JP2713905B2 - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2713905B2
JP2713905B2 JP62123795A JP12379587A JP2713905B2 JP 2713905 B2 JP2713905 B2 JP 2713905B2 JP 62123795 A JP62123795 A JP 62123795A JP 12379587 A JP12379587 A JP 12379587A JP 2713905 B2 JP2713905 B2 JP 2713905B2
Authority
JP
Japan
Prior art keywords
effect transistor
active layer
field
carrier concentration
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62123795A
Other languages
Japanese (ja)
Other versions
JPS63289966A (en
Inventor
淳二 重田
信敏 松永
隆裕 小橋
康 八田
直行 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62123795A priority Critical patent/JP2713905B2/en
Publication of JPS63289966A publication Critical patent/JPS63289966A/en
Application granted granted Critical
Publication of JP2713905B2 publication Critical patent/JP2713905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタと、とくにGaAs電界効
果トランジスタの構造に係り、特にゲート長が0.5μm
以下の高性能電界効果トランジスタに関する。 〔従来の技術〕 従来GaAsを用いたゲート長が0.5μm以下の高性能電
界効果トランジスタは例えば第34回応用物理学関係連合
講演会講演予稿集第3分冊28P−X−5(1987年)第805
頁に述べられており、その構造は第4図に示すように、
アンドープGaAs層1の上に極めて厚さの薄いGaAs高キヤ
リア濃度能動層2を設けたものである。 〔発明が解決しようとする問題点〕 ゲート長の短縮に伴なつてトランジスタのしきい電圧
値が負側にシフトする短チヤネル効果の防止法として、
能動層下部にp型層を形成する方法が知られている。し
かしこの方法はゲート長が0.5μm以下になるとあまり
有効ではなく、上記従来例のようなゲート長が0.3μm
程度の高性能トランジスタでは能動層をきわめて薄くす
ることにより短チヤネル効果を防止し、能動層下部にp
型層を形成することはなかつた。 しかし本発明者らは、第4図(b)に示すように、能
動層の厚さを薄くするにしたがい、トランジスタ領域形
成後の保護膜、配線工程等に必要な熱処理により、しき
い電圧値の変動が大きくなるという現象を見出した。こ
の原因の詳細は不明であるが、熱処理によつて能動層内
の不純物が能動層下部に拡散して能動層の厚さが変化
し、この厚さの変化が、能動層の厚さが薄い程著しいた
めと考えられる。 〔問題点を解決するための手段〕 本発明者らは、従来能動層厚さの薄い場合には用いら
れなかつたp型層を埋込む技術を用いることにより、こ
の熱処理によるしきい電圧値の変動を軽減できることを
見出した。なお、能動層がp型の場合は埋込層はn型と
なる。 〔作用〕 熱処理により能動層内の不純物が能動層下部に拡散し
ても、p型不純物によつて相殺され、能動層厚さが大き
く変動しないためと考えられる。 〔実施例〕 (実施例1) 本発明の実施例を第1図に示す。半絶縁性GaAs基板3
上にBeを1017cm-3程度ドープしたp型GaAs埋込層7をMB
E法を用いてエピタキシヤル成長させた。能動層厚さが
薄いと能動層のキヤリア濃度を増大する必要があるた
め、Siをドープした1〜5×1018cm-3の高キヤリア濃度
GaAs能動層2をp型埋込層7の上に30〜1000Åの厚さに
成長させた。次にWSiを用いてゲート長0.3μmのゲート
電極6を形成し、またゲート電極両側にオーミツク電極
4,5を形成して電界効果トランジスタを作製した。さら
に、CVD法を用い400℃20分の加熱処理条件でSiO2保護膜
を形成した後しきい電圧の変動ΔVthを測定した。その
結果第2図に示すように、本発明のようにp型埋込層を
用いた場合と従来の場合の差は、能動層の厚さが500Å
以下で次第に明瞭になり、300Å以下で急に増大するこ
とがわかった。 (実施例2) 本発明の実施例2を第3図に示す。実施例1と同様に
半絶縁性GaAs基板3上にp型GaAs埋込層7および2×10
18cm-3の高キヤリア濃度をもつGaAs能動層2をMBE法で
エピタキシヤル成長させ、さらに3×1012cm-3の低キヤ
リア濃度をもつn型GaAs能動層8を成長させた。この後
通常の方法でゲート電極6、オーミツク電極4,5を形成
し電界効果トランジスタを作製した。さらに、CVD法を
用い400℃20分の加熱処理条件でSiO2保護を形成した
(図示せず)。 この構造ではゲート電極6と高キヤリア濃度能動層2
との界面のキヤリア濃度が3×1012cm-3と低いため、ゲ
ート耐圧を改善できる。 〔発明の効果〕 本発明によれば、特性変動の少ない性能の安定した高
性能電界効果トランジスタを得ることができる。 なお、上記実施例では能動層にn型、埋込層にp型の
半導体を用いた例を述べたが、能動層にp型、埋込層に
n型の半導体を用いる構造においても同様の効果を得る
ことができる。 またGaAs以外の材料においても、能動層と埋込層の導
電型を反対にすることにより、熱処理による能動層厚さ
の変動を軽減できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and particularly to a structure of a GaAs field effect transistor.
The present invention relates to the following high-performance field-effect transistor. [Prior Art] Conventionally, a high-performance field-effect transistor using GaAs and having a gate length of 0.5 μm or less is described, for example, in the 34th Preliminary Proceedings of the 34th Joint Lecture Meeting on Applied Physics, Vol. 3, 28PX-5 (1987). 805
Page, and the structure is as shown in FIG.
An undoped GaAs layer 1 is provided with a very thin GaAs high carrier concentration active layer 2. [Problems to be Solved by the Invention] As a method of preventing a short channel effect in which a threshold voltage value of a transistor shifts to a negative side as a gate length is shortened,
A method for forming a p-type layer below an active layer is known. However, this method is not very effective when the gate length is 0.5 μm or less.
In a high-performance transistor of the order, the short channel effect is prevented by making the active layer extremely thin, and p
No mold layer was formed. However, as shown in FIG. 4 (b), as the thickness of the active layer is reduced, the present inventors have determined that the threshold voltage value can be increased by the heat treatment required for the protective film after the formation of the transistor region, the wiring step, and the like. Was found to be large. Although the details of this cause are unknown, the heat treatment causes impurities in the active layer to diffuse below the active layer and change the thickness of the active layer. Probably because it is remarkable. [Means for Solving the Problems] By using a technique of embedding a p-type layer, which has not been conventionally used when the thickness of the active layer is small, the present inventors have proposed a technique for reducing the threshold voltage value due to this heat treatment. It has been found that fluctuation can be reduced. When the active layer is p-type, the buried layer is n-type. [Operation] It is considered that even if impurities in the active layer diffuse into the lower portion of the active layer due to the heat treatment, the impurities are offset by the p-type impurities, and the thickness of the active layer does not largely change. Example (Example 1) An example of the present invention is shown in FIG. Semi-insulating GaAs substrate 3
A p-type GaAs buried layer 7 doped with Be at about 10 17 cm -3
Epitaxial growth was performed using the E method. If the active layer thickness is small, it is necessary to increase the carrier concentration of the active layer. Therefore, a high carrier concentration of 1-5 × 10 18 cm -3 doped with Si is required.
The GaAs active layer 2 was grown on the p-type buried layer 7 to a thickness of 30 to 1000 °. Next, a gate electrode 6 having a gate length of 0.3 μm is formed using WSi, and an ohmic electrode is formed on both sides of the gate electrode.
Field effect transistors were fabricated by forming 4,5. Further, after a SiO 2 protective film was formed under a heat treatment condition of 400 ° C. for 20 minutes using a CVD method, a variation ΔV th of a threshold voltage was measured. As a result, as shown in FIG. 2, the difference between the case where the p-type buried layer is used as in the present invention and the conventional case is that the thickness of the active layer is 500 mm.
It became clearer gradually below, and suddenly increased below 300 mm. Embodiment 2 FIG. 3 shows Embodiment 2 of the present invention. As in the first embodiment, a p-type GaAs buried layer 7 and a 2 × 10
A GaAs active layer 2 having a high carrier concentration of 18 cm -3 was epitaxially grown by MBE, and an n-type GaAs active layer 8 having a low carrier concentration of 3 × 10 12 cm -3 was further grown. Thereafter, the gate electrode 6 and the ohmic electrodes 4 and 5 were formed by a usual method to manufacture a field effect transistor. Further, a SiO 2 protection was formed under a heat treatment condition of 400 ° C. for 20 minutes using a CVD method (not shown). In this structure, the gate electrode 6 and the high carrier concentration active layer 2
Since the carrier concentration at the interface with the gate is as low as 3 × 10 12 cm −3 , the gate breakdown voltage can be improved. [Effects of the Invention] According to the present invention, it is possible to obtain a high-performance field-effect transistor having stable performance with little characteristic fluctuation. In the above embodiment, an example is described in which an n-type semiconductor is used for the active layer and a p-type semiconductor is used for the buried layer. However, the same applies to a structure using a p-type semiconductor for the active layer and an n-type semiconductor for the buried layer. The effect can be obtained. Also, for materials other than GaAs, by inverting the conductivity types of the active layer and the buried layer, fluctuations in the thickness of the active layer due to heat treatment can be reduced.

【図面の簡単な説明】 第1図,第3図は各々本発明の実施例1,実施例2の電界
効果トラジスタの断面図、第2図は本発明と従来のトラ
ンジスタについて、熱処理によるしきい電圧値の変動を
比較した図、第4図(a)は従来の電界効果トランジス
タの断面図、同図(b)は従来の電界効果トランジスタ
の熱処理によるしきい電圧値の変動を示した図である。 1…アンドープ層、2…高キヤリア濃度能動層、3…半
絶縁性GaAs基板、4,5…オーミツク電極、6…ゲート電
極、7…p型層、8…低キヤリア濃度能動層。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 3 are cross-sectional views of a field effect transistor according to the first and second embodiments of the present invention, and FIG. FIG. 4 (a) is a cross-sectional view of a conventional field-effect transistor, and FIG. 4 (b) is a diagram showing a change in threshold voltage value due to heat treatment of the conventional field-effect transistor. is there. DESCRIPTION OF SYMBOLS 1 ... Undoped layer, 2 ... High carrier concentration active layer, 3 ... Semi-insulating GaAs substrate, 4, 5 ... Ohmic electrode, 6 ... Gate electrode, 7 ... P-type layer, 8 ... Low carrier concentration active layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小橋 隆裕 青梅市今井2326番地 株式会社日立製作 所コンピユータ事業部デバイス開発セン タ内 (72)発明者 八田 康 青梅市今井2326番地 株式会社日立製作 所コンピユータ事業部デバイス開発セン タ内 (72)発明者 河合 直行 青梅市今井2326番地 株式会社日立製作 所コンピユータ事業部デバイス開発セン タ内 (56)参考文献 特開 昭62−45078(JP,A) 特開 昭62−49671(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takahiro Kobashi               2326 Imai, Ome City Hitachi, Ltd.               Computer Division, Device Development Center               Inside (72) Inventor Yasushi Hatta               2326 Imai, Ome City Hitachi, Ltd.               Computer Division, Device Development Center               Inside (72) Inventor Naoyuki Kawai               2326 Imai, Ome City Hitachi, Ltd.               Computer Division, Device Development Center               Inside                (56) References JP-A-62-45078 (JP, A)                 JP-A-62-49671 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.ゲート長が0.5μm以下のゲートと、一導電型の化
合物半導体より成る厚さが500Å以下の能動層と、該能
動層の一表面に接した前記一導電型とは反対の導電型の
化合物半導体層を有することを特徴とする電界効果トラ
ンジスタ。 2.前記能動層の厚さは300Å以下である特許請求の範
囲第1項に記載の電界効果トランジスタ。 3.前記ゲートはショットキー障壁型ゲートであり、前
記能動層のキャリア濃度は厚さ方向で一様ではなく、前
記ショットキー障壁型ゲートとの界面近傍のキャリア濃
度はこれに隣接する領域のキャリア濃度より低い特許請
求の範囲第1項又は第2項に記載の電界効果トランジス
タ。 4.前記能動層のキャリア濃度の厚さ方向の最大値は1
〜5×1018cm-3の範囲にある特許請求の範囲第3項に記
載の電界効果トランジスタ。 5.前記一導電型はn型、前記反対導電型はp型である
特許請求の範囲第1項乃至第4項のいずれか一項に記載
の電界効果トランジスタ。 6.前記化合物半導体はガリウム・ヒ素である特許請求
の範囲第1項乃至第5項のいずれか一項に記載の電界効
果トランジスタ。
(57) [Claims] A gate having a gate length of 0.5 μm or less, an active layer made of a compound semiconductor of one conductivity type having a thickness of 500 ° or less, and a compound semiconductor of a conductivity type opposite to the one conductivity type in contact with one surface of the active layer A field effect transistor comprising a layer. 2. 2. The field effect transistor according to claim 1, wherein said active layer has a thickness of 300 [deg.] Or less. 3. The gate is a Schottky barrier gate, the carrier concentration of the active layer is not uniform in the thickness direction, and the carrier concentration near the interface with the Schottky barrier gate is lower than the carrier concentration in the region adjacent thereto. The field-effect transistor according to claim 1 or 2, wherein the field-effect transistor is low. 4. The maximum value of the carrier concentration in the active layer in the thickness direction is 1
4. The field-effect transistor according to claim 3, wherein the field-effect transistor is in the range of about 5 * 10 < 18 > cm < -3 >. 5. The field effect transistor according to any one of claims 1 to 4, wherein the one conductivity type is n-type, and the opposite conductivity type is p-type. 6. The field effect transistor according to claim 1, wherein the compound semiconductor is gallium arsenide.
JP62123795A 1987-05-22 1987-05-22 Field effect transistor Expired - Fee Related JP2713905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123795A JP2713905B2 (en) 1987-05-22 1987-05-22 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123795A JP2713905B2 (en) 1987-05-22 1987-05-22 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63289966A JPS63289966A (en) 1988-11-28
JP2713905B2 true JP2713905B2 (en) 1998-02-16

Family

ID=14869495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123795A Expired - Fee Related JP2713905B2 (en) 1987-05-22 1987-05-22 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2713905B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249671A (en) * 1985-06-17 1987-03-04 テキサス インスツルメンツ インコーポレイテツド Gallium-arsenide fe transistor and making thereof
JPS6245078A (en) * 1985-08-22 1987-02-27 Toshiba Corp Field effect transistor and manufacture thereof

Also Published As

Publication number Publication date
JPS63289966A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JPH07176541A (en) Hetero-junction bipolar transistor
JP2689057B2 (en) Static induction semiconductor device
JP2713905B2 (en) Field effect transistor
JPH07245418A (en) Semiconductor device
JPS5828753B2 (en) Method of manufacturing vertical field effect transistor
JP2817718B2 (en) Tunnel transistor and manufacturing method thereof
JP2708492B2 (en) Method for manufacturing semiconductor device
JPH05275453A (en) Junction fet and manufacture thereof
JP3255973B2 (en) Semiconductor device
JP3090451B2 (en) Semiconductor device
JP2621854B2 (en) High mobility transistor
JP2834172B2 (en) Field effect transistor
JPH0360178B2 (en)
JPH05335593A (en) Floating electron channel field effect transistor and manufacture thereof
JP2541280B2 (en) Semiconductor device
JPS6068661A (en) Semiconductor device
JP2817726B2 (en) Tunnel transistor and manufacturing method thereof
JP3347837B2 (en) Compound semiconductor field effect transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JP3006792B2 (en) Heterostructure field effect transistor
JPH0810704B2 (en) Method for manufacturing semiconductor device
JP2819673B2 (en) Field effect transistor
JPH084141B2 (en) Field effect transistor
JPS6367342B2 (en)
JPH0653253A (en) Field effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees