒の一部を戻すようにしている。なお、低圧リリーフ弁13は、運転モード(A)などの冷却運転時においても冷媒圧力が低いときには開いてしまうことがあるため、冷却運転時には冷媒配管L3を確実に閉じておくことができるように開閉弁SV5が設けられている。
The refrigerant pressure drop will be described in further detail. The constant pressure expansion valve 11 reduces the pressure of the refrigerant introduced into the evaporators 8A and 8B to a temperature equal to or lower than the internal temperature saturation pressure of the cold storages 3A and 3B. As the refrigerant pressure increases, the opening degree decreases (throttles), and conversely, the opening degree increases as the refrigerant pressure decreases. Therefore, even if the refrigerant pressure on the high pressure side decreases due to a decrease in the circulation flow rate of the refrigerant, the refrigerant pressure on the low pressure side of the compressor 4 does not decrease immediately due to the action of the constant pressure expansion valve 11, and the constant pressure expansion valve 11 Begins to decline after fully opening. For this reason, in order to suppress the decrease in the refrigerant pressure in the non-condensed refrigerant heating cycle as early as possible, it is very effective to replenish the refrigerant according to the decrease in the high-pressure side refrigerant pressure.
Therefore, the refrigerant pressure on the high pressure side communicated with the thin pipe L4 is monitored, and when the refrigerant pressure on the high pressure side becomes lower than the predetermined pressure P1 as described above, the low pressure relief valve 13 is opened and held by the receiver 6. A part of the refrigerant is returned. Note that the low-pressure relief valve 13 may open when the refrigerant pressure is low even during the cooling operation such as the operation mode (A), so that the refrigerant pipe L3 can be reliably closed during the cooling operation. An on-off valve SV5 is provided.

運転モード(2)が選択されているとき、前室サーモがONで後室サーモがOFFであれば、運転モード(E)が実行される。   When the operation mode (2) is selected, the operation mode (E) is executed if the front chamber thermo is ON and the rear chamber thermo is OFF.

運転モード(E)では、保冷庫8Aに対してのみ非凝縮冷媒加熱運転が行われる。すなわち、開閉弁SV1,SV2、SV4及び吐出圧力調整弁12が閉じられ、開閉弁SV3,SV5が開けられる。また、エバポレータ用ファンFM1F,FM1Rは運転され、圧縮機クラッチMCLは接続される(圧縮機4は運転される)。なお、コンデンサ用ファンFM2は停止される。   In the operation mode (E), the non-condensed refrigerant heating operation is performed only for the cool box 8A. That is, the on-off valves SV1, SV2, SV4 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV3, SV5 are opened. Further, the evaporator fans FM1F and FM1R are operated, and the compressor clutch MCL is connected (the compressor 4 is operated). The capacitor fan FM2 is stopped.

圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い限りは吐出圧力調整弁12が開かないため、コンデンサ5には流入せず、定圧膨張弁11によって保冷庫3Aの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV3を流通してエバポレータ8Aに導入される。エバポレータ8Aでは、導入された気相状態の冷媒が、凝縮を伴わないで放熱し、保冷庫3A内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となってエバポレータ8Aから流出し、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。かくして、冷媒を凝縮させず、非凝縮の冷媒による加熱運転が行われる(図3参照)。   The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. As long as the pressure of the high-temperature and high-pressure refrigerant is lower than the predetermined pressure P2, the discharge pressure regulating valve 12 does not open, so that it does not flow into the capacitor 5 and is stored in the cold storage 3A by the constant pressure expansion valve 11. After the pressure is reduced while maintaining the gas phase state up to the internal temperature saturation pressure or less, the gas is introduced into the evaporator 8A through the on-off valve SV3. In the evaporator 8A, the introduced refrigerant in the gas phase state dissipates heat without condensing, and heats the air in the cool box 3A. The radiated refrigerant becomes a low-temperature and low-pressure gas phase, flows out of the evaporator 8A, flows through the accumulator 9, and is sucked into the compressor 4 and compressed. Thereafter, the above process is repeated. Thus, the heating operation with the non-condensed refrigerant is performed without condensing the refrigerant (see FIG. 3).

この非凝縮冷媒加熱運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部がコンデンサ6に導入される。その結果、前記冷媒圧力が所定圧力P2以下に低減される。なお、コンデンサ6に導入された冷媒はレシーバ6に保持される。   Also during the non-condensed refrigerant heating operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes higher than the predetermined pressure P2, the discharge pressure adjustment valve 12 is opened and a part of the refrigerant on the high pressure side is opened. Is introduced into the capacitor 6. As a result, the refrigerant pressure is reduced below the predetermined pressure P2. Note that the refrigerant introduced into the capacitor 6 is held by the receiver 6.

そして、この非凝縮冷媒加熱運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8Aから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記冷媒圧力を所定圧力P1以上に高くすることができる。   Even in the non-condensed refrigerant heating operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1, the low pressure relief valve 13 is opened and the refrigerant held in the receiver 6 is used. Is returned to the low-pressure side of the compressor 4 to be added to the refrigerant in the gas phase at a low temperature and low pressure returning from the evaporator 8A to the compressor 4. Thereby, the refrigerant pressure can be increased to a predetermined pressure P1 or higher.

運転モード(2)が選択されているとき、前室サーモがOFFで後室サーモがONであれば、運転モード(F)が実行される。   When the operation mode (2) is selected, the operation mode (F) is executed if the front chamber thermo is OFF and the rear chamber thermo is ON.

運転モード(F)では、保冷庫8Bに対してのみ非凝縮冷媒加熱運転が行われる。すなわち、開閉弁SV1,SV2、SV3及び吐出圧力調整弁12が閉じられ、開閉弁SV4,SV5が開けられる。また、エバポレータ用ファンFM1F,FM1Rは運転され、圧縮機クラッチMCLは接続される(圧縮機4は運転される)。なお、コンデンサ用ファンFM2は停止される。   In the operation mode (F), the non-condensed refrigerant heating operation is performed only on the cool box 8B. That is, the on-off valves SV1, SV2, SV3 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV4, SV5 are opened. Further, the evaporator fans FM1F and FM1R are operated, and the compressor clutch MCL is connected (the compressor 4 is operated). The capacitor fan FM2 is stopped.

圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い限りは吐出圧力調整弁12が開かないため、コンデンサ5には流入せず、定圧膨張弁11によって保冷庫3Bの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV4を流通してエバポレータ8Bに導入される。エバポレータ8Bでは、導入された気相状態の冷媒が、凝縮を伴わないで放熱し、保冷庫3B内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となってエバポレータ8Bから流出し、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。かくして、冷媒を凝縮させず、非凝縮の冷媒による加熱運転が行われる(図3参照)。   The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. As long as the pressure of the high-temperature and high-pressure refrigerant is lower than the predetermined pressure P2, the discharge pressure regulating valve 12 does not open, so that it does not flow into the capacitor 5 and is stored in the cool box 3B by the constant pressure expansion valve 11. After the pressure is reduced while maintaining the gas phase state to the internal temperature saturation pressure or lower, the gas is introduced into the evaporator 8B through the on-off valve SV4. In the evaporator 8B, the introduced refrigerant in the gas phase state dissipates heat without condensing, and heats the air in the cool box 3B. The radiated refrigerant becomes a low-temperature and low-pressure gas phase, flows out of the evaporator 8B, flows through the accumulator 9, and is sucked into the compressor 4 and compressed. Thereafter, the above process is repeated. Thus, the heating operation with the non-condensed refrigerant is performed without condensing the refrigerant (see FIG. 3).

この非凝縮冷媒加熱運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部がコンデンサ6に導入される。その結果、前記冷媒圧力が所定圧力P2以下に低減される。なお、コンデンサ6に導入された冷媒はレシーバ6に保持される。   Also during the non-condensed refrigerant heating operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes higher than the predetermined pressure P2, the discharge pressure adjustment valve 12 is opened and a part of the refrigerant on the high pressure side is opened. Is introduced into the capacitor 6. As a result, the refrigerant pressure is reduced below the predetermined pressure P2. Note that the refrigerant introduced into the capacitor 6 is held by the receiver 6.

そして、この非凝縮冷媒加熱運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8Bから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記冷媒圧力を所定圧力P1以上に高くすることができる。   Even in the non-condensed refrigerant heating operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1, the low pressure relief valve 13 is opened and the refrigerant held in the receiver 6 is used. Is returned to the low-pressure side of the compressor 4 to be added to the refrigerant in the gas phase state at a low temperature and low pressure returning from the evaporator 8B to the compressor 4. Thereby, the refrigerant pressure can be increased to a predetermined pressure P1 or higher.

次に、運転モード(3)が選択されているとき、前室サーモ及び後室サーモがONであれば、運転モード(G)が実行される。運転モード(G)では、運転モード(B)と運転モード(F)の交互運転が行われる。この交互運転はたとえば2分間隔で行われる。   Next, when the operation mode (3) is selected, if the front chamber thermo and the rear chamber thermo are ON, the operation mode (G) is executed. In the operation mode (G), the operation mode (B) and the operation mode (F) are alternately operated. This alternate operation is performed at intervals of, for example, 2 minutes.

運転モード(3)が選択されているとき、前室サーモがONで後室サーモがOFFであれば、運転モード(B)が実行される。   When the operation mode (3) is selected, the operation mode (B) is executed if the front chamber thermo is ON and the rear chamber thermo is OFF.

運転モード(3)が選択されているとき、前室サーモがOFFで後室サーモがONであれば、運転モード(F)が実行される。   When the operation mode (3) is selected, if the front chamber thermo is OFF and the rear chamber thermo is ON, the operation mode (F) is executed.

次に、運転モード(4)が選択されているとき、前室サーモ及び後室サーモがONであれば、運転モード(H)が実行される。運転モード(H)では、運転モード(E)と運転モード(C)の交互運転が行われる。この交互運転はたとえば2分間隔で行われる。   Next, when the operation mode (4) is selected, the operation mode (H) is executed if the front chamber thermo and the rear chamber thermo are ON. In the operation mode (H), the operation mode (E) and the operation mode (C) are alternately operated. This alternate operation is performed at intervals of, for example, 2 minutes.

運転モード(4)が選択されているとき、前室サーモがONで後室サーモがOFFであれば、運転モード(E)が実行される。   When the operation mode (4) is selected, the operation mode (E) is executed if the front chamber thermo is ON and the rear chamber thermo is OFF.

運転モード(4)が選択されているとき、前室サーモがOFFで後室サーモがONであれば、運転モード(E)が実行される。   When the operation mode (4) is selected, the operation mode (E) is executed if the front chamber thermo is OFF and the rear chamber thermo is ON.

次に、運転モード(5)が選択されているとき、さらに運転モード(I)が選択された場合には、次のように保冷庫3A(エバポレータ8A)に対してのみデフロスト運転が行われる。   Next, when the operation mode (5) is selected, if the operation mode (I) is further selected, the defrost operation is performed only on the cool box 3A (evaporator 8A) as follows.

すなわち、開閉弁SV1,SV2,SV4及び吐出圧力調整弁12が閉じられ、開閉弁SV3,SV5が開けられる。また、エバポレータ用ファンFM1Fは停止され、エバポレータ用ファンFM1R及びコンデンサ用ファンFM2は運転され、圧縮機クラッチMCLは接続される(圧縮機4が運転される)。圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い限りは吐出圧力調整弁12が開かないため、コンデンサ5には流入せず、定圧膨張弁11によって保冷庫3Aの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV3を流通してエバポレータ8Aに導入される。エバポレータ8Aでは、導入された気相状態の冷媒によって保冷庫3A(エバポレータ8A)の霜取りが行われる。エバポレータ8Aから流出した低温低圧で気相状態の冷媒は、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。   That is, the on-off valves SV1, SV2, SV4 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV3, SV5 are opened. Further, the evaporator fan FM1F is stopped, the evaporator fan FM1R and the condenser fan FM2 are operated, and the compressor clutch MCL is connected (the compressor 4 is operated). The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. As long as the pressure of the high-temperature and high-pressure refrigerant is lower than the predetermined pressure P2, the discharge pressure regulating valve 12 does not open, so that it does not flow into the capacitor 5 and is stored in the cold storage 3A by the constant pressure expansion valve 11. After the pressure is reduced while maintaining the gas phase state up to the internal temperature saturation pressure or less, the gas is introduced into the evaporator 8A through the on-off valve SV3. In the evaporator 8A, the cold storage 3A (evaporator 8A) is defrosted by the introduced gas-phase refrigerant. The low-temperature low-pressure gas-phase refrigerant flowing out of the evaporator 8A flows through the accumulator 9 and is then sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

かくして、非凝縮の冷媒によるデフロスト運転が行われる。図示は省略するが、保冷庫3Aにはデフロスト終了を判断する温度センサ(エバポレータコイルの表面温度等を計測するセンサ)の温度検出値が目標温度に達した時点で開閉弁SV3を閉じてデフロスト運転を終了する。なお、デフロスト運転としては、タイマーや手動によってデフロスト運転の開始や終了を制御するタイマーデフロストや手動デフロストも可能である。   Thus, the defrost operation with the non-condensing refrigerant is performed. Although illustration is omitted, the cold storage 3A closes the on-off valve SV3 when the temperature detection value of a temperature sensor (a sensor for measuring the surface temperature of the evaporator coil, etc.) that determines the end of the defrost reaches the target temperature, and performs the defrost operation. Exit. As defrost operation, timer defrost or manual defrost for controlling the start and end of defrost operation by a timer or manually is also possible.

このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部がコンデンサ6に導入される。その結果、前記冷媒圧力が所定圧力P2以下に低減される。なお、コンデンサ6に導入された冷媒はレシーバ6に保持される。   Also during the defrost operation, when the refrigerant pressure on the high-pressure side of the compressor 4 becomes higher than the predetermined pressure P2, the discharge pressure adjusting valve 12 is opened, and a part of the refrigerant on the high-pressure side is stored in the condenser 6. To be introduced. As a result, the refrigerant pressure is reduced below the predetermined pressure P2. Note that the refrigerant introduced into the capacitor 6 is held by the receiver 6.

また、このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8Aから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記冷媒圧力を所定圧力P1以上に高くすることができる。   Also during the defrosting operation, if the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1, a part of the refrigerant held in the receiver 6 with the low pressure relief valve 13 opened. Is returned to the low-pressure side of the compressor 4 to be added to the refrigerant in the gas phase at a low temperature and low pressure returning from the evaporator 8A to the compressor 4. Thereby, the refrigerant pressure can be increased to a predetermined pressure P1 or higher.

運転モード(5)が選択されているとき、さらに運転モード(J)が選択された場合には、次のように保冷庫3B(エバポレータ8B)に対してのみデフロスト運転が行われる。   When the operation mode (5) is selected, if the operation mode (J) is further selected, the defrost operation is performed only for the cool box 3B (evaporator 8B) as follows.

すなわち、開閉弁SV1,SV2,SV3及び吐出圧力調整弁12が閉じられ、開閉弁SV4,SV5が開けられる。また、エバポレータ用ファンFM1F及びコンデンサ用ファンFM2は運転され、エバポレータ用ファンFM1Rは停止され,圧縮機クラッチMCLは接続される(圧縮機4は運転される)。圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い限りは吐出圧力調整弁12が開かないため、コンデンサ5には流入せず、定圧膨張弁11によって保冷庫3Bの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV4を流通してエバポレータ8Bに導入される。エバポレータ8Bでは、導入された気相状態の冷媒によって保冷庫3B(エバポレータ8B)の霜取りが行われる。エバポレータ8Bから流出した低温低圧で気相状態の冷媒は、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。   That is, the on-off valves SV1, SV2, SV3 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV4, SV5 are opened. Further, the evaporator fan FM1F and the condenser fan FM2 are operated, the evaporator fan FM1R is stopped, and the compressor clutch MCL is connected (the compressor 4 is operated). The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. As long as the pressure of the high-temperature and high-pressure refrigerant is lower than the predetermined pressure P2, the discharge pressure regulating valve 12 does not open, so that it does not flow into the capacitor 5 and is stored in the cold storage 3B by the constant pressure expansion valve 11. After the pressure is reduced while maintaining the gas phase state to the internal temperature saturation pressure or lower, the gas is introduced into the evaporator 8B through the on-off valve SV4. In the evaporator 8B, the cold storage 3B (evaporator 8B) is defrosted by the introduced refrigerant in the gas phase. The low-temperature and low-pressure gas-phase refrigerant flowing out of the evaporator 8B flows through the accumulator 9, and is then sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

かくして、冷媒を凝縮させず、非凝縮の冷媒によるデフロスト運転が行われる。図示は省略するが、保冷庫3Bにはデフロスト終了を判断する温度センサ(エバポレータコイルの表面温度等を計測するセンサ)の温度検出値が目標温度に達した時点で開閉弁SV4を閉じてデフロスト運転を終了する。   Thus, the defrosting operation with the non-condensed refrigerant is performed without condensing the refrigerant. Although illustration is omitted, in the cool box 3B, the defrosting operation is performed by closing the on-off valve SV4 when the temperature detection value of the temperature sensor (sensor for measuring the surface temperature of the evaporator coil, etc.) for determining the end of the defrost reaches the target temperature. Exit.

なお、このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部がコンデンサ6に導入される。その結果、前記冷媒圧力が所定圧力P2以下に低減される。コンデンサ6に導入された冷媒はレシーバ6に保持される。   Even during the defrost operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes higher than the predetermined pressure P2, the discharge pressure adjustment valve 12 is opened, and a part of the high pressure side refrigerant is discharged. It is introduced into the capacitor 6. As a result, the refrigerant pressure is reduced below the predetermined pressure P2. The refrigerant introduced into the capacitor 6 is held by the receiver 6.

また、このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8Bから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記冷媒圧力を所定圧力P1以上に高くすることができる。   Also during the defrosting operation, if the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1, a part of the refrigerant held in the receiver 6 with the low pressure relief valve 13 opened. Is returned to the low-pressure side of the compressor 4 to be added to the refrigerant in the gas-phase state at a low temperature and low pressure returning from the evaporator 8B to the compressor 4. Thereby, the refrigerant pressure can be increased to a predetermined pressure P1 or higher.

運転モード(5)が選択されているとき、さらに運転モード(K)が選択された場合には、次のように保冷庫3A,3B(エバポレータ8A,8B)の両方に対してデフロスト運転が行われる。   When the operation mode (5) is selected and the operation mode (K) is further selected, the defrost operation is performed for both of the coolers 3A and 3B (evaporators 8A and 8B) as follows. Is called.

すなわち、開閉弁SV1,SV2及び吐出圧力調整弁12が閉じられ、開閉弁SV3,SV4,SV5が開けられる。また、コンデンサ用ファンFM2は運転され、エバポレータ用ファンFM1F,FM1Rは停止され,圧縮機クラッチMCLは接続される(圧縮機4は運転される)。圧縮機4で圧縮された冷媒は、高温高圧の気相状態となって圧縮機4から吐出される。この高温高圧で気相状態の冷媒は、その圧力が所定圧力P2よりも低い限りは吐出圧力調整弁12が開かないため、コンデンサ5には流入せず、定圧膨張弁11によって保冷庫3A,3Bの庫内温度飽和圧力以下まで気相状態を保ちつつ減圧された後、開閉弁SV3,SV4を流通してエバポレータ8A,8Bに導入される。エバポレータ8A,8Bでは、導入された気相状態の冷媒によって保冷庫3A,3B(エバポレータ8A,8B)の霜取りが行われる。エバポレータ8A,8Bから流出した低温低圧で気相状態の冷媒は、アキュムレータ9を流通した後、圧縮機4に吸入されて圧縮される。以降は上記の行程が繰り返される。   That is, the on-off valves SV1, SV2 and the discharge pressure adjusting valve 12 are closed, and the on-off valves SV3, SV4, SV5 are opened. Further, the condenser fan FM2 is operated, the evaporator fans FM1F and FM1R are stopped, and the compressor clutch MCL is connected (the compressor 4 is operated). The refrigerant compressed by the compressor 4 becomes a high-temperature and high-pressure gas phase and is discharged from the compressor 4. As long as the pressure of the high-temperature and high-pressure refrigerant is lower than the predetermined pressure P2, the discharge pressure regulating valve 12 does not open, so that it does not flow into the condenser 5 and is kept in the cold storages 3A and 3B by the constant pressure expansion valve 11. After being decompressed while maintaining the gas phase state below the internal temperature saturation pressure, the gas is introduced into the evaporators 8A and 8B through the on-off valves SV3 and SV4. In the evaporators 8A and 8B, the cold storages 3A and 3B (evaporators 8A and 8B) are defrosted by the introduced gas-phase refrigerant. The low-temperature and low-pressure gas-phase refrigerant flowing out of the evaporators 8A and 8B flows through the accumulator 9 and is then sucked into the compressor 4 and compressed. Thereafter, the above process is repeated.

かくして、冷媒を凝縮させず、非凝縮の冷媒によるデフロスト運転が行われる。前述のデフロスト終了を判断する温度センサ(エバポレータコイルの表面温度等を計測するセンサ)の温度検出値が目標温度に達した時点で開閉弁SV3,SV4を閉じてデフロスト運転を終了する。
なお、このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P2よりも高くなった場合には、吐出圧力調整弁12が開いて、前記高圧側の冷媒の一部がコンデンサ6に導入される。その結果、前記冷媒圧力が所定圧力P2以下に低減される。なお、コンデンサ6に導入された冷媒はレシーバ6に保持される。
Thus, the defrosting operation with the non-condensed refrigerant is performed without condensing the refrigerant. When the temperature detection value of the temperature sensor (a sensor for measuring the surface temperature of the evaporator coil or the like) for determining the end of the defrost reaches the target temperature, the on-off valves SV3 and SV4 are closed to end the defrost operation.
Even during the defrost operation, when the refrigerant pressure on the high pressure side of the compressor 4 becomes higher than the predetermined pressure P2, the discharge pressure adjustment valve 12 is opened, and a part of the high pressure side refrigerant is discharged. It is introduced into the capacitor 6. As a result, the refrigerant pressure is reduced below the predetermined pressure P2. Note that the refrigerant introduced into the capacitor 6 is held by the receiver 6.

また、このデフロスト運転の際にも、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低くなった場合には、低圧リリーフ弁13が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻すことにより、エバポレータ8A,8Bから圧縮機4へと戻る低温低圧で気相状態の冷媒に加える。このことにより、前記冷媒圧力を所定圧力P1以上に高くすることができる。   Also during the defrosting operation, if the refrigerant pressure on the high pressure side of the compressor 4 becomes lower than the predetermined pressure P1, a part of the refrigerant held in the receiver 6 with the low pressure relief valve 13 opened. Is returned to the low pressure side of the compressor 4 to be added to the refrigerant in the gas phase state at low temperature and low pressure returning from the evaporators 8A and 8B to the compressor 4. Thereby, the refrigerant pressure can be increased to a predetermined pressure P1 or higher.

前室サーモ及び後室サーモがOFFになったときには停止モード(L)となる。停止モード(L)では、通電開の吐出圧力調整弁12を除く全ての開閉弁SV1〜SV5が閉じられ、コンデンサ用ファンFM2は停止され、圧縮機クラッチMCLは切り離され(圧縮機4が停止され)、エバポレータ用ファンFM1F,FM1Rのみが運転される。   When the front chamber thermo and the rear chamber thermo are turned off, the stop mode (L) is entered. In the stop mode (L), all the on-off valves SV1 to SV5 except the energized open discharge pressure regulating valve 12 are closed, the condenser fan FM2 is stopped, and the compressor clutch MCL is disconnected (the compressor 4 is stopped). ), Only the evaporator fans FM1F and FM1R are operated.

以上説明したように、車両用冷凍装置1においては、圧縮機4から吐出された気相状態で高温高圧の冷媒を、コンデンサ5、レシーバ6及び膨張弁7A,7Bをバイパスし、かつ、定圧膨張弁11により保冷庫3A,3Bの庫内温度飽和圧力以下まで減圧してエバポレータ8A,8Bに導入することにより、エバポレータ8A,8Bで保冷庫3A,3B内に放熱させて保冷庫3A,3B内を加熱し、この放熱で低温低圧の気相状態となった冷媒を圧縮機4へと戻す非凝縮冷媒加熱運転を行うため、温水加熱方式のように温水(エンジン冷却水)を導入する配管の施工を要せず、かつ、アキュムレータに液冷媒を溜める必要もなく、保冷庫3A,3B内を迅速にかつ効率よく加熱することができる。   As described above, in the vehicular refrigeration apparatus 1, the high-temperature and high-pressure refrigerant discharged from the compressor 4 bypasses the condenser 5, the receiver 6, and the expansion valves 7 </ b> A and 7 </ b> B, and is constant-pressure expansion. The valve 11 is depressurized to below the inside temperature saturation pressure of the cool box 3A, 3B and introduced into the evaporators 8A, 8B. In order to perform a non-condensed refrigerant heating operation for returning the refrigerant that has become a low-temperature and low-pressure gas-phase state by this heat radiation to the compressor 4, a pipe for introducing hot water (engine cooling water) as in the hot water heating system is used. There is no need for construction and there is no need to store the liquid refrigerant in the accumulator, and the inside of the cold storages 3A and 3B can be heated quickly and efficiently.

また、上述した車両用冷凍装置1においては、レシーバ6と圧縮機4の低圧側とをつなぐ冷媒配管L3を開閉する低圧リリーフ弁13を有し、圧縮機4の高圧側の冷媒圧力が所定圧力P1よりも低い場合、この低圧リリーフ弁12が開いてレシーバ6に保持されている冷媒の一部を、圧縮機4の低圧側に戻して、エバポレータ8A,8Bから圧縮機4へ戻る低温低圧の気相状態となった冷媒に加えることにより、前記高圧側の冷媒圧力を所定圧力P1以上に高くする構成としたため、冷媒の循環量を確保して加熱能力を高く保つことができる。この場合の圧力調整手段としては、必ずしも低圧リリーフ弁13に限定されるものではなく、圧力センサ16の圧力検出値に基づいて電動弁や電磁弁などの弁の開閉を行う構成としてもよい。   The vehicle refrigeration apparatus 1 includes the low pressure relief valve 13 that opens and closes the refrigerant pipe L3 that connects the receiver 6 and the low pressure side of the compressor 4, and the high pressure side refrigerant pressure of the compressor 4 is a predetermined pressure. When the pressure is lower than P1, the low pressure relief valve 12 is opened and a part of the refrigerant held in the receiver 6 is returned to the low pressure side of the compressor 4 to return to the compressor 4 from the evaporators 8A and 8B. By adding to the refrigerant in the gas phase state, the refrigerant pressure on the high-pressure side is set to be higher than the predetermined pressure P1, so that the circulation amount of the refrigerant can be secured and the heating capacity can be kept high. The pressure adjusting means in this case is not necessarily limited to the low pressure relief valve 13 and may be configured to open and close a valve such as an electric valve or an electromagnetic valve based on the pressure detection value of the pressure sensor 16.

さて、上述した車両用冷凍装置1は、加熱運転起動時及び加熱運転切換時において、吐出圧力調整弁12の開時間を強制的に長くする余剰冷媒分流促進制御手段を備えている。この余剰冷媒分流促進制御手段は、たとえば運転停止の状態から運転モード(2)を選択して(D)の加熱運転を開始する場合や、運転モード(1)の(A)で冷却運転している状態から運転モード(2)の(D)に切り換えて加熱運転を開始する場合等に実施されるものであり、所定圧力P2以上の高圧となった時に吐出圧力調整弁12を開くという通常の開閉制御とは異なっている。   The vehicular refrigeration apparatus 1 described above includes surplus refrigerant distribution promotion control means for forcibly increasing the opening time of the discharge pressure regulating valve 12 when the heating operation is started and when the heating operation is switched. For example, the surplus refrigerant flow promotion control means selects the operation mode (2) from the operation stop state and starts the heating operation of (D), or performs the cooling operation in (A) of the operation mode (1). This is performed when the heating operation is started by switching to (D) of the operation mode (2) from the existing state, and the discharge pressure adjustment valve 12 is normally opened when the pressure becomes higher than the predetermined pressure P2. It is different from open / close control.

このような加熱運転起動時及び加熱運転切換時には、加熱運転開始と共に吐出圧力調整弁12が閉じられる。しかし、加温サイクルに余剰冷媒を生じるため、圧力センサ16が所定値P2以上の高圧を検出して吐出圧力調整弁12はすぐに開くこととなる。
そこで、たとえば図4に示すように、吐出圧力調整弁12を開状態から閉状態に切り換える時には、余剰冷媒分流促進制御手段として遅延時間tdを設ける。
At the time of starting the heating operation and switching the heating operation, the discharge pressure adjusting valve 12 is closed at the same time when the heating operation is started. However, since surplus refrigerant is generated in the heating cycle, the pressure sensor 16 detects a high pressure equal to or higher than the predetermined value P2, and the discharge pressure regulating valve 12 is immediately opened.
Therefore, for example, as shown in FIG. 4, when the discharge pressure adjusting valve 12 is switched from the open state to the closed state, a delay time td is provided as the surplus refrigerant distribution promotion control means.

図4は加熱運転切換時の場合であり、冷却から加熱に切り換えられた時間Tで吐出圧力調整弁12が閉じるため、冷媒循環経路の容積減少等に伴い圧力センサ16が検出する吐出圧力Pは上昇する。この結果、吐出圧力が所定値P2まで上昇した時間T1で吐出圧力調整弁12を開とするが、冷媒循環容積にコンデンサ5やレシーバ6が加わって急増するため、吐出圧力Pは短時間の開時間taで急激に圧力Paまで減少する。
この圧力Paは、第2のヒステリシス設定圧力P2hより低く、第1の設定圧力P1より高い値であるから(図6参照)、通常(従来)の開閉制御では吐出圧力調整弁12が時間T2ですぐに閉となる。なお、図中の圧力変化ΔPは、加温サイクル静定までの圧力Paと所定圧力P2との差圧である。
FIG. 4 shows a case where the heating operation is switched, and the discharge pressure adjusting valve 12 is closed at a time T when switching from cooling to heating. Therefore, the discharge pressure P detected by the pressure sensor 16 as the volume of the refrigerant circulation path decreases is To rise. As a result, the discharge pressure adjustment valve 12 is opened at time T1 when the discharge pressure rises to the predetermined value P2. However, since the condenser 5 and the receiver 6 are added to the refrigerant circulation volume, the discharge pressure P increases rapidly. At time ta, the pressure suddenly decreases to Pa.
Since this pressure Pa is lower than the second hysteresis set pressure P2h and higher than the first set pressure P1 (see FIG. 6), in the normal (conventional) opening / closing control, the discharge pressure adjusting valve 12 is at time T2. Closes immediately. Note that the pressure change ΔP in the figure is a differential pressure between the pressure Pa until the heating cycle is settled and the predetermined pressure P2.

しかし、開状態から閉状態への遅延時間tdを設けてあるので、吐出圧力調整弁12が実際に閉じるのは、時間T2から遅延時間tdを経過した時間T3となる。このため、実際に吐出圧力調整弁12が開いているのは、時間T1からT3までの時間tとなる。
すなわち、この時間tは、
t=ta+td であるから、
通常制御と比較して遅延時間td分だけ吐出圧力調整弁12の開時間が延長されることになり、この延長時間内に余剰冷媒をコンデンサ5側へ分流させることができる。換言すれば、遅延時間tdを設けたことにより、吐出圧力調整弁12を遅延時間tdだけ長く開いて加温サイクルからコンデンサ5側へ導く余剰冷媒量を増すことができる。
なお、遅延時間tdは諸条件に応じて適宜設定可能な値であるが、たとえば5秒程度の時間が設定される。
However, since the delay time td from the open state to the closed state is provided, the discharge pressure adjusting valve 12 is actually closed at time T3 after the delay time td has elapsed from time T2. For this reason, the discharge pressure adjusting valve 12 is actually opened at time t from time T1 to T3.
That is, this time t is
Since t = ta + td,
Compared to the normal control, the opening time of the discharge pressure adjusting valve 12 is extended by the delay time td, and surplus refrigerant can be diverted to the condenser 5 side within this extended time. In other words, by providing the delay time td, it is possible to increase the amount of surplus refrigerant that opens the discharge pressure adjustment valve 12 longer by the delay time td and leads it from the heating cycle to the condenser 5 side.
Note that the delay time td is a value that can be set as appropriate according to various conditions. For example, a time of about 5 seconds is set.

従って、遅延時間td分だけ吐出圧力調整弁12の開閉サイクルが長くなり、しかも、開時間の延長に伴ってコンデンサ5側へチャージする1サイクル当たりの余剰冷媒量が増加するので、加温サイクル運転が安定するまでに生じていた吐出圧力調整弁12の頻繁な開閉は解消または大幅に低減される。なお、安定した加温サイクルの運転に到達するまで必要となる吐出圧力調整弁12の開閉回数は、余剰冷媒量に応じて変化する。
また、余剰冷媒のチャージは外気温度が低温の場合ほど早いため、上述したように所定の遅延時間tdを設けておき、吐出圧力調整弁12の開閉回数(図示の例では3回)で余剰冷媒のチャージ量を調整できる余剰冷媒分流促進制御手段は、チャージ量が多くなりすぎて加温サイクル側の冷媒量が不足するという現象を防止するためにも好都合である。
Accordingly, the opening / closing cycle of the discharge pressure adjusting valve 12 is lengthened by the delay time td, and the amount of surplus refrigerant per cycle charged to the capacitor 5 side increases with the extension of the opening time. The frequent opening and closing of the discharge pressure regulating valve 12 that has occurred until the pressure becomes stable is eliminated or greatly reduced. Note that the number of opening and closing of the discharge pressure adjustment valve 12 required until reaching a stable heating cycle operation varies depending on the surplus refrigerant amount.
Further, since the charge of the surplus refrigerant is faster as the outside air temperature is lower, the surplus refrigerant is provided by setting the predetermined delay time td as described above and opening / closing the discharge pressure adjusting valve 12 (three times in the illustrated example). The surplus refrigerant flow promotion control means that can adjust the charge amount is also advantageous for preventing the phenomenon that the charge amount becomes too large and the refrigerant amount on the heating cycle side becomes insufficient.

<第2の実施形態>
続いて、上述した余剰冷媒分流促進制御手段の他の実施形態を図5に基づいて説明する。
この場合の余剰冷媒分流促進制御手段は、加熱運転起動時及び加熱運転切換時に吐出圧力調整弁12を閉状態とする前に設定した所定の開状態維持時間thとなる。この開状態維持時間thは、たとえば冷却運転から加熱運転に切り換えられた時、通常(従来)の制御では運転切換と同時に吐出圧力調整弁12を閉じるのに対し、所定の開状態維持時間thだけ開状態から閉状態への切換時期を遅らせるように設定された時間である。なお、この開状態維持時間thは諸条件に応じて適宜定める値であるが、通常は30秒程度に設定される。
<Second Embodiment>
Next, another embodiment of the above-described surplus refrigerant flow promotion control unit will be described with reference to FIG.
In this case, the surplus refrigerant distribution promotion control means has a predetermined open state maintaining time th that is set before the discharge pressure adjusting valve 12 is closed when the heating operation is started and when the heating operation is switched. This open state maintaining time th is, for example, when the cooling operation is switched to the heating operation, and in normal (conventional) control, the discharge pressure adjusting valve 12 is closed simultaneously with the operation switching, whereas only the predetermined open state maintaining time th. This time is set to delay the switching time from the open state to the closed state. The open state maintaining time th is a value appropriately determined according to various conditions, but is normally set to about 30 seconds.

すなわち、冷却運転から時間Tで加熱運転に切り換えられた場合、時間Tから開状態維持時間thが経過した時間T1になるまで吐出圧力調整弁12を開状態に維持し、加温サイクルからコンデンサ5側へ余剰冷媒を分流させてチャージする時間を確保している。換言すれば、加熱運転起動時及び加熱運転切換時においては、吐出圧力調整弁12を閉じる前に所定時間thだけ開状態を維持しておき、この間に余剰冷媒をコンデンサ5側へ強制的に分流させてチャージするのである。
この結果、加温サイクル側の余剰冷媒がかなり減少することとなるので、吐出圧力調整弁12の開閉制御を時間T1から通常通りに実施しても、すなわち、時間T1から所定圧力P2及び第2のヒステリシス設定圧力P2hを検出しての開閉制御を実施しても、すでに余剰冷媒量がかなり減少しているので、加温サイクル運転が安定するまでに生じる吐出圧力調整弁12の頻繁な開閉は大幅に低減または解消される。
That is, when the cooling operation is switched to the heating operation at time T, the discharge pressure adjusting valve 12 is maintained in the open state until the time T1 when the open state maintaining time th has elapsed from the time T, and the capacitor 5 is started from the heating cycle. The charging time is ensured by diverting excess refrigerant to the side. In other words, when the heating operation is started and when the heating operation is switched, the open state is maintained for a predetermined time th before the discharge pressure adjustment valve 12 is closed, and the surplus refrigerant is forcibly diverted to the condenser 5 side during this time. Let me charge it.
As a result, the surplus refrigerant on the heating cycle side is considerably reduced. Therefore, even if the opening / closing control of the discharge pressure regulating valve 12 is performed normally from the time T1, that is, from the time T1, the predetermined pressure P2 and the second pressure are controlled. Even when the opening / closing control is performed by detecting the hysteresis set pressure P2h, since the surplus refrigerant amount has already decreased considerably, the frequent opening / closing of the discharge pressure regulating valve 12 that occurs until the heating cycle operation becomes stable is prevented. Significantly reduced or eliminated.

上述した冷凍装置及びその制御方法は、加熱運転起動時及び加熱運転切換時において、吐出圧力調整弁12の開閉制御に遅延時間td(第1の実施形態)や開状態維持時間th(第2の実施形態)のような余剰冷媒分流促進制御手段を備え、吐出圧力調整弁12の開時間を通常制御時よりも積極的に延長して加温サイクル側の余剰冷媒を強制的にコンデンサ5側へ分流させて、この余剰冷媒を加温サイクル外のコンデンサ5にチャージするように構成したので、吐出圧力調整弁12の頻繁な開閉動作が改善される。従って、吐出圧力調整弁12として使用される電磁弁等の弁類はその耐久性や信頼性を増し、しかも、吐出圧力調整弁12の頻繁な開閉動作による冷凍装置の運転騒音も低減されるので、商品性の向上した冷凍装置となる。   In the above-described refrigeration apparatus and its control method, the delay time td (first embodiment) and the open state maintenance time th (second state) are controlled for the opening / closing control of the discharge pressure regulating valve 12 at the time of starting the heating operation and switching the heating operation. The surplus refrigerant flow promotion control means as in the embodiment) is provided, and the opening time of the discharge pressure regulating valve 12 is positively extended as compared with that during normal control to force the surplus refrigerant on the heating cycle side to the condenser 5 side. Since the excess refrigerant is divided and charged to the capacitor 5 outside the heating cycle, the frequent opening and closing operation of the discharge pressure regulating valve 12 is improved. Accordingly, the valves such as the solenoid valve used as the discharge pressure adjusting valve 12 are increased in durability and reliability, and the operation noise of the refrigeration apparatus due to frequent opening and closing operations of the discharge pressure adjusting valve 12 is also reduced. The refrigeration apparatus has improved merchantability.

ところで、上述した第1及び第2の実施形態では、冷凍装置を車両用冷凍装置として説明したが、本発明はこれに限定されることはなく、他の冷凍装置にも適用可能である。
また、余剰冷媒分流促進制御手段については、上述した遅延時間td及び開状態維持時間thの併用も可能である。
また、本発明の構成は上述した実施形態に限定されるものではなく、たとえば冷凍サイクルの構成についても種々の変形例が可能であり、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
In the first and second embodiments described above, the refrigeration apparatus has been described as a vehicular refrigeration apparatus, but the present invention is not limited to this and can be applied to other refrigeration apparatuses.
In addition, as for the surplus refrigerant distribution promotion control means, the delay time td and the open state maintaining time th described above can be used together.
The configuration of the present invention is not limited to the above-described embodiment, and various modifications can be made to the configuration of the refrigeration cycle, for example, and can be changed as appropriate without departing from the scope of the present invention. it can.

本発明の第1の実施形態に係る車両用冷凍装置の構成図である。It is a lineblock diagram of the refrigeration equipment for vehicles concerning a 1st embodiment of the present invention. 前記車両用冷凍装置の冷却サイクルを示す説明図である。It is explanatory drawing which shows the cooling cycle of the said refrigeration apparatus for vehicles. 前記車両用冷凍装置の加温サイクルを示す説明図である。It is explanatory drawing which shows the heating cycle of the said refrigeration apparatus for vehicles. 前記車両用冷凍装置における余剰冷媒分流促進制御手段として、遅延時間tdを示す説明図である。It is explanatory drawing which shows the delay time td as a surplus refrigerant | coolant flow distribution promotion control means in the said refrigeration apparatus for vehicles. 本発明に係る余剰冷媒分流促進制御手段の第2の実施形態として、開状態維持時間thを示す説明図である。。It is explanatory drawing which shows the open state maintenance time th as 2nd Embodiment of the surplus refrigerant | coolant distribution | distribution promotion control part which concerns on this invention. . 吐出圧力調整弁の通常(従来)制御を示す説明図である。It is explanatory drawing which shows the normal (conventional) control of a discharge pressure regulating valve. 図6に示した通常制御の問題点を示す説明図である。It is explanatory drawing which shows the problem of the normal control shown in FIG.

符号の説明Explanation of symbols

1 車両用冷凍装置
3A,3B 保冷庫
4 圧縮機
5 コンデンサ
6 レシーバ
7A,7B 膨張弁
8A,8B エバポレータ
9 アキュムレータ
10 制御装置
10A 制御部
10B 記憶部
10C 入力部
11 定圧膨張弁
12 吐出圧力調整弁
13 低圧リリーフ弁
14A〜14D 逆止弁
15A,15B 温度センサ
16 圧力センサ
L1 冷媒配管
L2 バイパス配管
L3 冷媒配管
L4 細い配管
L5 バイパス配管
L6 バイパス配管
SV1〜SV5 開閉弁(電磁弁)
FM1F,FM1R エバポレータ用ファン
FM2 コンデンサ用ファン
MCL 圧縮機クラッチ
td 遅延時間(余剰冷媒分流促進制御手段)
th 開状態維持時間(余剰冷媒分流促進制御手段)
DESCRIPTION OF SYMBOLS 1 Vehicle refrigeration apparatus 3A, 3B Cold storage 4 Compressor 5 Condenser 6 Receiver 7A, 7B Expansion valve 8A, 8B Evaporator 9 Accumulator 10 Control apparatus 10A Control part 10B Storage part 10C Input part 11 Constant pressure expansion valve 12 Discharge pressure adjustment valve 13 Low pressure relief valve 14A-14D Check valve 15A, 15B Temperature sensor 16 Pressure sensor L1 Refrigerant piping L2 Bypass piping L3 Refrigerant piping L4 Narrow piping L5 Bypass piping L6 Bypass piping SV1-SV5 Open / close valve (solenoid valve)
FM1F, FM1R Evaporator fan FM2 Condenser fan MCL Compressor clutch td Delay time (excess refrigerant flow promotion control means)
th open state maintenance time (excess refrigerant distribution promotion control means)

Claims (4)

圧縮機から吐出された高温高圧で気相状態の冷媒を、コンデンサ、レシーバ及び膨張弁をバイパスし、かつ、減圧手段により保冷庫の庫内温度飽和圧力以下まで減圧してエバポレータに導入することにより、前記エバポレータで前記保冷庫内に放熱させて前記保冷庫内を加熱し、この放熱で低温低圧の気相状態となった冷媒を前記圧縮機へと戻す非凝縮冷媒加熱運転を行う冷凍装置であって、
前記圧縮機の高圧を検出する圧力検出手段と、
前記非凝縮加熱運転時に開閉し、余剰冷媒を前記コンデンサ側へ分流させて高圧制御を行う吐出圧力調整弁と、
運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長する余剰冷媒分流促進制御手段と、
を備えていることを特徴とする冷凍装置。
By introducing the high-temperature and high-pressure refrigerant discharged from the compressor into the evaporator by bypassing the condenser, the receiver and the expansion valve, and reducing the pressure to a temperature equal to or lower than the internal temperature saturation pressure of the cold storage by the decompression means. A refrigerating apparatus that performs a non-condensed refrigerant heating operation in which the evaporator heat is radiated into the cool box and the inside of the cool box is heated, and the refrigerant that has become a low-temperature and low-pressure gas phase by the heat radiation is returned to the compressor. There,
Pressure detecting means for detecting the high pressure of the compressor;
A discharge pressure adjusting valve that opens and closes during the non-condensing heating operation, and distributes excess refrigerant to the condenser side to perform high pressure control;
The discharge pressure adjustment is performed until a predetermined pressure drop is detected when the detected value of the pressure detecting means detects a high pressure equal to or higher than a predetermined value at the time of starting the heating operation from the operation stop state and switching the operation from the cooling operation to the heating operation. Surplus refrigerant distribution promotion control means for forcibly extending the opening time during normal control to open the valve ;
A refrigeration apparatus comprising:
前記余剰冷媒分流促進制御手段は、前記吐出圧力調整弁を開状態から閉状態に切り換える時、開状態を維持する所定の遅延時間を設けることを特徴とする請求項1記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the surplus refrigerant flow promotion control means provides a predetermined delay time for maintaining the open state when the discharge pressure adjusting valve is switched from the open state to the closed state. 前記余剰冷媒分流促進制御手段は、前記加熱運転の起動時及び冷却運転からの運転切換時に前記吐出圧力調整弁を閉状態とする前に所定の開状態維持時間を設けることを特徴とする請求項1記載の冷凍装置。   The surplus refrigerant flow promotion control means provides a predetermined open state maintaining time before closing the discharge pressure regulating valve when starting the heating operation and switching the operation from the cooling operation. The refrigeration apparatus according to 1. 圧縮機から吐出された高温高圧で気相状態の冷媒を、コンデンサ、レシーバ及び膨張弁をバイパスし、かつ、減圧手段により保冷庫の庫内温度飽和圧力以下まで減圧してエバポレータに導入することにより、前記エバポレータで前記保冷庫内に放熱させて前記保冷庫内を加熱し、この放熱で低温低圧の気相状態となった冷媒を前記圧縮機へと戻す非凝縮冷媒加熱運転を行う冷凍装置の運転制御方法であって、
前記非凝縮加熱運転時に、前記圧縮機の高圧を検出する圧力検出手段の検出値に応じて吐出圧力調整弁を開閉し、余剰冷媒を前記コンデンサ側へ分流させて高圧制御を行うと共に、運転停止状態から加熱運転の起動時及び冷却運転から加熱運転への運転切換時に、前記圧力検出手段の検出値が所定値以上の高圧を検出した場合に所定の圧力低下をするまで前記吐出圧力調整弁を開く通常制御時の開時間を強制的に延長して余剰冷媒の分流を促進することを特徴とする冷凍装置の運転制御方法。
By introducing the high-temperature and high-pressure refrigerant discharged from the compressor into the evaporator by bypassing the condenser, the receiver and the expansion valve, and reducing the pressure to a temperature equal to or lower than the internal temperature saturation pressure of the cold storage by the decompression means. A refrigerating apparatus for performing a non-condensed refrigerant heating operation for radiating heat in the cool box by the evaporator and heating the cool box and returning the refrigerant that has become a low-temperature and low-pressure gas phase by the heat release to the compressor. An operation control method comprising:
During the non-condensing heating operation, the discharge pressure adjustment valve is opened and closed in accordance with the detection value of the pressure detection means for detecting the high pressure of the compressor, and the excess refrigerant is diverted to the condenser side to perform high pressure control and the operation is stopped. When the heating operation is started from the state and when the operation is switched from the cooling operation to the heating operation, the discharge pressure adjusting valve is set until a predetermined pressure drop is detected when the detected value of the pressure detecting means detects a high pressure of a predetermined value or more. An operation control method for a refrigeration apparatus, characterized by forcibly extending an open time at the time of normal control to promote and diverting a surplus refrigerant.
JP2003420565A 2003-12-18 2003-12-18 Refrigeration apparatus and operation control method thereof Expired - Fee Related JP4427310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420565A JP4427310B2 (en) 2003-12-18 2003-12-18 Refrigeration apparatus and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420565A JP4427310B2 (en) 2003-12-18 2003-12-18 Refrigeration apparatus and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2005180751A JP2005180751A (en) 2005-07-07
JP4427310B2 true JP4427310B2 (en) 2010-03-03

Family

ID=34782054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420565A Expired - Fee Related JP4427310B2 (en) 2003-12-18 2003-12-18 Refrigeration apparatus and operation control method thereof

Country Status (1)

Country Link
JP (1) JP4427310B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017095A (en) * 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd Refrigeration unit
JP5434423B2 (en) * 2009-09-17 2014-03-05 富士電機株式会社 vending machine
JP5471480B2 (en) * 2010-01-18 2014-04-16 富士電機株式会社 vending machine
JP5471518B2 (en) * 2010-01-28 2014-04-16 富士電機株式会社 vending machine
JP2011178372A (en) * 2010-03-04 2011-09-15 Calsonic Kansei Corp Air conditioner for vehicle and operation switching method thereof
CN102650489A (en) * 2011-02-25 2012-08-29 刘爱东 Cupboard type refrigerator
CN102635990B (en) 2012-05-11 2014-08-13 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
JP2014112002A (en) * 2012-12-05 2014-06-19 Nakano Refrigerators Co Ltd Temperature control device and temperature control method for showcase
JP5949839B2 (en) 2014-06-17 2016-07-13 ダイキン工業株式会社 Refrigeration equipment
CN104748239B (en) * 2015-03-31 2017-10-31 广东美的暖通设备有限公司 Multiple on-line system
CN112710069B (en) * 2020-12-28 2022-07-26 宁波奥克斯电气股份有限公司 Refrigeration control method and device of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2005180751A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP3026884B2 (en) Transport refrigeration apparatus and method for improving its heating capacity
US7028494B2 (en) Defrosting methodology for heat pump water heating system
JP2008096033A (en) Refrigerating device
EP2719976B1 (en) Refrigeration apparatus
JP4427310B2 (en) Refrigeration apparatus and operation control method thereof
JPH09318169A (en) Refrigerating apparatus
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2006234238A (en) Refrigerating device and its control method
JP2002310519A (en) Heat pump water heater
JP2007255866A (en) Air conditioner
JP4082435B2 (en) Refrigeration equipment
JP3993540B2 (en) Refrigeration equipment
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JP3583570B2 (en) refrigerator
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JP4274250B2 (en) Refrigeration equipment
JPH09318205A (en) Refrigerating device
JP3303689B2 (en) Binary refrigeration equipment
JP2745828B2 (en) Operation control device for refrigeration equipment
JP3836092B2 (en) Refrigeration equipment
CN111750574A (en) Refrigeration device and method for operating refrigeration device
JP2002310497A (en) Heat pump hot-water supplier
JP2008032391A (en) Refrigerating unit
JP3291886B2 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees