JPH07263709A - Dynamic quantity sensor and airbag system - Google Patents

Dynamic quantity sensor and airbag system

Info

Publication number
JPH07263709A
JPH07263709A JP6046784A JP4678494A JPH07263709A JP H07263709 A JPH07263709 A JP H07263709A JP 6046784 A JP6046784 A JP 6046784A JP 4678494 A JP4678494 A JP 4678494A JP H07263709 A JPH07263709 A JP H07263709A
Authority
JP
Japan
Prior art keywords
insulator
upper insulator
hole
mechanical quantity
middle conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6046784A
Other languages
Japanese (ja)
Inventor
Junichi Horie
潤一 堀江
Masayoshi Suzuki
政善 鈴木
Norio Ichikawa
範男 市川
Masahide Hayashi
雅秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP6046784A priority Critical patent/JPH07263709A/en
Publication of JPH07263709A publication Critical patent/JPH07263709A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To cut down the cost of the title system in which a dynamical variable sensor is used by a method wherein the continuity from the inside of a hermeticaly sealed detection part is obtained by having a low-priced, highly reliable and highly efficient structure. CONSTITUTION:A weight 3, which moves up and down by accelerated inertia, an elastic part 4 which supports the weight and a conductive pole 6 are formed by anisotropic etching an intermediate conductor 2 consisting of n-type single crystal. An upper electrode 5b, consisting of two-layer structure of aluminum and molibdenum, is formed on the upper insulator 1a opposing to the weight 3 using a photolithographic processing in such a manner that the upper electrode 5b is conductive to the conductive pole 6. A lower insulator 1b consists of a Pyrex 7740 same as the upper insulator 1a, and a lower electrode 5a is formed by the material and process same as the upper electrode 5b. In order to obtain conduction from the internal part of a sensor, aluminum conductors 8a, 8b, 10a and 10b are formed by a vapor deposition method and a sputtering method wherein a metal mask is used on the surface of impurity layers 7a, 7b, hole parts 9a and 9b, and the upper insulator 1a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は力学量センサに係り、航
空機,家電品,自動車に用いられる力学量検出を目的と
した力学量センサの構造,製造方法及び力学量センサを
利用した車体制御システム,アンチロックブレーキシス
テム、特に自動車用エアバッグシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical quantity sensor, and a structure, a manufacturing method, and a vehicle body control system using the mechanical quantity sensor for the purpose of detecting the mechanical quantity used in aircrafts, home appliances and automobiles. , Anti-lock brake system, especially for automobile airbag system.

【0002】[0002]

【従来の技術】従来の技術として例えば、特開平5−528
67号公報に記載されている容量型加速度センサがある。
本装置は加速度による慣性力によって移動し周囲から弾
性を有した梁にて支持された振動マスが形成されたシリ
コン基板と、絶縁材に形成された絶縁基板上に振動マス
と微小ギャップを有して対向する固定電極を形成し、こ
の振動マスと固定電極の静電容量の変化により、加速度
を測定するようにした容量型加速度センサに関する。
2. Description of the Related Art As a conventional technique, for example, Japanese Patent Laid-Open No. 5-528
There is a capacitive acceleration sensor described in Japanese Patent Publication No. 67.
This device has a silicon substrate on which a vibrating mass is formed, which is moved by inertial force due to acceleration and supported by a beam having elasticity from the surroundings, and a vibrating mass and a minute gap on an insulating substrate formed on an insulating material. The present invention relates to a capacitive acceleration sensor in which a fixed electrode facing each other is formed, and acceleration is measured by a change in electrostatic capacitance between the vibration mass and the fixed electrode.

【0003】上記従来技術においては、シリコン基板表
面に拡散したn+ 層を通じガラスにあけた微小孔に蒸着
したクロム銅金および導電エポキシを用いてリード線を
取り付けることにより気密封止されたセンサからの電気
配線の取り出し(フィードスルー)を達成している。
In the above-mentioned prior art, from a sensor hermetically sealed by attaching a lead wire using chrome copper gold and conductive epoxy vapor-deposited in fine holes formed in glass through an n + layer diffused on the surface of a silicon substrate. Achieved the electrical wiring (feed-through).

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の第一の
課題は、振動マス表面を含むシリコン基板表面全体にn
+ 拡散層を形成したため、振動マス表面の異方性エッチ
ング時のエッチング速度が変化し電極間空隙を制御する
事が著しく困難になることである。容量型センサでは振
動マスと固定電極間の空隙が直線性,温度特性,感度等
の特性に大きな影響を及ぼすことは良く知られている。
The first problem of the above-mentioned prior art is that the entire surface of the silicon substrate including the vibrating mass surface is n.
+ Since the diffusion layer is formed, the etching rate during anisotropic etching of the vibrating mass surface changes and it becomes extremely difficult to control the interelectrode gap. It is well known that in a capacitive sensor, the air gap between the vibrating mass and the fixed electrode has a great influence on the linearity, temperature characteristics, and sensitivity.

【0005】上記従来技術の第二の課題は、電解放電加
工等の物理的な加工方法によりガラスの孔加工時を行っ
ているため孔開口部の欠けが生じることである。このた
め孔に形成した蒸着膜は孔の欠け部で導通不良を起こし
シリコン基板のn+ 層からの導通が得られず、導電エポ
キシを用いたリード線により導通を達成している。
The second problem of the above-mentioned prior art is that the hole opening is chipped because the hole is formed in the glass by a physical processing method such as electrolytic discharge machining. Therefore, the vapor-deposited film formed in the holes has a conduction failure at the chipped portions of the holes, and the conduction from the n + layer of the silicon substrate cannot be obtained, but the conduction is achieved by the lead wire using the conductive epoxy.

【0006】[0006]

【課題を解決するための手段】本発明は上述した問題を
解決するために考案されたものであり、第一の特徴は、
力学量を検出する重錘とこの重錘を支持する弾性部を有
し気密接合部表面に均一に形成した不純物層をもつ中部
導電体,貫通した孔部を有する上部絶縁体,下部絶縁体
を有する力学量センサにおいて上記中部導電体と上部絶
縁体および下部絶縁体は気密接合されておりセンサ内部
から中部導電体の不純物層を通じ孔部および上部絶縁体
に形成した導電体により導通をとることである。
The present invention was devised to solve the above-mentioned problems, and the first feature is
A weight conductor for detecting a mechanical quantity and an elastic part for supporting the weight, a middle conductor having an impurity layer uniformly formed on the surface of the airtight joint, an upper insulator having a through hole, and a lower insulator. In the mechanical quantity sensor having the above-mentioned middle conductor, the upper insulator and the lower insulator are airtightly joined, and conduction is made by the conductor formed in the hole and the upper insulator from the inside of the sensor through the impurity layer of the middle conductor. is there.

【0007】第二の特徴は、前記中部導電体を表面に拡
散層を持たないP型シリコン基板から形成したことであ
る。
The second feature is that the middle conductor is formed of a P-type silicon substrate having no diffusion layer on its surface.

【0008】第三の特徴は、上部絶縁体の孔部の加工を
気密接合後に行い、孔部と連続した窪みを中部導電体に
有したことである。
The third feature is that the hole portion of the upper insulator is processed after the airtight bonding, and the hollow portion which is continuous with the hole portion is provided in the middle conductor.

【0009】第四の特徴は、上部絶縁体の孔部の加工
後、孔開口部を研磨加工し欠け部を除去したことであ
る。
The fourth feature is that after the hole portion of the upper insulator is processed, the hole opening portion is polished to remove the chipped portion.

【0010】第五の特徴は、上記発明により達成された
気密型加速度センサの構造,製造方法および本発明によ
る気密型加速度センサを適用したエアバッグシステムで
ある。
A fifth feature is the structure and manufacturing method of the airtight acceleration sensor achieved by the above invention, and the airbag system to which the airtight acceleration sensor according to the present invention is applied.

【0011】[0011]

【作用】第一の特徴の作用としては、接合界面部の中部
導電体に均一な不純物層を形成するため、接合界面には
段差が存在せず完全な気密封止が可能になると同時に不
純物拡散層をもたない重錘表面の異方性エッチング時に
は不純物拡散によるエッチング速度のばらつきが回避で
き高精度な電極間空隙を形成することができる。第二の
特徴の作用としては、中部導電体にP型シリコン基板を
使用し拡散層を廃止することにより、工程数の削減,気
密封止の達成,エッチングばらつきの回避がある。な
お、p+ 拡散層を介しないP型半導体−金属間のオーミ
ック接合は公知である。
The action of the first feature is that since a uniform impurity layer is formed in the middle conductor of the joint interface, there is no step at the joint interface and perfect airtight sealing is possible, and at the same time impurity diffusion is performed. When anisotropically etching the surface of a weight having no layer, variations in etching rate due to impurity diffusion can be avoided, and a highly accurate interelectrode gap can be formed. The action of the second characteristic is to reduce the number of steps, achieve hermetic sealing, and avoid etching variations by using a P-type silicon substrate for the middle conductor and eliminating the diffusion layer. Incidentally, an ohmic junction between a P-type semiconductor and a metal without a p + diffusion layer is known.

【0012】第三の特徴の作用としては、上部絶縁体の
孔部の加工を気密接合後に行うことにより孔部開口部の
欠けを防止できることである。導通不良の原因となって
いた孔部の欠けがなくなると孔部に導電性エポキシとリ
ード線を封止せずに蒸着金属膜のみで導通を得ることが
でき、工程数の減少,導通不良の減少等が達成される。
The operation of the third feature is that the hole of the upper insulator can be prevented from being chipped by processing the hole of the upper insulator after airtight bonding. If there is no lack of holes, which was the cause of poor conduction, conduction can be obtained only by the vapor-deposited metal film without sealing the conductive epoxy and lead wires in the holes, reducing the number of processes and reducing poor conduction. Etc. are achieved.

【0013】第四の特徴の作用としては、上部絶縁体の
孔部の加工後、孔開口部を研磨加工し欠け部を除去する
事により蒸着金属膜のみで導通を得ることができ、導電
性エポキシ及びリード線の廃止,工程数の減少,導通不
良の減少等が達成される。
The fourth feature of the present invention is that after the holes of the upper insulator are processed, the hole openings are polished to remove the chipped portions, so that conduction can be obtained only by the vapor-deposited metal film, and the conductivity is improved. Elimination of epoxy and lead wires, reduction of the number of processes, and reduction of conduction defects are achieved.

【0014】第五の特徴は、前記特徴により得られる気
密封止構造,低価格かつ高信頼性のフィードスルー部を
適用した加速度センサは加速度検出部に気密性が備わっ
ているためセンサのパッケージの自由度が向上し、プラ
スチック等の安価な材料を使用することができる。また
このような加速度センサは一般のICと同様なパッケー
ジに統一する事ができるため、例えばエアバッグシステ
ムに用いるコントロールユニットに本発明の加速度セン
サを使用した場合、ユニット基板へマウンティングは一
般の装置を使用できるため量産効果,設備費低減効果が
大きいことにある。
A fifth feature is that the acceleration sensor to which the airtightly sealed structure obtained by the above feature and the low-priced and highly reliable feed-through portion are applied has the airtightness in the acceleration detection portion, so The degree of freedom is improved, and inexpensive materials such as plastic can be used. Further, since such an acceleration sensor can be integrated into a package similar to a general IC, for example, when the acceleration sensor of the present invention is used for a control unit used in an airbag system, a general device is used for mounting on the unit substrate. Because it can be used, mass production and equipment cost reduction effects are significant.

【0015】[0015]

【実施例】以下、本発明による力学量センサ、一例とし
て静電容量式加速度センサの実施例を示す。
EXAMPLE An example of a mechanical quantity sensor according to the present invention, that is, a capacitance type acceleration sensor will be described below.

【0016】図1は本発明の加速度検出器の第一実施例
の断面図である。
FIG. 1 is a sectional view of a first embodiment of the acceleration detector of the present invention.

【0017】加速度による慣性により上下する重錘3と
この重錘を支持する弾性部4,導電柱6はn型シリコン
単結晶からなる中部導電体2を異方性エッチング加工に
より形成する。エッチングに先だって、ホトリソグラフ
ィー加工により酸化膜等のマスクを形成し接合部にリン
拡散を行い、n+ 型の均一な不純物層7a,7bを形成
する。シリコンと熱膨張率のほぼ等しいパイレックス7
740から成る上部絶縁体1aからメタルマスクを用い
たサンドブラスト加工により貫通した孔部9a,9bを
形成する。上部絶縁体1aは孔部9a,9bを形成した
後、図2に示すよう孔加工時にできた開口部の欠けを研
磨加工される。上部絶縁体1aに重錘3と対向するよう
にアルミ/モリブデンの2層構造からなる上電極5bを
導電柱6と導通を持つようにホトリソグラフィー加工に
より形成する。下部絶縁体1bは上絶縁体1aと同様に
パイレックス7740から成り、下電極5aも上電極5
bと同一材料,プロセスで形成される。中部導電体2と
上部絶縁体1aおよび下部絶縁体1bを陽極接合により
気密接合する。センサ内部からの導通を得るため、不純
物層7a,7b、孔部9a,9b、上部絶縁体1aの表
面にメタルマスクを用いた蒸着法,スパッタ法によりア
ルミから成る導電体8a,8b、導電体10a,10bを
形成する。
The weight 3 which moves up and down due to the inertia caused by acceleration, the elastic portion 4 which supports the weight, and the conductive columns 6 form the middle conductor 2 made of n-type silicon single crystal by anisotropic etching. Prior to etching, a mask such as an oxide film is formed by photolithography and phosphorus is diffused at the junction to form n + -type uniform impurity layers 7a and 7b. Pyrex 7 whose coefficient of thermal expansion is almost equal to that of silicon
Holes 9a and 9b are formed from the upper insulator 1a made of 740 by sandblasting using a metal mask. After the holes 9a and 9b are formed in the upper insulator 1a, the chipping of the opening formed during the hole processing is polished as shown in FIG. An upper electrode 5b having a two-layer structure of aluminum / molybdenum is formed on the upper insulator 1a so as to face the weight 3 by photolithography so as to be electrically connected to the conductive pillar 6. The lower insulator 1b is made of Pyrex 7740 like the upper insulator 1a, and the lower electrode 5a is also the upper electrode 5a.
It is formed by the same material and process as b. The middle conductor 2 and the upper insulator 1a and the lower insulator 1b are airtightly joined by anodic bonding. In order to obtain conduction from the inside of the sensor, the impurity layers 7a and 7b, the holes 9a and 9b, the conductors 8a and 8b made of aluminum by the vapor deposition method using the metal mask on the surface of the upper insulator 1a, the sputtering method, and the conductors. Form 10a and 10b.

【0018】図3は本発明による加速度検出器の第二実
施例である。上部絶縁体1aの孔部9a,9bの加工は
中部導電体2と上下絶縁体1a,1bの陽極接合後、サ
ンドブラスト加工により行う。上部絶縁体1aと中部導
電体2は陽極接合されいるため孔部9a,9bは中部導
電体の窪みと一体化して形成される。この際、孔部9
a,9bの開口部には欠けは発生しない。このことは実
験によって得られた事実である。一般にガラス等の脆性
材をサンドブラスト,電解放電加工,超音波加工等の物
理的手段により加工する場合、孔の貫通時に開口部の欠
けの発生をなくすことは不可避であった。本発明では孔
加工の際に孔貫通側に堅い材料を接合することにより回
避したものである。
FIG. 3 shows a second embodiment of the acceleration detector according to the present invention. The holes 9a and 9b of the upper insulator 1a are processed by sandblasting after the middle conductor 2 and the upper and lower insulators 1a and 1b are anodically bonded. Since the upper insulator 1a and the middle conductor 2 are anodically bonded, the holes 9a and 9b are formed integrally with the recess of the middle conductor. At this time, the hole 9
No chipping occurs in the openings of a and 9b. This is a fact obtained by experiment. Generally, when a brittle material such as glass is processed by a physical means such as sandblasting, electrolytic discharge machining, ultrasonic machining, it is inevitable to eliminate the occurrence of chipping of the opening when the hole penetrates. In the present invention, it is avoided by joining a rigid material to the hole penetrating side during hole processing.

【0019】図4は本発明による加速度検出器の第三実
施例である。中部絶縁体2はp型シリコン単結晶から成
る。孔部9a,9bは図3の実施例と同様に陽極接合後
に形成される。中部導電体まで及んだ孔部9a,9bを
通じ、アルミで形成された導電体8a,8b,10a,
10bにより、加速度検出器内部からの電気的導通を得
る。ここで、p型半導体−金属間のオーミックコンタク
ト自体は良く知られている方法である。
FIG. 4 shows a third embodiment of the acceleration detector according to the present invention. The middle insulator 2 is made of p-type silicon single crystal. The holes 9a and 9b are formed after anodic bonding as in the embodiment of FIG. Through the holes 9a, 9b extending to the middle conductor, conductors 8a, 8b, 10a made of aluminum,
Electrical conduction from the inside of the acceleration detector is obtained by 10b. Here, the ohmic contact itself between the p-type semiconductor and the metal is a well-known method.

【0020】図5は本発明による加速度検出器の加工方
法の第一実施例である。(1)パイレックスガラスから
成る上部絶縁体1aのサンドブラスト加工により孔部9
a,9b形成後、上部絶縁体1aを両面鏡面研磨加工し
欠け部を除去する。研磨加工後の上部絶縁体1aに上電
極5bを形成する。(2)異方性エッチング加工により
重錘3,弾性部4,導電柱6を形成した中部導電体2,
下電極5aを形成した下部絶縁体1bおよび上部絶縁体
1aの位置合わせを行う。(3)中部導電体2,下部絶
縁体1bおよび上部絶縁体1aの陽極接合を行う。
(4)メタルマスク等を用いてスパッタ,蒸着等により
アルミからなる導電体8a,8b,10a,10bを形
成する。
FIG. 5 shows a first embodiment of a method of processing an acceleration detector according to the present invention. (1) The hole 9 is formed by sandblasting the upper insulator 1a made of Pyrex glass.
After the formation of a and 9b, the upper insulator 1a is subjected to double-sided mirror polishing to remove the chipped portion. The upper electrode 5b is formed on the upper insulator 1a after the polishing process. (2) The middle conductor 2, on which the weight 3, elastic portion 4, and conductive column 6 are formed by anisotropic etching
The lower insulator 1b having the lower electrode 5a and the upper insulator 1a are aligned. (3) The middle conductor 2, the lower insulator 1b, and the upper insulator 1a are anodically bonded.
(4) The conductors 8a, 8b, 10a, 10b made of aluminum are formed by sputtering, vapor deposition or the like using a metal mask or the like.

【0021】図6は本発明による加速度検出器の加工方
法の第二実施例である。
FIG. 6 shows a second embodiment of the method for processing the acceleration detector according to the present invention.

【0022】(1)パイレックスガラスから成る上部絶
縁体1aに上電極5bを形成する。中部導電体2に異方
性エッチング加工により重錘3,弾性部4,導電柱6を
形成する。下部絶縁体1bに下電極5aを形成する。
(2)中部導電体2,上部絶縁体1aおよび下部絶縁体
1bの位置合わせ後、陽極接合を行う。(3)サンドブ
ラスト加工により孔部9a,9bを形成する。(4)メ
タルマスク等を用いてスパッタ,蒸着等によりアルミか
らなる導電体8a,8b,10a,10bを形成する。
(1) The upper electrode 5b is formed on the upper insulator 1a made of Pyrex glass. A weight 3, an elastic portion 4, and a conductive column 6 are formed on the middle conductor 2 by anisotropic etching. The lower electrode 5a is formed on the lower insulator 1b.
(2) After the middle conductor 2, the upper insulator 1a, and the lower insulator 1b are aligned, anodic bonding is performed. (3) The holes 9a and 9b are formed by sandblasting. (4) The conductors 8a, 8b, 10a, 10b made of aluminum are formed by sputtering, vapor deposition or the like using a metal mask or the like.

【0023】図7は本発明による加速度検出器の第四実
施例である。平面図の断面構造はそれぞれA−A,B−
B,C−Cに示した。本実施例では、積層構造体の内面
に形成された電極5b,5aを導電柱6a,6bと孔部
8を介して外部に引き出すもので積層体の内部は気密化
されている。
FIG. 7 shows a fourth embodiment of the acceleration detector according to the present invention. The cross-sectional structures of the plan view are A-A and B-, respectively.
B and C-C are shown. In this embodiment, the electrodes 5b, 5a formed on the inner surface of the laminated structure are drawn out through the conductive columns 6a, 6b and the holes 8 and the inside of the laminated body is hermetically sealed.

【0024】以下に、上記デバイスの製造プロセスと電
極引き出しの方法について説明する。中部導電体2には
異方性エッチングプロセス技術により外力で変位する重
錘3や導電柱6a,6bが製作され、これらは中部導電
体2に弾性体4で接続支持されている。一方、上部絶縁
体1aと下部絶縁体1bには金属の薄膜電極からなる電
極5b,5aが形成されている。ここでのプロセスは各
々が単品で行われる。次に、ガラス/シリコンの陽極接
合技術により、中部導電体2と上部絶縁体1aと下部絶
縁体1bは3層同時に接合され、積層構造体となる。こ
のとき、重錘3は上部絶縁体1aと下部絶縁体1bとに
間隙を有するため接合されないが、導電柱6a,6bは
上,下部絶縁体に接合されるため、この部分は気密とな
る。また、このプロセスで下部絶縁体1bに形成される
下電極5aは導電柱6aの一部に挾まれ、接合力により
機械的に接触し、これらは導通状態となる。従って、導
電柱6bが位置する上部絶縁体1aの部分に孔部9から
なる貫通孔を設け、スパッタや蒸着により貫通孔の内面
やその外周に導電体8,10を形成すると下電極5aは
導電柱6aを介して導電体10,8と接続され、気密を
確保するとともに外部に引き出すことが出来る。更に、
導電柱6a,6bを接続支持する弾性体4を上部絶縁体
1aを通して溶断することによって独立した系の電極と
なる。
The manufacturing process of the above device and the electrode drawing method will be described below. A weight 3 and conductive columns 6a and 6b that are displaced by an external force are manufactured on the middle conductor 2 by an anisotropic etching process technique, and these are connected and supported by the middle conductor 2 by an elastic body 4. On the other hand, electrodes 5b, 5a made of metal thin film electrodes are formed on the upper insulator 1a and the lower insulator 1b. The process here is performed individually. Next, by the glass / silicon anodic bonding technique, the middle conductor 2, the upper insulator 1a, and the lower insulator 1b are simultaneously joined in three layers to form a laminated structure. At this time, the weight 3 is not joined because there is a gap between the upper insulator 1a and the lower insulator 1b, but the conductive columns 6a and 6b are joined to the upper and lower insulators, so that this portion is airtight. In addition, the lower electrode 5a formed on the lower insulator 1b in this process is sandwiched by a part of the conductive column 6a and mechanically contacts by the bonding force, and these are brought into conduction. Therefore, when a through hole consisting of a hole 9 is provided in the portion of the upper insulator 1a where the conductive pillar 6b is located, and the conductors 8 and 10 are formed on the inner surface of the through hole and the outer periphery thereof by sputtering or vapor deposition, the lower electrode 5a becomes conductive. It is connected to the conductors 10 and 8 through the pillars 6a so as to ensure airtightness and can be drawn out to the outside. Furthermore,
The elastic body 4 that connects and supports the conductive columns 6a and 6b is melted and cut through the upper insulator 1a to form an independent system electrode.

【0025】この実施例によれば、中部導電体2と上下
絶縁体1a,1bの陽極接合が1回で済み、且つ、気密
型デバイスが可能となるので湿度等の環境に対するデバ
イスの実装方法も簡単化でき、これより、高信頼性,低
コスト化が図れ、且つ、製造プロセスも容易となる。
According to this embodiment, the anodic bonding between the middle conductor 2 and the upper and lower insulators 1a and 1b is required only once, and an airtight device can be obtained. Therefore, a device mounting method for an environment such as humidity can also be used. It can be simplified, and thereby high reliability and cost reduction can be achieved, and the manufacturing process can be facilitated.

【0026】図8は本発明による加速度検出器の第五実
施例である。図7との違いは中部導電体2に電子回路3
0を有していることである。電子回路30を中部導電体
2に内蔵することにより加速度検出部−電子回路30間
の浮遊容量が低減でき高精度な加速度センサが提供でき
る。
FIG. 8 shows a fifth embodiment of the acceleration detector according to the present invention. The difference from FIG. 7 is that the central conductor 2 has an electronic circuit 3
It has 0. By incorporating the electronic circuit 30 in the middle conductor 2, the stray capacitance between the acceleration detector and the electronic circuit 30 can be reduced, and a highly accurate acceleration sensor can be provided.

【0027】図9は本発明による加速度検出器の実装方
法の一実施例である。100は加速度検出器、110は
制御IC部、120は基板、130は導線である。加速
度検出器100はこれを駆動する制御IC部110と導
線130を介して接続され、基板120上に接続されて
いる。
FIG. 9 shows an embodiment of the mounting method of the acceleration detector according to the present invention. 100 is an acceleration detector, 110 is a control IC unit, 120 is a substrate, and 130 is a conducting wire. The acceleration detector 100 is connected to a control IC unit 110 that drives the acceleration detector 100 via a conductor 130, and is connected to a substrate 120.

【0028】図10は本発明による加速度センサの構成
の一実施例である。100は加速度検出器、200は制
御回路部、300は加速度センサである。加速度検出器
100は上記のごとく加速度検出部に気密性が備わってい
るためセンサのパッケージの自由度が向上し、プラスチ
ック等の安価な材料を使用することができる。またこの
ような加速度センサは一般のICと同様なパッケージに
統一する事ができる。図11は本発明によるエアバッグ
システム構成の一実施例である。
FIG. 10 shows an embodiment of the configuration of the acceleration sensor according to the present invention. 100 is an acceleration detector, 200 is a control circuit unit, and 300 is an acceleration sensor. Acceleration detector
Since 100 has the airtightness in the acceleration detecting portion as described above, the degree of freedom of the sensor package is improved, and an inexpensive material such as plastic can be used. Further, such an acceleration sensor can be integrated into a package similar to a general IC. FIG. 11 shows an embodiment of the airbag system configuration according to the present invention.

【0029】300は加速度センサ、400はコントロ
ールユニット、410は診断部、420はエアバッグ起
動部、430はフェールセーフ機能部、500はエアバ
ッグである。本発明の加速度センサ300をエアバッグ
システムに用いるコントロールユニットを使用した場
合、ユニット基板へマウンティングは一般の装置を使用
できるため量産効果,設備費低減効果が大きい。
Reference numeral 300 is an acceleration sensor, 400 is a control unit, 410 is a diagnostic unit, 420 is an airbag starting unit, 430 is a fail-safe function unit, and 500 is an airbag. When a control unit that uses the acceleration sensor 300 of the present invention in an airbag system is used, the mounting of the unit substrate can use a general apparatus, and thus the mass production effect and the facility cost reduction effect are great.

【0030】[0030]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0031】第一の発明によれば、接合界面部の中部導
電体に均一な不純物層を形成するため、接合界面には段
差が存在せず完全な気密封止が可能になると同時に不純
物拡散層をもたない重錘表面の異方性エッチング時には
不純物拡散によるエッチング速度のばらつきが回避でき
高精度な電極間空隙を形成することができる。
According to the first aspect of the present invention, since a uniform impurity layer is formed on the middle conductor of the junction interface, there is no step at the junction interface, and complete airtight sealing is possible, and at the same time the impurity diffusion layer is formed. When anisotropically etching the surface of a weight without a gap, variations in etching rate due to impurity diffusion can be avoided, and a highly accurate interelectrode gap can be formed.

【0032】第二の発明によれば、中部導電体にP型シ
リコン基板を使用し拡散層を廃止することにより、工程
数の削減,気密封止の達成,エッチングばらつきの回避
ができる。
According to the second invention, by using the P-type silicon substrate for the middle conductor and eliminating the diffusion layer, it is possible to reduce the number of steps, achieve hermetic sealing, and avoid etching variations.

【0033】第三の発明によれば、上部絶縁体の孔部の
加工を気密接合後に行うことにより孔部開口部の欠けを
防止できることである。導通不良の原因となっていた孔
部の欠けがなくなると孔部に導電性エポキシとリード線
を封止せずに蒸着金属膜のみで導通を得ることができ、
工程数の減少,導通不良の減少等が達成される。
According to the third aspect of the invention, it is possible to prevent chipping of the opening of the hole by processing the hole of the upper insulator after the airtight bonding. When the chipping of the hole that was the cause of the conduction failure disappears, conduction can be obtained only by the vapor-deposited metal film without sealing the conductive epoxy and the lead wire in the hole,
A reduction in the number of processes and a reduction in conduction defects are achieved.

【0034】第四の発明によれば、上部絶縁体の孔部の
加工後、孔開口部を研磨加工し欠け部を除去する事によ
り蒸着金属膜のみで導通を得ることができ、導電性エポ
キシ及びリード線の廃止,工程数の減少,導通不良の減
少等が達成される。
According to the fourth aspect of the invention, after the hole portion of the upper insulator is processed, the hole opening portion is polished and the chipped portion is removed to obtain conduction only by the vapor-deposited metal film. Also, the elimination of lead wires, the reduction of the number of processes, and the reduction of conduction defects are achieved.

【0035】第五の発明によれば、前記特徴により得ら
れる気密封止構造,低価格かつ高信頼性のフィードスル
ー部を適用した加速度センサは加速度検出部に気密性が
備わっているためセンサのパッケージの自由度が向上
し、プラスチック等の安価な材料を使用することができ
る。またこのような加速度センサは一般のICと同様な
パッケージに統一する事ができるため、例えばエアバッ
グシステムに用いるコントロールユニットに本発明の加
速度センサを使用した場合、ユニット基板へマウンティ
ングは一般の装置を使用できるため量産効果,設備費低
減効果が大きいことにある。
According to the fifth aspect of the invention, the acceleration sensor to which the airtightly sealed structure obtained by the above-mentioned features and the low-priced and highly reliable feed-through section are applied has the acceleration detecting section having airtightness. The degree of freedom of the package is improved, and an inexpensive material such as plastic can be used. Further, since such an acceleration sensor can be integrated into a package similar to a general IC, for example, when the acceleration sensor of the present invention is used for a control unit used in an airbag system, a general device is used for mounting on the unit substrate. Because it can be used, mass production and equipment cost reduction effects are significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による加速度検出器の第一実施例を示す
図である。
FIG. 1 is a diagram showing a first embodiment of an acceleration detector according to the present invention.

【図2】本発明による加速度検出器の孔部の構造図であ
る。
FIG. 2 is a structural diagram of a hole portion of the acceleration detector according to the present invention.

【図3】本発明による加速度検出器の第二実施例を示す
図である。
FIG. 3 is a diagram showing a second embodiment of the acceleration detector according to the present invention.

【図4】本発明による加速度検出器の第三実施例を示す
図である。
FIG. 4 is a diagram showing a third embodiment of the acceleration detector according to the present invention.

【図5】本発明による加速度検出器の加工方法の第一実
施例を示す図である。
FIG. 5 is a diagram showing a first embodiment of a method for processing an acceleration detector according to the present invention.

【図6】本発明による加速度検出器の加工方法の第二実
施例を示す図である。
FIG. 6 is a diagram showing a second embodiment of the method of processing the acceleration detector according to the present invention.

【図7】本発明による加速度検出器の第四実施例を示す
図である。
FIG. 7 is a diagram showing a fourth embodiment of the acceleration detector according to the present invention.

【図8】本発明による加速度検出器の第五実施例を示す
図である。
FIG. 8 is a diagram showing a fifth embodiment of the acceleration detector according to the present invention.

【図9】本発明による加速度検出器の実装方法の一実施
例を示す図である。
FIG. 9 is a diagram showing an embodiment of a mounting method of an acceleration detector according to the present invention.

【図10】本発明による加速度センサ構成の一実施例を
示す図である。
FIG. 10 is a diagram showing an example of an acceleration sensor configuration according to the present invention.

【図11】本発明によるエアバッグシステム構成の一実
施例を示す図である。
FIG. 11 is a diagram showing an embodiment of an airbag system configuration according to the present invention.

【符号の説明】[Explanation of symbols]

1a…上部絶縁体、1b…下部絶縁体、2…中部導電
体、3…重錘、4…弾性部、5a…下電極、5b…上電
極、6…導電柱、7a,7b…不純物層、8a,8b,
10a,10b,20…導電体、9a,9b…孔部、3
0…電子回路部、100…加速度検出器、110…制御
IC部、120…基板、130…導線、200…制御回
路部、300…加速度センサ、400…コントロールユ
ニット、410…診断部、420…エアバッグ起動部、
430…フェールセーフ機能部、500…エアバッグ。
1a ... upper insulator, 1b ... lower insulator, 2 ... middle conductor, 3 ... weight, 4 ... elastic part, 5a ... lower electrode, 5b ... upper electrode, 6 ... conductive pillar, 7a, 7b ... impurity layer, 8a, 8b,
10a, 10b, 20 ... Conductor, 9a, 9b ... Hole part, 3
0 ... Electronic circuit section, 100 ... Acceleration detector, 110 ... Control IC section, 120 ... Board, 130 ... Conductive wire, 200 ... Control circuit section, 300 ... Acceleration sensor, 400 ... Control unit, 410 ... Diagnostic section, 420 ... Air Bag starter,
430 ... Fail-safe function part, 500 ... Air bag.

フロントページの続き (72)発明者 鈴木 政善 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 市川 範男 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 林 雅秀 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内Front page continuation (72) Inventor Masayoshi Suzuki 2520 Takaba, Katsuta-shi, Ibaraki Hitachi, Ltd. Automotive Equipment Division (72) Inventor Norio Ichikawa 2477 Kashima Yatsu, Katsuta-shi, Ibaraki 3 Hitachi Automotive Engineering Co., Ltd. (72) Inventor Masahide Hayashi 2520 Takaba, Katsuta City, Ibaraki Prefecture Hitachi Automotive Systems Division, Hitachi Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】力学量を検出する重錘とこの重錘を支持す
る弾性部を有し接合表面に均一に形成した不純物層をも
つ中部導電体,貫通した孔部を有する上部絶縁体,下部
絶縁体を有する力学量センサにおいて、上記中部導電体
と上部絶縁体および下部絶縁体は気密接合されておりセ
ンサ内部から中部導電体の不純物層を通じ孔部および上
部絶縁体に形成した導電体により導通をとることを特徴
とした力学量センサ。
1. A middle conductor having a weight for detecting a mechanical quantity and an elastic portion for supporting the weight and having an impurity layer uniformly formed on a bonding surface, an upper insulator having a through hole, and a lower portion. In a mechanical sensor having an insulator, the middle conductor, the upper insulator, and the lower insulator are hermetically bonded to each other, and the conductor formed in the hole and the upper insulator is conducted from inside the sensor through the impurity layer of the middle conductor. A mechanical quantity sensor characterized by taking.
【請求項2】力学量を検出する重錘とこの重錘を支持す
る弾性部を有しP型シリコン単結晶から形成された中部
導電体,貫通した孔部を有する上部絶縁体,下部絶縁体
を有する力学量センサにおいて、上記中部導電体と上部
絶縁体および下部絶縁体は気密接合されておりセンサ内
部から孔部を通じ孔部および上部絶縁体層に形成した導
電体により導通をとることを特徴とした力学量センサ。
2. A middle conductor made of a P-type silicon single crystal having a weight for detecting a mechanical quantity and an elastic portion for supporting the weight, an upper insulator having a through hole, and a lower insulator. In the mechanical quantity sensor having, the middle conductor, the upper insulator, and the lower insulator are hermetically joined to each other, and conduction is established by the conductor formed in the hole and the upper insulator layer through the hole from inside the sensor. And a mechanical sensor.
【請求項3】請求項1又は2において、上部絶縁体に形
成した孔部と連続した窪みを中部導電体に有することを
特徴とした力学量センサ。
3. A mechanical quantity sensor according to claim 1, wherein the middle conductor has a recess continuous with the hole formed in the upper insulator.
【請求項4】請求項1又は2において、上部絶縁体に形
成した孔部の開口部を研磨加工したことを特徴とした力
学量センサ。
4. A mechanical quantity sensor according to claim 1, wherein the opening of the hole formed in the upper insulator is polished.
【請求項5】請求項1又は2において、 (1)上部絶縁体に孔部を加工する (2)中部導電体と上部絶縁体および下部絶縁体を気密
接合する 上記(1)および(2)で形成したことを特徴とした力
学量センサ。
5. The method according to claim 1 or 2, wherein (1) a hole is formed in the upper insulator (2) the middle conductor and the upper insulator and the lower insulator are hermetically joined. A mechanical quantity sensor characterized by being formed by.
【請求項6】請求項3において、 (1)中部導電体と上部絶縁体および下部絶縁体を気密
接合する (2)上部絶縁体の孔部および中部導電体の窪みを同時
加工する 上記(1)および(2)で形成したことを特徴とした力
学量センサ。
6. The method according to claim 3, wherein (1) the middle conductor is bonded to the upper insulator and the lower insulator in an airtight manner. (2) The hole of the upper insulator and the recess of the middle conductor are simultaneously processed. ) And (2), the mechanical quantity sensor characterized by the above-mentioned.
【請求項7】請求項4において、 (1)上部絶縁体に孔部を加工する (2)上部絶縁体の孔部の開口部を研磨加工する (3)中部導電体と上部絶縁体および下部絶縁体を気密
接合する 上記(1)から(3)で形成したことを特徴とした力学
量センサ。
7. The method according to claim 4, wherein (1) a hole is formed in the upper insulator, (2) an opening of the hole in the upper insulator is polished, and (3) a middle conductor, an upper insulator and a lower portion. A mechanical quantity sensor characterized by being formed in the above (1) to (3) for hermetically bonding an insulator.
【請求項8】請求項1ないし7のいずれか1項におい
て、中部導電体に電子回路部を有することを特徴とした
力学量センサ。
8. A mechanical quantity sensor according to claim 1, wherein the middle conductor has an electronic circuit section.
【請求項9】請求項1ないし8のいずれか1項におい
て、制御IC部と導線で接続されたことを特徴とする力
学量センサ。
9. A mechanical quantity sensor according to claim 1, wherein the mechanical quantity sensor is connected to the control IC section by a conductive wire.
【請求項10】請求項1ないし9のいずれか1項に記載
の力学量センサと制御回路部を有し加速度を測定する目
的で使用する事を特徴とした加速度センサ。
10. An acceleration sensor comprising the mechanical quantity sensor according to any one of claims 1 to 9 and a control circuit section, which is used for the purpose of measuring acceleration.
【請求項11】請求項1ないし10のいずれか1項に記
載の力学量センサとコントロールユニットを有すること
を特徴とするエアバッグシステム。
11. An airbag system comprising the mechanical quantity sensor according to any one of claims 1 to 10 and a control unit.
JP6046784A 1994-03-17 1994-03-17 Dynamic quantity sensor and airbag system Pending JPH07263709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046784A JPH07263709A (en) 1994-03-17 1994-03-17 Dynamic quantity sensor and airbag system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046784A JPH07263709A (en) 1994-03-17 1994-03-17 Dynamic quantity sensor and airbag system

Publications (1)

Publication Number Publication Date
JPH07263709A true JPH07263709A (en) 1995-10-13

Family

ID=12756965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046784A Pending JPH07263709A (en) 1994-03-17 1994-03-17 Dynamic quantity sensor and airbag system

Country Status (1)

Country Link
JP (1) JPH07263709A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077754A (en) * 2002-03-27 2003-10-04 삼성전기주식회사 Micro inertia sensor and method thereof
JP2006147892A (en) * 2004-11-22 2006-06-08 Matsushita Electric Works Ltd Electric signal takeout part structure of semiconductor component and its manufacturing method
JP2006194753A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Method of measuring semiconductor capacity type acceleration sensor
JP2006250778A (en) * 2005-03-11 2006-09-21 Matsushita Electric Works Ltd Signal fetch structure of semiconductor micro electro-mechanical device
JP2007003191A (en) * 2005-06-21 2007-01-11 Wacoh Corp Acceleration/angular velocity sensor
JP2008534306A (en) * 2005-04-05 2008-08-28 リテフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Micromechanical component and method of manufacturing micromechanical component
JP2009121881A (en) * 2007-11-13 2009-06-04 Dainippon Printing Co Ltd Mechanical quantity detecting sensor and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077754A (en) * 2002-03-27 2003-10-04 삼성전기주식회사 Micro inertia sensor and method thereof
JP2006147892A (en) * 2004-11-22 2006-06-08 Matsushita Electric Works Ltd Electric signal takeout part structure of semiconductor component and its manufacturing method
JP2006194753A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Method of measuring semiconductor capacity type acceleration sensor
JP4671699B2 (en) * 2005-01-14 2011-04-20 三菱電機株式会社 Manufacturing method of semiconductor capacitive acceleration sensor
JP2006250778A (en) * 2005-03-11 2006-09-21 Matsushita Electric Works Ltd Signal fetch structure of semiconductor micro electro-mechanical device
JP4505671B2 (en) * 2005-03-11 2010-07-21 パナソニック電工株式会社 Signal extraction structure for semiconductor microelectromechanical devices
JP2008534306A (en) * 2005-04-05 2008-08-28 リテフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Micromechanical component and method of manufacturing micromechanical component
JP2012020397A (en) * 2005-04-05 2012-02-02 Northrop Grumman Litef Gmbh Micromechanical component and method for fabricating micromechanical component
EP1866236B1 (en) * 2005-04-05 2017-03-08 Northrop Grumman LITEF GmbH Micromechanical component and method for fabricating a micromechanical component
NO340787B1 (en) * 2005-04-05 2017-06-19 Litef Gmbh Micromechanical component and process for making the same
JP2007003191A (en) * 2005-06-21 2007-01-11 Wacoh Corp Acceleration/angular velocity sensor
JP2009121881A (en) * 2007-11-13 2009-06-04 Dainippon Printing Co Ltd Mechanical quantity detecting sensor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2786321B2 (en) Semiconductor capacitive acceleration sensor and method of manufacturing the same
US5095752A (en) Capacitance type accelerometer
KR100413789B1 (en) High vacuum packaging microgyroscope and manufacturing method thereof
US5576250A (en) Process for the production of accelerometers using silicon on insulator technology
KR100236501B1 (en) Pressure sensor of electrostatic capacitance type
US7968958B2 (en) Semiconductor device and manufacturing method of the same
JP4404143B2 (en) Semiconductor device and manufacturing method thereof
JPH11344507A (en) Constituting element of micro machine
JPH0823564B2 (en) Accelerometer having fine mechanism and manufacturing method thereof
JPH0688837A (en) Acceleration sensor
KR20010033947A (en) Micromechanical component
TW201425206A (en) Hybrid integrated component
JPH08211094A (en) Capacitance acceleration sensor
JP2009272477A (en) Mems sensor and its manufacturing method
JPH07263709A (en) Dynamic quantity sensor and airbag system
JP3517428B2 (en) Capacitive acceleration sensor
JPH09292409A (en) Accelerometer
JP3355916B2 (en) Micro G switch
JPH07318583A (en) Electrostatic capacity type acceleration sensor
JPH102911A (en) Capacitive sensor and system using it
JPH06273442A (en) Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor
JPH06289049A (en) Acceleration sensor
US20040081809A1 (en) Microstructured component and method for its manufacture
JP3173256B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
JP2519393B2 (en) Method for manufacturing semiconductor dynamic quantity sensor