JP2713241B2 - Acceleration sensor and method of manufacturing the same - Google Patents

Acceleration sensor and method of manufacturing the same

Info

Publication number
JP2713241B2
JP2713241B2 JP7152616A JP15261695A JP2713241B2 JP 2713241 B2 JP2713241 B2 JP 2713241B2 JP 7152616 A JP7152616 A JP 7152616A JP 15261695 A JP15261695 A JP 15261695A JP 2713241 B2 JP2713241 B2 JP 2713241B2
Authority
JP
Japan
Prior art keywords
acceleration sensor
fixed electrode
electrode
frame
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7152616A
Other languages
Japanese (ja)
Other versions
JPH08320343A (en
Inventor
奈津子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7152616A priority Critical patent/JP2713241B2/en
Publication of JPH08320343A publication Critical patent/JPH08320343A/en
Application granted granted Critical
Publication of JP2713241B2 publication Critical patent/JP2713241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加速度センサに関し、
特に、対向した電極間距離の加速度による変化を、これ
らの電極により形成されるコンデンサの静電容量の変化
として検出することによって、加速度を測定する容量型
加速度センサの構造および製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor,
In particular, the present invention relates to a structure and a manufacturing method of a capacitive acceleration sensor for measuring acceleration by detecting a change in distance between opposed electrodes due to acceleration as a change in capacitance of a capacitor formed by these electrodes. .

【0002】[0002]

【従来の技術】従来の容量型加速度センサは、固定電極
の電位を取り出すために、図4の従来例1や図5の従来
例2の構造が一般的であった(特願平4−130277
号参照)。
2. Description of the Related Art A conventional capacitive acceleration sensor generally has a structure of a conventional example 1 shown in FIG. 4 or a conventional example 2 shown in FIG. 5 in order to extract a potential of a fixed electrode (Japanese Patent Application No. 4-130277).
No.).

【0003】従来例1はガラスのストッパ1の可動電極
21に対向する面に導電性膜で固定電極12を形成す
る。ガラスに貫通穴13を開け、前記の穴を通じて、固
定電極12とボンディングパッド間の配線をする。Si
の可動電極部2とガラスのストッパ1は静電接合法で接
着される。図の40はリード線である。
In Conventional Example 1, a fixed electrode 12 is formed of a conductive film on a surface of a glass stopper 1 facing a movable electrode 21. A through hole 13 is made in the glass, and wiring between the fixed electrode 12 and the bonding pad is made through the hole. Si
The movable electrode portion 2 and the glass stopper 1 are bonded by an electrostatic bonding method. Reference numeral 40 in the drawing is a lead wire.

【0004】従来例2(図5)は、固定電極を兼ねたS
iストッパ1を、絶縁膜14を介して可動電極部2に接
着する。絶縁膜14にガラスを用いる場合は、ストッパ
を静電接合で接着し、固定電極12と可動電極間21の
間のギャップ3は絶縁膜14の厚さで制御される。ま
た、絶縁膜14に接着剤を用いる場合は、ギャップ3と
等しい直径を持つマイクロビーズを混入してギャップ3
を保持してストッパ1と可動電極部2を接着する。
The prior art 2 (FIG. 5) uses an S electrode serving also as a fixed electrode.
The i-stopper 1 is bonded to the movable electrode section 2 via the insulating film 14. When glass is used for the insulating film 14, a stopper is bonded by electrostatic bonding, and the gap 3 between the fixed electrode 12 and the movable electrode 21 is controlled by the thickness of the insulating film 14. When an adhesive is used for the insulating film 14, microbeads having the same diameter as the gap 3 are mixed and mixed with the gap 3.
Is held, and the stopper 1 and the movable electrode unit 2 are bonded.

【0005】[0005]

【発明が解決しようとする課題】従来例1の容量型加速
度センサの構造では、ガラスのストッパとSiの可動電
極部の接着は静電接合法を用いるため、堅牢で信頼性が
高い半面、ガラスとSiの熱膨張率の違いから、加速度
センサの温度特性の低下を招いた。また、ストッパ全体
をガラスで構成することは、固定電極とボンディングパ
ッド間の配線用貫通穴の形成、固定電極と可動電極間の
ギャップの形成等、ガラスの精密な加工が難しく歩留ま
りが低いという問題があった。
In the structure of the capacitive acceleration sensor of the prior art example 1, since the bonding between the glass stopper and the movable electrode portion of Si uses an electrostatic bonding method, the glass surface is robust and highly reliable. The difference in the coefficient of thermal expansion between Si and Si caused a decrease in the temperature characteristics of the acceleration sensor. In addition, forming the entire stopper with glass has a problem that precise processing of glass is difficult and yield is low, such as formation of a through hole for wiring between a fixed electrode and a bonding pad and formation of a gap between a fixed electrode and a movable electrode. was there.

【0006】従来例2の容量型加速度センサの構造で
は、絶縁膜を介して接合した部分に発生する寄生容量が
S/N比を劣化させたり、センサ出力の温度依存性を大
きくするという問題があった。また、静電接合が可能な
絶縁物をギャップの厚さに形成することは困難であり、
膜を形成しても薄いためにリークが発生し、静電接合が
困難である。ギャップと等しい直径を持つマイクロビー
ズを混入した接着剤でギャップを保持しつつストッパと
可動電極部を接着する方法は、ダイシングに耐え得る接
着強度を持つ接着剤とSiとの熱膨張率が大きく違うた
めに、加速度センサの温度特性の低下を招いた。
In the structure of the capacitive acceleration sensor of Conventional Example 2, there is a problem that a parasitic capacitance generated at a portion joined via an insulating film deteriorates the S / N ratio and increases the temperature dependency of the sensor output. there were. Also, it is difficult to form an insulator capable of electrostatic bonding to the thickness of the gap,
Even if a film is formed, leakage occurs because the film is thin, and it is difficult to perform electrostatic bonding. In the method of bonding the stopper and the movable electrode portion while maintaining the gap with an adhesive mixed with microbeads having a diameter equal to the gap, the coefficient of thermal expansion between Si and the adhesive having an adhesive strength enough to withstand dicing is greatly different. As a result, the temperature characteristics of the acceleration sensor are reduced.

【0007】本発明は温度特性がよく、S/N比が高く
信頼性の高い容量型加速度センサの提供を目的とする。
An object of the present invention is to provide a capacitive acceleration sensor having good temperature characteristics, a high S / N ratio, and high reliability.

【0008】[0008]

【課題を解決するための手段】本発明の容量型加速度セ
ンサは、導電性板の固定電極の周囲に絶縁物の枠を配置
したストッパを有し、この絶縁物の枠と可動電極の支持
枠を接着するように構成したことを特徴とする。
A capacitive acceleration sensor according to the present invention has a stopper having an insulator frame arranged around a fixed electrode of a conductive plate, and the insulator frame and a support frame for a movable electrode. Are bonded.

【0009】さらに、本発明による加速度センサの製造
方法は、下記の工程を含むことを特徴とする。 1) 固定電極と絶縁物の枠を静電接合し、積層構造を
形成する工程。 2) 前記積層構造を所定の厚さに切断する工程。 3) 前記積層構造の切断面の一方を静電接合が可能な
程度に滑らかに加工する工程。 4) 前記積層構造中の固定電極を電極間距離の深さだ
けエッチングする工程。 5) 前記積層構造の滑らかに加工された面と可動電極
枠部分とを静電接合する工程。
Further, a method of manufacturing an acceleration sensor according to the present invention includes the following steps. 1) A step of electrostatically joining a fixed electrode and an insulator frame to form a laminated structure. 2) a step of cutting the laminated structure to a predetermined thickness; 3) A step of processing one of the cut surfaces of the laminated structure so smoothly as to enable electrostatic bonding. 4) a step of etching the fixed electrodes in the laminated structure to a depth equal to the distance between the electrodes. 5) a step of electrostatically joining the smoothly processed surface of the laminated structure and the movable electrode frame portion.

【0010】[0010]

【作用】本発明は可動電極部と同材質の固定電極の周囲
に絶縁物の枠を配置したことにより、熱膨張率の異なる
部分を縮小して加速度センサの熱歪みが小さく抑えら
れ、感度温度特性が向上する。さらに、ストッパと接合
する可動電極部の枠部分は、固定電極との間に十分な厚
さの絶縁物があるため寄生容量が小さくなり、S/N比
が向上する。
According to the present invention, by arranging an insulator frame around a fixed electrode made of the same material as that of the movable electrode portion, portions having different coefficients of thermal expansion are reduced, so that the thermal distortion of the acceleration sensor is suppressed to a small value. The characteristics are improved. Furthermore, since the frame portion of the movable electrode portion to be joined to the stopper has a sufficiently thick insulator between the fixed electrode and the movable electrode portion, the parasitic capacitance is reduced, and the S / N ratio is improved.

【0011】ストッパの構造の形成、ストッパと可動電
極部の接着には静電接合法が用いられ、堅牢で信頼性の
高い構造物を製作することができる。
An electrostatic bonding method is used for forming the structure of the stopper and bonding the stopper to the movable electrode portion, and a robust and highly reliable structure can be manufactured.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の容量型加速度センサの第1実施
例の断面斜視図である。可動部2には、SiをKOH水
溶液やヒドラジン等でエッチングして薄膜部23を形成
する。薄膜部23の一端は支持部22に、他の一端は可
動電極21につながっている。ストッパ41は、高濃度
の不純物を含み低抵抗としたSiの固定電極42の周囲
に、パイレックスガラス(米国コーニング社の理化学用
ガラスの商品名)等のNaを含んだガラス枠43を接着
した構造である。固定電極42の、可動電極21に対向
する面にギャップ3が形成される。ストッパ41と可動
部2は静電接合法で接着する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional perspective view of a first embodiment of the capacitive acceleration sensor according to the present invention. In the movable section 2, Si is etched with a KOH aqueous solution, hydrazine or the like to form a thin film section. One end of the thin film portion 23 is connected to the support portion 22, and the other end is connected to the movable electrode 21. The stopper 41 has a structure in which a glass frame 43 containing Na such as Pyrex glass (trade name of glass for physics and chemistry from Corning, USA) is bonded around a fixed electrode 42 made of Si having a high resistance and a low resistance containing impurities. It is. The gap 3 is formed on the surface of the fixed electrode 42 facing the movable electrode 21. The stopper 41 and the movable part 2 are bonded by an electrostatic bonding method.

【0013】第1実施例の加速度センサに加速度が加わ
ると、一端を支持部22に固定された薄膜部23がたわ
み、固定電極42と可動電極21間のギャップ3が変化
する。これらの電極間の静電容量の変化から、加速度の
大きさを測定する。
When acceleration is applied to the acceleration sensor of the first embodiment, the thin film portion 23 having one end fixed to the support portion 22 is bent, and the gap 3 between the fixed electrode 42 and the movable electrode 21 changes. The magnitude of the acceleration is measured from the change in capacitance between these electrodes.

【0014】図2は本発明の第2実施例を示す図であ
る。この実施例はストッパ44の形状が第1実施例と少
し異なっており、その他は第1実施例と同様である。す
なわち、ストッパ44は、高濃度の不純物を含み低抵抗
とした短形のSiの固定電極45の対向する最低一組の
面に、ガラス枠46を接着した構造であり、固定電極4
5の可動電極21に対向する面は、ガラス枠46の端よ
りギャップ3の深さだけほり込まれている。
FIG. 2 is a diagram showing a second embodiment of the present invention. In this embodiment, the shape of the stopper 44 is slightly different from that of the first embodiment, and the other points are the same as those of the first embodiment. That is, the stopper 44 has a structure in which a glass frame 46 is adhered to at least one pair of opposing surfaces of a fixed electrode 45 made of a short Si having a low resistance and containing a high concentration of impurities.
The surface facing the movable electrode 21 is recessed from the end of the glass frame 46 by the depth of the gap 3.

【0015】次に第2実施例のストッパ44の製造方法
について説明する。図3(a)に示すように、固定電極
45の幅と等しい厚さを持つ低抵抗Siウエハ4の両面
に、ガラス枠46と等しい幅を持つガラスウエハ5を静
電接合し、積層構造を形成する(第3図(a))。積層
構造をストッパ44の厚さに研磨しろを加えた厚さに切
断し、ガラスウエハ5の切断面15を静電接合が可能な
程度に平滑に研磨する(第5図(b))。積層構造中の
固定電極45となるSi部分4を、SiO2はエッチン
グされないがSiはエッチングされるヒドラジン等のエ
ッチング液を用いて、ギャップ3の深さ分エッチングす
る(第5図(c))。ガラス枠46の研磨された面と可
動電極枠部分22とを静電接合する(第5図(d))。
静電接合時のバイアス電圧を固定電極45から印加する
場合、固定電極45と可動電極21が接触しリークする
ことを防止するため、固定電極45および可動電極21
の一方、あるいは両方の表面に、絶縁膜を成膜するか絶
縁物の小突起を形成するとよい。
Next, a method of manufacturing the stopper 44 according to the second embodiment will be described. As shown in FIG. 3A, a glass wafer 5 having a width equal to that of the glass frame 46 is electrostatically bonded to both surfaces of the low-resistance Si wafer 4 having a thickness equal to the width of the fixed electrode 45 to form a laminated structure. (FIG. 3A). The laminated structure is cut to a thickness obtained by adding a polishing margin to the thickness of the stopper 44, and the cut surface 15 of the glass wafer 5 is polished so smoothly that electrostatic bonding can be performed (FIG. 5B). The Si portion 4 serving as the fixed electrode 45 in the laminated structure is etched to the depth of the gap 3 by using an etching solution such as hydrazine which does not etch SiO 2 but etches Si (FIG. 5 (c)). . The polished surface of the glass frame 46 and the movable electrode frame portion 22 are electrostatically bonded (FIG. 5D).
When a bias voltage at the time of electrostatic bonding is applied from the fixed electrode 45, the fixed electrode 45 and the movable electrode 21 are prevented from contacting the fixed electrode 45 and the movable electrode 21 to prevent leakage.
It is preferable to form an insulating film or form small protrusions of an insulating material on one or both of the surfaces.

【0016】静電接合はガラスとアルミニウム箔を接合
できるので、固定電極45と可動部2を構成する物質は
Siに限らず、導電性物質の表面にアルミニウム薄膜を
成膜した材料に置き換えることも可能である。
Since the electrostatic bonding can bond the glass and the aluminum foil, the material forming the fixed electrode 45 and the movable portion 2 is not limited to Si, and may be replaced with a material having an aluminum thin film formed on the surface of a conductive material. It is possible.

【0017】[0017]

【発明の効果】以上説明したように、可動電極部と同材
質の固定電極の周囲に絶縁物の枠を配置したことによ
り、熱膨張率の異なる部分を縮小して加速度センサの熱
歪みが小さく抑えられ、感度温度特性が向上する。さら
に、ストッパと接合する可動電極部の枠部分は、固定電
極との間に十分な厚さの絶縁物があるため寄生容量が小
さくなり、S/N比が向上する。固定電極がストッパを
兼ねているのでストッパに貫通穴を開けて配線する必要
がなく加工が容易である。
As described above, by arranging the insulator frame around the fixed electrode made of the same material as the movable electrode portion, the portions having different coefficients of thermal expansion are reduced, and the thermal distortion of the acceleration sensor is reduced. It is suppressed and sensitivity temperature characteristics are improved. Furthermore, since the frame portion of the movable electrode portion to be joined to the stopper has a sufficiently thick insulator between the fixed electrode and the movable electrode portion, the parasitic capacitance is reduced, and the S / N ratio is improved. Since the fixed electrode also serves as the stopper, it is not necessary to form a through hole in the stopper and to perform wiring, and processing is easy.

