JP2716116B2 - Light irradiation heating furnace - Google Patents

Light irradiation heating furnace

Info

Publication number
JP2716116B2
JP2716116B2 JP61274278A JP27427886A JP2716116B2 JP 2716116 B2 JP2716116 B2 JP 2716116B2 JP 61274278 A JP61274278 A JP 61274278A JP 27427886 A JP27427886 A JP 27427886A JP 2716116 B2 JP2716116 B2 JP 2716116B2
Authority
JP
Japan
Prior art keywords
light
furnace
halogen lamp
tube
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61274278A
Other languages
Japanese (ja)
Other versions
JPS63128625A (en
Inventor
万蔵 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61274278A priority Critical patent/JP2716116B2/en
Publication of JPS63128625A publication Critical patent/JPS63128625A/en
Application granted granted Critical
Publication of JP2716116B2 publication Critical patent/JP2716116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は急速加熱急速冷却が可能な光照射加熱炉、特
に照射光強度が均一で、多数の被加熱物体を精度良く加
熱することが可能な光照射加熱炉に関する。 [従来の技術] 従来、この種の光照射加熱炉は円筒形の透明な石英製
炉心管の周囲にハロゲンランプを配し、ハロゲンランプ
の外側は光反射板で覆われた構造をなしており、ハロゲ
ンランプから出た光を炉心管の透明な管壁を介して被加
熱物体に直接入射させて加熱している。従って、加熱温
度均一性はハロゲンランプと被加熱物体との相対的位置
関係に大きく依存する。 [発明が解決しようとする問題点] 上述した従来の光照射加熱炉ではハロゲンランプから
照射された光線あるいは反射板で反射された光線が直接
被加熱物体に入射する。従って、被加熱物体の中でも、
ハロゲンランプに近い部分は光の入射光線強度が強く、
温度が高くなる。それに反し、ハロゲンランプから遠い
部分は入射光線強度が弱く、温度も低くなっている。ハ
ロゲンランプの設置密度にもよるが、被加熱物体の温度
分布は不均一になることは避けられない。温度分布の均
一性の良いことが必要とされる場合、例えば半導体装置
製造工程におけるシリコンウエーハの熱処理用として
は、従来炉は温度分布不均一性が大きすぎ、添加不純物
濃度分布の不均一性やシリコン結晶内での欠陥の誘起を
もたらし、製造の良品率や装置の信頼性を低下させるな
どの大きな欠点を有する。 本発明の目的は温度分布の均一性を図る光照射加熱炉
を提供することにある。 [発明の従来技術に対する相違点] 上述した従来の光照射加熱炉に対し、本発明は被加熱
物体に入射する光線は均一化して実効的に加熱炉壁全体
を面光源化することにより、ハロゲンランプと被加熱物
体との相対的位置関係等に光線入射量が影響されること
はなく、常に均一な加熱を図ることができるという独創
的内容を有する。 [問題点を解決するための手段] 本発明の光照射加熱炉は、筒状の炉心管の周囲に光熱
源が配置され、炉心管の内部にボード上に縦に複数搭載
されたウェーハを収納する光照射加熱炉において、炉心
管の管壁を光散乱構造としたことを特徴とする。 [実施例] 以下、本発明の実施例を図により説明する。 (実施例1) 第1図は本発明の実施例1を示す図である。第1図に
おいて、筐体1内に炉心管4を設け、該炉心管4の外周
にハロゲンランプ2を配し、該ハロゲンランプ2の後方
に反射板3を設ける。8は炉心管4の管端を閉房するキ
ャップ、9は炉心管4の管端を縮径させて形成したパー
ジガス導入口である。 本発明はハロゲンランプ2に対向する炉心管4の中央
部に、曇りガラスからなる筒体5を配設し、該筒体5の
両端に炉心管4を接続し、ハロゲンランプ2に対向する
炉心管4の中央部管壁を曇りガラスからなる筒体5で光
散乱構造としたものである。 筐体1,円筒形ハロゲンランプ2,反射板3を備えた装置
中に炉心管4をセットする。一方ボート6上に被加熱物
体であるシリコンウエーハ7が設置され、これを炉心管
4内に送り込み、筒体5内に位置決めする。炉心管4の
入口はキャップ8で閉塞され、炉心管4内はパージガス
導入口9より導入された窒素雰囲気で充満される。 この状態でハロゲンランプ2による加熱を行うと、曇
りガラスからなる筒体5の部分では光が乱反射され、あ
たかも筒体5が面光源であるかのような働きをする。 曇りガラスからなる筒体5がない場合、ランプ2より
照射された光はシリコンウエーハ7に直接照射される。
ハロゲンランプ2は線光源と考えてよく、この場合、シ
リコンウエーハ7上に照射される光の強度はハロゲンラ
ンプ2とシリコンウエーハ7との距離に反比例して減少
する。ハロゲンランプ2とシリコンウエーハ7との最短
距離を8cm,ハロゲンランプ設置間隔を5cm,シリコンウエ
ーハの間隔を5mmとすると、シリコンウエーハ縁端での
照射光強度はシリコンウエーハの設置位置により5%程
度変化する。更に、シリコンウエーハは垂直に立てられ
ているので、ハロゲンランプに最も近く位置された場
合、シリコンウエーハ縁端部での照射光強度は最大とな
る。ところが、シリコンウエーハの主表面(鏡面)は光
の照方向と平行となり、シリコン主表面には直近のハロ
ゲンランプからの直接照射光は極めて少なくなる。この
ため、ウエーハ内の温度分布に大きな加熱不均一性を誘
起する。 しかし、本実施例で説明したように筒体の曇りガラス
による面光源で照射・加熱すると、前述した如きウエー
ハ設置位置の違いによる加熱不均一性はなくなる。ま
た、ウエーハ縁端部と主表面での照射光強度も状に一定
となるので、加熱の均一性は飛躍的に向上する。 (実施例2) 第2図は本発明の実施例2の断面図である。第1図と
同様に、光照射加熱装置は筐体11,直線状ハロゲンラン
プ12,反射板13,炉心管14,曇りガラスからなる筒体15,ボ
ート16より構成され、ウエーハ17はボート上に載置さ
れ、キャップ18によりフタをされ、パージガス導入口19
よりパージ用窒素ガスが導入される。 本実施例では、ハロゲンランプ12は炉心管と平行に設
置されている。この場合には、仮に曇りガラスからなる
筒体15がなくて、ランプから出た光が直接ウエーハ17に
照射されると、照射強度のウエーハ間差はないが、同一
ウエーハ内での照射光強度差が生じ、そのため、ウエー
ハ内加熱不均一性が発生する。しかし、本発明では、曇
りガラスからなる筒体15が存在するので、実効的に曇り
ガラスからなる筒体15からの面光源で光照射を行ってい
るのと同じこととなり、ウエーハ面内の加熱均一性は飛
躍的に向上する。 [発明の効果] 光照射加熱炉においては、ウェーハの位置と光源との
相対的位置は炉芯管壁をウェーハ積載用ボートとの相対
的位置関係により一義的に決定されるものであり、本発
明は光照射炉の管壁を光散乱構造としたことからして、
光照射炉の管壁の位置に光散乱構造による光源を配置す
ることができ、ウェーハに対する光源の距離を適正に保
って精度よい加熱を行うことができる。このため、ただ
単にウエーハ内,間の最高到達温度を均一化できるにと
どまらず、温度不均一起因の内部歪を最小にすることが
でき、製品の品質向上及び製造良品率の向上を図ること
ができる。さらに、加熱均一性の向上はより急速な加熱
を可能にするので、熱処理時間の短時間化や処理能力の
向上を図ることができる効果を有するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light irradiation heating furnace capable of rapid heating and rapid cooling, and particularly capable of accurately heating a large number of objects to be heated with uniform irradiation light intensity. Light irradiation heating furnace. [Prior art] Conventionally, this type of light irradiation heating furnace has a structure in which a halogen lamp is arranged around a cylindrical transparent quartz furnace tube, and the outside of the halogen lamp is covered with a light reflecting plate. The light emitted from the halogen lamp is directly incident on the object to be heated through the transparent tube wall of the furnace tube to heat the object. Therefore, the uniformity of the heating temperature largely depends on the relative positional relationship between the halogen lamp and the object to be heated. [Problems to be Solved by the Invention] In the above-described conventional light irradiation heating furnace, a light beam emitted from a halogen lamp or a light beam reflected by a reflector directly enters a heated object. Therefore, among the objects to be heated,
The part near the halogen lamp has a strong incident light beam intensity,
Temperature rises. On the contrary, the part far from the halogen lamp has a low incident light intensity and a low temperature. Depending on the installation density of the halogen lamp, it is inevitable that the temperature distribution of the object to be heated will be non-uniform. When good uniformity of temperature distribution is required, for example, for heat treatment of a silicon wafer in a semiconductor device manufacturing process, the conventional furnace has too large temperature distribution non-uniformity, and non-uniformity of added impurity concentration distribution and It causes defects in the silicon crystal, and has major drawbacks such as lowering the yield rate of manufacturing and the reliability of the device. An object of the present invention is to provide a light irradiation heating furnace for achieving uniform temperature distribution. [Differences from the Prior Art of the Invention] In contrast to the above-described conventional light irradiation heating furnace, the present invention makes the light incident on the object to be heated uniform and effectively turns the entire heating furnace wall into a surface light source, thereby reducing halogen. The amount of incident light is not affected by the relative positional relationship between the lamp and the object to be heated, and the like. [Means for Solving the Problems] In the light irradiation heating furnace of the present invention, a light heat source is arranged around a cylindrical furnace tube, and accommodates a plurality of wafers vertically mounted on a board inside the furnace tube. The light irradiation heating furnace is characterized in that the tube wall of the furnace core tube has a light scattering structure. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. (Example 1) Fig. 1 is a diagram showing Example 1 of the present invention. In FIG. 1, a furnace tube 4 is provided in a housing 1, a halogen lamp 2 is arranged on the outer periphery of the furnace tube 4, and a reflector 3 is provided behind the halogen lamp 2. Reference numeral 8 denotes a cap for closing the end of the furnace tube 4, and 9 denotes a purge gas inlet formed by reducing the diameter of the end of the furnace tube 4. In the present invention, a tube 5 made of frosted glass is disposed at the center of the furnace tube 4 facing the halogen lamp 2, the furnace tube 4 is connected to both ends of the tube 5, and the furnace core facing the halogen lamp 2 is provided. The central portion of the tube 4 has a light scattering structure with a cylindrical body 5 made of frosted glass. A furnace tube 4 is set in an apparatus having a housing 1, a cylindrical halogen lamp 2, and a reflector 3. On the other hand, a silicon wafer 7 as an object to be heated is placed on a boat 6, sent into a furnace tube 4, and positioned in a cylindrical body 5. The inlet of the furnace tube 4 is closed by a cap 8, and the inside of the furnace tube 4 is filled with a nitrogen atmosphere introduced from a purge gas inlet 9. When heating is performed by the halogen lamp 2 in this state, light is irregularly reflected at the portion of the cylinder 5 made of frosted glass, and acts as if the cylinder 5 is a surface light source. When there is no cylinder 5 made of frosted glass, the light emitted from the lamp 2 is directly applied to the silicon wafer 7.
The halogen lamp 2 may be considered as a linear light source. In this case, the intensity of light irradiated on the silicon wafer 7 decreases in inverse proportion to the distance between the halogen lamp 2 and the silicon wafer 7. Assuming that the shortest distance between the halogen lamp 2 and the silicon wafer 7 is 8 cm, the interval between the halogen lamps is 5 cm, and the interval between the silicon wafers is 5 mm, the irradiation light intensity at the edge of the silicon wafer changes by about 5% depending on the installation position of the silicon wafer. I do. Furthermore, since the silicon wafer is set up vertically, the irradiation light intensity at the edge of the silicon wafer becomes maximum when the silicon wafer is located closest to the halogen lamp. However, the main surface (mirror surface) of the silicon wafer is parallel to the illuminating direction of the light, and the direct irradiation light from the nearest halogen lamp on the silicon main surface is extremely small. For this reason, a large heating non-uniformity is induced in the temperature distribution in the wafer. However, as described in the present embodiment, when irradiation and heating are performed with the surface light source made of the frosted glass of the cylindrical body, the heating non-uniformity due to the difference in the wafer installation position as described above is eliminated. In addition, since the irradiation light intensity at the wafer edge and the main surface is also constant, the uniformity of heating is dramatically improved. (Example 2) Fig. 2 is a sectional view of Example 2 of the present invention. As in FIG. 1, the light irradiation heating device is composed of a housing 11, a linear halogen lamp 12, a reflector 13, a core tube 14, a cylinder 15 made of frosted glass, and a boat 16, and a wafer 17 is placed on the boat. Placed, covered with a cap 18, and purge gas inlet 19
More nitrogen gas for purging is introduced. In the present embodiment, the halogen lamp 12 is installed in parallel with the furnace tube. In this case, if there is no cylindrical body 15 made of frosted glass and the light emitted from the lamp is directly radiated to the wafer 17, there is no difference between the wafers in the irradiation intensity, but the irradiation light intensity in the same wafer Differences occur, which causes non-uniform heating within the wafer. However, in the present invention, since the cylindrical body 15 made of frosted glass is present, it is the same as performing light irradiation with a surface light source from the cylindrical body 15 made of frosted glass, and heating in the wafer plane is effective. The uniformity is dramatically improved. [Effect of the Invention] In the light irradiation heating furnace, the relative position between the position of the wafer and the light source is uniquely determined by the relative positional relationship between the furnace core tube wall and the wafer loading boat. The invention is based on the fact that the tube wall of the light irradiation furnace has a light scattering structure,
A light source with a light scattering structure can be arranged at the position of the tube wall of the light irradiation furnace, and accurate heating can be performed while appropriately maintaining the distance of the light source to the wafer. For this reason, not only can the maximum temperature attained within and between the wafers be made uniform, but also the internal strain caused by temperature non-uniformity can be minimized, and the quality of products and the rate of non-defective products can be improved. it can. Further, since the improvement in the uniformity of heating enables more rapid heating, it has the effect of shortening the heat treatment time and improving the processing ability.

【図面の簡単な説明】 第1図は本発明の実施例1を示す断面図、第2図は本発
明の実施例2を示す断面図である。 1,11……筐体、2,12……ハロゲンランプ 3,13……反射板、4,14……炉心管 5,15……曇りガラスからなる筒体 6,16……ボート、7,17……ウエーハ 8,18……キャップ 9,19……パージガス導入口
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a first embodiment of the present invention, and FIG. 2 is a sectional view showing a second embodiment of the present invention. 1,11… Housing, 2,12… Halogen lamp 3,13… Reflector, 4,14… Core tube 5,15… Cylindrical body 6,16 made of frosted glass, Boat, 7, 17… Wafer 8,18… Cap 9,19 …… Purge gas inlet

Claims (1)

(57)【特許請求の範囲】 1.筒状の炉心管の周囲に光熱源が配置され、前記炉心
管の内部にボード上に縦に複数搭載されたウェーハを収
納する光照射加熱炉において、前記炉心管の管壁を光散
乱構造としたことを特徴とする光照射加熱炉。
(57) [Claims] A light heat source is arranged around a cylindrical furnace tube, and in a light irradiation heating furnace that stores a plurality of wafers vertically mounted on a board inside the furnace tube, the tube wall of the furnace tube has a light scattering structure. A light irradiation heating furnace characterized in that:
JP61274278A 1986-11-18 1986-11-18 Light irradiation heating furnace Expired - Lifetime JP2716116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274278A JP2716116B2 (en) 1986-11-18 1986-11-18 Light irradiation heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274278A JP2716116B2 (en) 1986-11-18 1986-11-18 Light irradiation heating furnace

Publications (2)

Publication Number Publication Date
JPS63128625A JPS63128625A (en) 1988-06-01
JP2716116B2 true JP2716116B2 (en) 1998-02-18

Family

ID=17539425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274278A Expired - Lifetime JP2716116B2 (en) 1986-11-18 1986-11-18 Light irradiation heating furnace

Country Status (1)

Country Link
JP (1) JP2716116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897167A (en) * 1994-09-28 1996-04-12 Tokyo Electron Ltd Processing system and heat-treatment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146732U (en) * 1984-08-29 1986-03-28 富士通株式会社 Heat treatment equipment for semiconductors

Also Published As

Publication number Publication date
JPS63128625A (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US6518547B2 (en) Heat treatment apparatus
US4789771A (en) Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus
JP3215155B2 (en) Method for rapid heat treatment of semiconductor wafer by irradiation
JP3484651B2 (en) Heating device and heating method
JP2961123B2 (en) Rapid heat treatment of semiconductor disks by electromagnetic radiation.
US4755654A (en) Semiconductor wafer heating chamber
US5577157A (en) Optical processing furnace with quartz muffle and diffuser plate
US20010002948A1 (en) Gas driven rotating susceptor for rapid thermal processing (rtp) system
US5719991A (en) System for compensating against wafer edge heat loss in rapid thermal processing
JPH05503570A (en) Rapid heating device and method
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
TWI638390B (en) Heat treatment apparatus
JP2716116B2 (en) Light irradiation heating furnace
JPS63227014A (en) Lamp heater
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JPH06318558A (en) Lamp annealing equipment
JP2002208466A (en) Heating lamp and heat treatment device
JP2002289548A (en) Heat treatment device
JPH10321547A (en) Heat-treating device
JP2003022982A (en) Heat treatment device
JP2002151427A (en) Heat treatment apparatus
JPH04288820A (en) Lamp heating apparatus
JPS6366930A (en) Optical irradiator
JPS632318A (en) Lump heater
JPS60211947A (en) Annealing device by indirect heating