【0018】ストッパの構造の形成、ストッパと可動電
極部の接着には静電接合法が用いられ、堅牢で信頼性の
高い構造物を製作することができる。
An electrostatic bonding method is used for forming the structure of the stopper and bonding the stopper to the movable electrode portion, and a robust and highly reliable structure can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の断面斜視図である。FIG. 1 is a sectional perspective view of a first embodiment of the present invention.

【図2】本発明の第2実施例の断面斜視図である。FIG. 2 is a sectional perspective view of a second embodiment of the present invention.

【図3】本発明の第2実施例の製造工程説明図である。FIG. 3 is an explanatory view of a manufacturing process according to a second embodiment of the present invention.

【図4】加速度センサの従来例1の断面図である。FIG. 4 is a cross-sectional view of Conventional Example 1 of an acceleration sensor.

【図5】加速度センサの従来例2の断面図である。FIG. 5 is a sectional view of a second conventional example of the acceleration sensor.

【符号の説明】[Explanation of symbols]

1 ストッパ 2 可動部 3 ギャップ 4 Siウエハ 5 ガラスウエハ 11 ストッパ絶縁枠 12 固定電極 13 容量取りだしスルーホール 14 絶縁物接着層 15 研磨面 21 可動電極 22 可動部支持枠 23 可動部薄膜部 40 リード線 41 ストッパ 42 固定電極 43 ガラス枠 44 ストッパ 45 固定電極 46 ガラス枠 DESCRIPTION OF SYMBOLS 1 Stopper 2 Movable part 3 Gap 4 Si wafer 5 Glass wafer 11 Stopper insulating frame 12 Fixed electrode 13 Capacitance take-out hole 14 Insulator bonding layer 15 Polished surface 21 Movable electrode 22 Movable part support frame 23 Movable part thin film part 40 Lead wire 41 Stopper 42 Fixed electrode 43 Glass frame 44 Stopper 45 Fixed electrode 46 Glass frame

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 間隙をはさんで対向する可動電極と固定
電極から構成され、これらの電極間隙の加速度による変
化を静電容量の変化として検出することによって加速度
を測定する容量型加速度センサにおいて、前記固定電極
の周囲あるいは一部に絶緑物の枠が配置され、この絶緑
物の枠と前記可動電極の支持枠が接着された構造を有す
ることを特徴とする加速度センサ。
1. A capacitive acceleration sensor comprising a movable electrode and a fixed electrode opposed to each other with a gap therebetween, and measuring an acceleration by detecting a change due to acceleration of the electrode gap as a change in capacitance. An acceleration sensor having a structure in which a frame of a green material is arranged around or partially around the fixed electrode, and the frame of the green material is bonded to a support frame of the movable electrode.
【請求項2】 前記固定電極が矩形であって、その対向
する一組の面に前記絶縁物の枠が接着された請求項1に
記載の加速度センサ。
2. The acceleration sensor according to claim 1, wherein the fixed electrode is rectangular, and the insulator frame is adhered to a pair of opposing surfaces.
【請求項3】 前記可動電極と前記固定電極とは、同じ
材質から成る請求項1または2に記載の加速度センサ。
3. The acceleration sensor according to claim 1, wherein the movable electrode and the fixed electrode are made of the same material.
【請求項4】 前記可動電極は、可動部と、薄膜部と、
支持部とで一体に形成されて成り、前記支持部に前記絶
縁物の枠が接着された請求項1ないし3のいずれか1項
に記載の加速度センサ。
4. The movable electrode includes a movable portion, a thin film portion,
The acceleration sensor according to any one of claims 1 to 3, wherein the acceleration sensor is formed integrally with a support portion, and the insulator frame is bonded to the support portion.
【請求項5】 請求項1ないし4のいずれか1項に記載
の加速度センサの製造方法において、少なくとも、 1) 固定電極と絶縁物を静電接合して積層構造を形成
する工程、 2) 前記積層構造を所定の厚さに切断する工程、 3) 前記積層構造の切断面の少なくとも一方を静電接
合が可能な程度に滑らかに加工する工程、 4) 前記積層構造中の固定電極をエッチングする工
程、 5) 前記積層構造の滑らかに加工された面と可動電極
支持枠部分とを静電接合する工程、 を含むことを特徴とする加速度センサの製造方法。
5. The method for manufacturing an acceleration sensor according to claim 1, wherein at least 1) a step of forming a laminated structure by electrostatically bonding the fixed electrode and an insulator; A step of cutting the laminated structure to a predetermined thickness; 3) a step of processing at least one of the cut surfaces of the laminated structure so smoothly as to enable electrostatic bonding; and 4) etching a fixed electrode in the laminated structure. 5) A method of manufacturing an acceleration sensor, comprising: a step of electrostatically bonding a smoothly processed surface of the laminated structure to a movable electrode support frame portion.
JP7152616A 1995-05-25 1995-05-25 Acceleration sensor and method of manufacturing the same Expired - Fee Related JP2713241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7152616A JP2713241B2 (en) 1995-05-25 1995-05-25 Acceleration sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7152616A JP2713241B2 (en) 1995-05-25 1995-05-25 Acceleration sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08320343A JPH08320343A (en) 1996-12-03
JP2713241B2 true JP2713241B2 (en) 1998-02-16

Family

ID=15544278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7152616A Expired - Fee Related JP2713241B2 (en) 1995-05-25 1995-05-25 Acceleration sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2713241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862795B2 (en) * 2002-06-17 2005-03-08 Vty Holding Oy Method of manufacturing of a monolithic silicon acceleration sensor
WO2006127813A2 (en) * 2005-05-25 2006-11-30 Northrop Grumman Corporation Methods for signal to noise improvement in bulk mems accelerometer chips and other mems devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841240B2 (en) * 1990-10-12 1998-12-24 株式会社ワコー Force / acceleration / magnetism detection device
JP2999291B2 (en) * 1991-05-14 2000-01-17 和廣 岡田 Force, acceleration, and magnetism detectors for multi-dimensional directions

Also Published As

Publication number Publication date
JPH08320343A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3114570B2 (en) Capacitive pressure sensor
JP3367113B2 (en) Acceleration sensor
JP2786321B2 (en) Semiconductor capacitive acceleration sensor and method of manufacturing the same
JP2517467B2 (en) Capacitive pressure sensor
JP4003326B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
JP3307328B2 (en) Semiconductor dynamic quantity sensor
JP2713241B2 (en) Acceleration sensor and method of manufacturing the same
JP2008032451A (en) Variable capacitance pressure sensor
US20020073779A1 (en) Semiconductor dynamic quantity detecting sensor and manufacturing method of the same
JP4258504B2 (en) Pressure sensor
JP3328707B2 (en) Capacitance type semiconductor acceleration sensor and semiconductor pressure sensor
JP3173256B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
JP2002090244A (en) Semiconductor pressure sensor and manufacturing method thereof
JPH11201984A (en) Semiconductor dynamic quantity sensor and manufacture therefor
JPH07263709A (en) Dynamic quantity sensor and airbag system
JP2002289875A (en) Semiconductor dynamic quantity sensor and manufacturing method therefor
JPH06289049A (en) Acceleration sensor
JPH1022512A (en) Capacitance type pressure sensor
JP2000082824A (en) Manufacture of semiconductor mechanical strain sensor
JP2002050771A (en) Integrated sensor
JP2003156510A (en) Method of manufacturing semiconductor accelerometer
JPH06302836A (en) Manufacture of semiconductor strain sensor
JPH07273351A (en) Semiconductor sensor
JP2007093234A (en) Pressure sensor
JPH1151966A (en) Semiconductor acceleration sensor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees