JP2709349B2 - Materials for periodontal tissue regeneration - Google Patents

Materials for periodontal tissue regeneration

Info

Publication number
JP2709349B2
JP2709349B2 JP63214835A JP21483588A JP2709349B2 JP 2709349 B2 JP2709349 B2 JP 2709349B2 JP 63214835 A JP63214835 A JP 63214835A JP 21483588 A JP21483588 A JP 21483588A JP 2709349 B2 JP2709349 B2 JP 2709349B2
Authority
JP
Japan
Prior art keywords
lactic acid
copolymer
periodontal tissue
biodegradable
tissue regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63214835A
Other languages
Japanese (ja)
Other versions
JPH0263465A (en
Inventor
義人 筏
丞烋 玄
Original Assignee
株式会社 ジーシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ジーシー filed Critical 株式会社 ジーシー
Priority to JP63214835A priority Critical patent/JP2709349B2/en
Priority to AU39490/89A priority patent/AU624847B2/en
Priority to GB8918343A priority patent/GB2223027B/en
Priority to BE8900868A priority patent/BE1002656A5/en
Priority to CA000608766A priority patent/CA1340354C/en
Priority to CH3113/89A priority patent/CH679836A5/fr
Priority to SE8902867A priority patent/SE503230C2/en
Priority to DK426989A priority patent/DK426989A/en
Priority to FR898911387A priority patent/FR2635685B1/en
Priority to DE3928933A priority patent/DE3928933C2/en
Publication of JPH0263465A publication Critical patent/JPH0263465A/en
Priority to US07/915,770 priority patent/US5250584A/en
Application granted granted Critical
Publication of JP2709349B2 publication Critical patent/JP2709349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0063Periodont
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Physiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、歯周病により浸食された生体組織を再生さ
せるのに必要な生体分解吸収性の歯科用材料である歯周
組織再生用素材に関するものである。
The present invention relates to a material for periodontal tissue regeneration, which is a biodegradable and absorbable dental material necessary for regenerating biological tissue eroded by periodontal disease. It is about.

〔従来の技術〕[Conventional technology]

現在、歯周疾患により健全なセメント質や歯根膜が浸
食された歯周治療として、消失した歯周組織に充填する
骨充填材にハイドロキシアパタイトやリン酸カルシウム
などが用いられている。
At present, as a periodontal treatment in which healthy cementum and periodontal ligaments are eroded due to periodontal disease, hydroxyapatite, calcium phosphate, and the like are used as a bone filling material for filling lost periodontal tissue.

ところが之等の治療法は単に歯周疾患の進行を止め、
また、その再発を或る程度防止することに他ならないも
のと考えられており、近年、イエテボリ大学のニーマン
教授等により生物学的見地に基づいた刺繍組織の再生方
法が開発され、歯学領域で注目されている。この画期的
な歯周組織の再生方法において、非生体内分解吸収性の
ゴアテックス(登録商標)が用いられ、一定の成果が報
告されている〔Nyman,他:The regenerative potential
of the periodontal ligament.An experimental study
in the monkey,J.Clin Periodontol,9:257,1982.〕。
However, their treatment simply stops the progression of periodontal disease,
In addition, it is considered that there is no other way than to prevent the recurrence to some extent. In recent years, a method for regenerating an embroidery tissue based on a biological viewpoint has been developed by Professor Neiman of the University of Gothenburg, etc. Have been. In this innovative periodontal tissue regeneration method, non-biodegradable and absorbable GORE-TEX (registered trademark) is used, and a certain result has been reported [Nyman, et al .: The regenerative potential
of the periodontal ligament.An experimental study
in the monkey, J. Clin Periodontol, 9: 257, 1982.].

しかし、前記ゴアテックスは非生体内分解吸収性であ
るため、生体にとって異物であり、また組織反応性もあ
るため治療後に除去のための再手術が必要となる。この
ような観点より最近、歯周組織の再生治療に生体内分解
吸収性の膜を用いる研究が報告された〔Magnusson,他:N
ew Attachment Formation Following Controlled Tissu
e Regeneration Using Biodegradable Membranes,J.Per
iodontol,59,1〜6,January,1988.〕。
However, since Gore-Tex is non-biodegradable and absorbable, it is a foreign substance to the living body, and also has tissue reactivity, so that a reoperation for removal is required after treatment. From such a viewpoint, a study using a biodegradable and absorbable membrane for regeneration treatment of periodontal tissue has recently been reported (Magnusson, et al .: N
ew Attachment Formation Following Controlled Tissu
e Regeneration Using Biodegradable Membranes, J. Per
iodontol, 59, 1-6, January, 1988.].

しかし、ここでは生体内分解吸収性膜としてポリ乳酸
100%のホモポリマーを使用しているため、力学的性質
と加水分解性とを同時にコントロールできない。
However, here, polylactic acid is used as a biodegradable absorbent membrane.
Since 100% homopolymer is used, mechanical properties and hydrolyzability cannot be controlled simultaneously.

ポリ乳酸100%のホモポリマーは、ガラス転移温度が5
7℃と体温より高いので生体軟組織に対して物理的な刺
激を与え、炎症を伴うことになり、またホモポリマーで
は加水分解速度を任意に変えることが難しい。
A homopolymer of 100% polylactic acid has a glass transition temperature of 5
Since the temperature is higher than 7 ° C., which is higher than the body temperature, it gives physical irritation to living soft tissue, which is accompanied by inflammation, and it is difficult to arbitrarily change the hydrolysis rate with a homopolymer.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明者等は上記ポリ乳酸ホモポリマーの欠点、特に
力学的性質,熱的性質及び加水分解性を改良すべく鋭意
研究を重ねた結果、乳酸/ε−カプロラクトン共重合体
又は乳酸/グリコール酸共重合体のフイルム若しくはシ
ートが歯周組織の再生治療に最も適していることを見出
し、本発明を完成するに至った。
The present inventors have conducted intensive studies to improve the drawbacks of the above-mentioned polylactic acid homopolymer, especially the mechanical properties, thermal properties and hydrolyzability, and as a result, have found that lactic acid / ε-caprolactone copolymer or lactic acid / glycolic acid copolymer. The present inventors have found that a polymer film or sheet is most suitable for periodontal tissue regeneration treatment, and have completed the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、歯周疾患における歯周組織再生治療に用い
る生体内分解吸収性高分子材料として、乳酸/ε−カプ
ロラクトン共重合体又は乳酸/グリコール酸共重合体の
みから成る材料を用いることにその新規性がある。
The present invention relates to the use of a material composed of only a lactic acid / ε-caprolactone copolymer or a lactic acid / glycolic acid copolymer as a biodegradable and absorbable polymer material used for periodontal tissue regeneration treatment in periodontal disease. There is novelty.

斯かる生体内分解吸収性の歯科用材料は、乳酸/ε−
カプロラクトン共重合体又は乳酸/グリコール酸共重合
体をその溶媒、例えば、塩化メチレン,クロロホルム,
ジオキサン,トルエン,ベンゼン,ジメチルホルムアミ
ド,アセトンなどの有機溶媒に溶解させた後、キャスト
法或いはホットプレスによって均一な構造のフイルム状
又はシート状に成膜することができ、また養分などの体
液の通過や更に柔軟性の付与のために延伸による多孔質
化或いはジオキサン,ベンゼン溶液からの凍結乾燥によ
り得られる多孔質膜として用いられる。
Such a biodegradable and absorbable dental material is lactic acid / ε-
The caprolactone copolymer or lactic acid / glycolic acid copolymer is dissolved in a solvent such as methylene chloride, chloroform,
After being dissolved in an organic solvent such as dioxane, toluene, benzene, dimethylformamide, and acetone, it can be formed into a film or sheet with a uniform structure by a casting method or hot pressing, and can pass through body fluids such as nutrients. It is used as a porous film obtained by making it porous by stretching or by freeze-drying from a dioxane or benzene solution to impart flexibility.

〔作用〕[Action]

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材の有する特性は、柔軟性に優れるのみで
なく、生体適合性に優れているので切開或いは損傷によ
って離断された結合組織と歯根表面の再結合を妨げるこ
と無く、損傷部位の修復後は則やかに消失することにあ
る。斯かる優れた生体適合性が得られる理由は、脂肪族
ポリエステルである乳酸とε−カプロラクトン、又は乳
酸とグリコール酸とを適当な割合で共重合させることに
より力学的性質と熱的性質更に加水分解を任意に変える
ことで損傷部位の修復程度に適合した材料を用いること
にある。
The properties of the material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, are not only excellent in flexibility but also excellent in biocompatibility, so that a bond cut off by incision or damage. After repairing the injured site, it will disappear gracefully without hindering reconnection of the tissue with the root surface. The reason why such excellent biocompatibility is obtained is that the mechanical properties and thermal properties and the hydrolysis are further improved by copolymerizing lactic acid and ε-caprolactone or lactic acid and glycolic acid in an appropriate ratio. Is to use a material that is suitable for the degree of repair of the damaged site by arbitrarily changing.

〔実施例〕〔Example〕

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材は、自然界に広く分布し、また動物の体
内にも存在する乳酸とε−カプロラクトン、又は乳酸と
グリコール酸との共重合体のみから成る材料である。治
療目的に適する材料の機械的性質と生体内分解吸収速度
に応じて、それ等の共重合体の組成モル比と分子量とを
選択することができる。本発明に用いる乳酸/ε−カプ
ロラクトン共重合体の合成スキームを次式に示す。
The material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, is widely distributed in nature and also present in the body of animals with lactic acid and ε-caprolactone, or with lactic acid and glycolic acid. It is a material consisting only of a polymer. The compositional molar ratio and molecular weight of these copolymers can be selected according to the mechanical properties and the rate of biodegradation and absorption of the material suitable for the purpose of treatment. The synthesis scheme of the lactic acid / ε-caprolactone copolymer used in the present invention is shown in the following formula.

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材は生体の軟組織に触れるので、その材料
が生体軟組織の力学的性質と大きな差があって硬すぎる
と物理的刺激による炎症反応が惹起されるため、その材
料には或る程度の柔軟性が必要である。そのためには材
料のガラス転移温度が体温付近であることが好ましい。
そのような要求を満たすには、乳酸/ε−カプロラクト
ン共重合体、又は乳酸/グリコール酸共重合体の適当な
組成モル比を選択する必要がある。乳酸/ε−カプロラ
クトン共重合体中のε−カプロラクトンのモル分率によ
るガラス転移温度の変化を第1図に示す。ここでガラス
転移温度の測定は示差熱熱量計(DSC) とにより行った。
The material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, is in contact with the soft tissue of a living body. The material must have some flexibility to elicit an inflammatory response. For that purpose, the glass transition temperature of the material is preferably around body temperature.
In order to satisfy such requirements, it is necessary to select an appropriate composition molar ratio of the lactic acid / ε-caprolactone copolymer or the lactic acid / glycolic acid copolymer. FIG. 1 shows the change in the glass transition temperature depending on the mole fraction of ε-caprolactone in the lactic acid / ε-caprolactone copolymer. Here, the glass transition temperature is measured by a differential calorimeter (DSC). And by

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材は或る程度の力学的強度が要求される。
即ち、或る程度の柔軟性のみならず、生体内分解吸収性
の膜の縫合糸による一定部位への固定が必要な場合に裂
けて了っては使用上問題となり、また一定の強度や弾性
率がないと加水分解に伴う形状の保持に問題となり、初
期の目的を達成することができなくなる。そこで本発明
に用いる材料に於いては、室温(25℃)に於ける動的弾
性率が5×107〜5×109dyne/cm2の範囲で、伸び率が10
0〜2,000%の範囲が要求される。それ等は共重合体の組
成モル比を任意に選択することにより得ることができる
が、上記動的弾性率を満足するために本発明では乳酸/
ε−カプロラクトン共重合体又は乳酸/グリコール酸共
重合体の組成モル比を95:5〜5:95と限定した。L−乳酸
/ε−カプロラクトン共重合体のε−カプロラクトンの
モル分率による室温に於ける弾性率の変化を第2図に示
す。ここで、動的弾性率は東洋ボールドウイン社製レオ
バイブロンにより測定した。
The material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, requires a certain degree of mechanical strength.
That is, in addition to a certain degree of flexibility, when a biodegradable and absorptive membrane needs to be fixed to a certain site with a suture, tearing of the membrane may cause a problem in use, and a certain strength and elasticity. If the ratio is not sufficient, there is a problem in maintaining the shape due to hydrolysis, and the initial purpose cannot be achieved. Therefore, the material used in the present invention has a dynamic elastic modulus at room temperature (25 ° C.) of 5 × 10 7 to 5 × 10 9 dyne / cm 2 and an elongation of 10 × 10 7 dyne / cm 2.
A range of 0-2,000% is required. They can be obtained by arbitrarily selecting the composition molar ratio of the copolymer. However, in order to satisfy the above dynamic elastic modulus, in the present invention, lactic acid /
The composition molar ratio of the ε-caprolactone copolymer or the lactic acid / glycolic acid copolymer was limited to 95: 5 to 5:95. FIG. 2 shows the change in elastic modulus at room temperature depending on the molar fraction of ε-caprolactone in the L-lactic acid / ε-caprolactone copolymer. Here, the dynamic elastic modulus was measured by Leo Vibron manufactured by Toyo Baldwin Co., Ltd.

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材は歯周支持組織の再生と歯根表面と結合
組織との再結合が達成されるまでの期間中はその膜形状
が保たれていなければならず、一方、治癒後は異物とし
て生体内に残存することが好ましくないため、速やかに
分解吸収され消失して了う必要がある。このための本発
明に係る生体内分解吸収性高分子材料である歯周組織再
生用素材は厚みが10〜500μmの均一な構造のフイルム
又はシート状であることが必要であり、更に養分などの
体液の通過や柔軟性の付与のために多孔質で均一構造を
なしていることが必要である。また、その分解吸収性も
共重合体の組成モル比と分子量を変えることによってコ
ントロールできるが、本発明では速やかに分解吸収され
るように乳酸/ε−カプロラクトン共重合体又は乳酸/
グリコール酸共重合体の重量平均分子量を150,000〜50
0,000と限定した。なお、この範囲の共重合体は、in vi
tro(37℃,PH 7.4,リン酸緩衝液中)における加水分解
において引張強度の保持率が1〜6ヶ月間で0となるこ
とが好ましい。
The material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, has a membrane shape during the period until regeneration of periodontal support tissue and reconnection of root surface and connective tissue are achieved. On the other hand, since it is not preferable to remain in the living body as a foreign substance after healing, it must be quickly decomposed and absorbed and disappear. For this purpose, the material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, needs to be a film or sheet having a uniform structure with a thickness of 10 to 500 μm, and further, such as nutrients. It is necessary to have a porous and uniform structure for the passage of bodily fluids and the provision of flexibility. Further, the decomposition and absorption can be controlled by changing the composition molar ratio and the molecular weight of the copolymer, but in the present invention, the lactic acid / ε-caprolactone copolymer or lactic acid /
The weight average molecular weight of the glycolic acid copolymer is from 150,000 to 50
Limited to 0,000. The copolymer in this range is in vi
In the hydrolysis at tro (37 ° C., PH 7.4, in a phosphate buffer), it is preferable that the retention of the tensile strength becomes 0 in 1 to 6 months.

L−乳酸/ε−カプロラクトンの共重合体中のε−カ
プロラクトンのモル分率によるin vitro加水分解特性の
変化を第3図と第4図に示す。
FIGS. 3 and 4 show changes in in vitro hydrolysis characteristics depending on the molar fraction of ε-caprolactone in the copolymer of L-lactic acid / ε-caprolactone.

図面中、○印はL−乳酸分子量100%、□印はL−乳
酸分子量88%、△印はL−乳酸分子量65%、◎印はL−
乳酸分子量15%、×印はε−カプロラクトン分子量100
%、●印はL−乳酸重量100%、■印はL−乳酸重量88
%、▲印はL−乳酸重量65%である。in vitro加水分解
特性は、一定体積(長さ3mm,幅5mm,厚さ1mm)の試料を3
7℃のリン酸緩衝液(PH7.4)中にて、日局規格準拠の溶
出試験器を用いて行った。そして加水分解の重量、分子
量及び引張強度の減少度は加水分解前後の夫々の比の百
分率で表わした。
In the drawings, ○ indicates L-lactic acid molecular weight 100%, □ indicates L-lactic acid molecular weight 88%, Δ indicates L-lactic acid molecular weight 65%, and ◎ indicates L-lactic acid.
Lactic acid molecular weight 15%, x mark is ε-caprolactone molecular weight 100
%, ● indicates L-lactic acid weight 100%, Δ indicates L-lactic acid weight 88
%, The symbol ▲ indicates L-lactic acid weight of 65%. The in vitro hydrolysis characteristics were measured using a sample of a fixed volume (3 mm long, 5 mm wide, 1 mm thick).
The test was carried out in a phosphate buffer (PH7.4) at 7 ° C using a dissolution tester conforming to the Japanese Pharmacopoeia standards. The degree of reduction in the weight, molecular weight and tensile strength of the hydrolysis was expressed as a percentage of each ratio before and after the hydrolysis.

次にin vitroテストにより生体内分解吸収性と組織反
応性を検討した。体重約3Kgの家兎背筋を繊維方向に切
開し試料を埋入した後、筋膜を縫合した。試料は埋入に
先立ちエチレンオキサイドガスで滅菌した。埋入後、経
時的に屠殺し、試料の物性変化と周回組織の反応性を調
べた処、ポリ乳酸100%のホモポイマーは生体内分解吸
収速度が低く、約6ヶ月後でもその殆んどが残存してお
り、また材料の周囲と接している軟組織は若干炎症が認
められた。之に対して乳酸/ε−カプロラクトン共重合
体(組成モル比70/30mol%)の場合及び乳酸/グリコー
ル酸共重合体(組成モル比75%25mol%)の場合は6ヶ
月後では完全に分解吸収されて了い、組織反応も認めら
れなかった。
Next, the biodegradation absorption and tissue reactivity were examined by in vitro test. The rabbit spine muscle weighing about 3 kg was incised in the fiber direction, a sample was embedded, and the fascia was sutured. The samples were sterilized with ethylene oxide gas prior to implantation. After implantation, the animals were sacrificed over time, and the changes in the physical properties of the samples and the reactivity of the surrounding tissues were examined. As a result, the homopoimer of 100% polylactic acid had a low rate of biodegradation and absorption. The soft tissue remaining and in contact with the periphery of the material was slightly inflamed. In contrast, the lactic acid / ε-caprolactone copolymer (composition molar ratio 70/30 mol%) and the lactic acid / glycolic acid copolymer (composition molar ratio 75% 25 mol%) completely decompose after 6 months. It was absorbed and no tissue reaction was observed.

以上の結果からポリ乳酸100%のホモポリマーに比べ
て乳酸/ε−カプロラクトン共重合体及び乳酸/グリコ
ール酸共重合体は、その力学的性質や加水分解特性及び
生体適合性に優れていることが判った。この乳酸/ε−
カプロラクトン共重合体及び乳酸/グリコール酸共重合
体は、ポリ乳酸100%のホモポリマーの場合と同じく生
体内で非酸素的に加水分解を受け、その分解産物に代謝
されて最終的に水と炭酸ガスとして対外に排泄されて了
う興味ある材料である。従って本発明に係る生体内分解
吸収性高分子材料である歯周組織再生用素材は、他の歯
科領域で広く臨床応用の可能な素材である。
From the above results, the lactic acid / ε-caprolactone copolymer and the lactic acid / glycolic acid copolymer are superior to the homopolymer of 100% polylactic acid in their mechanical properties, hydrolysis properties, and biocompatibility. understood. This lactic acid / ε-
Caprolactone copolymer and lactic acid / glycolic acid copolymer undergo non-oxygenous hydrolysis in vivo as in the case of 100% polylactic acid homopolymer, and are metabolized to the decomposition products, and finally water and carbonic acid. It is an interesting material that is excreted outside as gas. Therefore, the material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, is a material that can be widely applied to clinical applications in other dental fields.

次に実施例を挙げて本発明に係る生体内分解吸収性高
分子材料である歯周組織再生用素材に就いて説明する
が、本発明は斯かる実施例のみに限定されるものではな
い。
Next, a material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, will be described with reference to examples, but the present invention is not limited to only these examples.

実施例1 雑種成犬を歯周疾患に罹患させることにより歯肉退縮
を惹起させた。重量平均分子量が約220,000,室温(25
℃)に於ける動的弾性率が9.5×10dyne/cm2,伸び率が15
0%であるL−乳酸/ε−カプロラクトン共重合体(組
成モル比70/30mol%)から成る厚み約200μmの均一構
造のシート状の生体内分解吸収性の多孔質の膜を用い、
その歯根面をテント様に被覆した後、フラップを戻し縫
合することにより結合組織が歯根面に接触して治癒過程
に関与するのを防ぎ、3ヶ月後の治癒状態を観察した。
その結果、L−乳酸/ε−カプロラクトン共重合体は、
その形状は残存しているものの力学的強度は殆んど無
く、加水分解が可成り進行していたが支持歯槽骨を含む
新付着が形成され歯周疾患が治癒していた。
Example 1 Gingival regression was induced by causing a mongrel dog to suffer from periodontal disease. Weight average molecular weight of about 220,000, room temperature (25
° C) dynamic elastic modulus at 9.5 × 10 dyne / cm 2 , elongation at 15
A sheet-like biodegradable and absorbable porous membrane having a uniform structure and a thickness of about 200 μm comprising L-lactic acid / ε-caprolactone copolymer (composition molar ratio 70/30 mol%) of 0%,
After covering the root surface like a tent, the flap was returned and sutured to prevent the connective tissue from contacting the root surface and participating in the healing process, and the healing state after three months was observed.
As a result, the L-lactic acid / ε-caprolactone copolymer is
Although its shape remained, it had little mechanical strength and hydrolysis progressed considerably, but new adhesions including the supporting alveolar bone were formed and periodontal disease was cured.

実施例2 生体内分解吸収性の膜として重量平均分子量が170,00
0,室温(25℃)に於ける動的弾性率が9.8×10dyne/cm2,
伸び率が200%であるD,L−乳酸/グリコール酸共重合体
(組成モル比80/20mol%)から成る厚み約180μmの均
一構造のフイルム状の素材を用いた。他は実施例1と同
様に行い、3ヶ月後の治癒状態を観察した。その結果、
D,L−乳酸/グリコール酸共重合体から成る膜は殆んど
分解吸収されており、歯根膜線維が形成されると同時に
骨部では新生骨が形成され歯周疾患が治癒していた。
Example 2 A biodegradable and absorbable membrane having a weight average molecular weight of 170,00
0, dynamic elastic modulus at room temperature (25 ℃) is 9.8 × 10dyne / cm 2 ,
A film-like material having a uniform structure and a thickness of about 180 μm, made of a D, L-lactic acid / glycolic acid copolymer (composition molar ratio 80/20 mol%) having an elongation of 200%, was used. Others were the same as Example 1, and the healing state after 3 months was observed. as a result,
The membrane composed of the D, L-lactic acid / glycolic acid copolymer was almost completely decomposed and absorbed, and at the same time as periodontal ligament fibers were formed, new bone was formed in the bone and periodontal disease was cured.

実施例3 重量平均分子量が約260,000,室温(25℃)に於ける動
的弾性率が1.8×108dyne/cm2,伸び率が1000%であるL
−乳酸/グリコール酸共重合体(組成モル比90/10mol
%)のジオキサン10%溶液を凍結乾燥することにより厚
み約220μmのシート状の生体内分解吸収性の多孔質の
膜を作製し、実施例1と同じように動物実験を行った
処、多孔質のL−乳酸/グリコール酸共重合体から成る
シート状の膜は3ヶ月後には完全に分解吸収されてお
り、歯周疾患が治癒していた。
Example 3 L having a weight average molecular weight of about 260,000, a dynamic elastic modulus at room temperature (25 ° C.) of 1.8 × 10 8 dyne / cm 2 , and an elongation of 1000%
-Lactic acid / glycolic acid copolymer (composition molar ratio 90/10 mol
%) Of a dioxane 10% solution was freeze-dried to prepare a sheet-like biodegradable and absorbable porous membrane having a thickness of about 220 μm, which was subjected to animal experiments in the same manner as in Example 1. After 3 months, the sheet-like film composed of the L-lactic acid / glycolic acid copolymer was completely decomposed and absorbed, and the periodontal disease was cured.

実施例4 重量平均分子量が約190,000,室温(25℃)に於ける動
的弾性率が3.2×108dyne/cm2,伸び率が1500%であるD,L
−乳酸/グリコール酸共重合体(組成モル比75/25mol
%)のジオキサン10%溶液を凍結乾燥することにより厚
み約160μmのフイルム状の生体内分解吸収性の膜を作
製し、実施例1と同じように動物実験を行った処、多孔
質のD,L−乳酸/グリコール酸共重合体から成るフイル
ム状の膜は3ヶ月後には完全に分解吸収されており、歯
周疾患が治癒していた。
Example 4 D, L having a weight average molecular weight of about 190,000, a dynamic elastic modulus at room temperature (25 ° C.) of 3.2 × 10 8 dyne / cm 2 , and an elongation of 1500%
-Lactic acid / glycolic acid copolymer (composition molar ratio 75/25 mol
%) Of a dioxane 10% solution was freeze-dried to prepare a film-like biodegradable and absorbable film having a thickness of about 160 μm, which was subjected to animal experiments in the same manner as in Example 1. The film-like film composed of the L-lactic acid / glycolic acid copolymer was completely decomposed and absorbed after three months, and the periodontal disease was cured.

比較例1 生体内分解吸収性の膜として分子量約220,000のポリ
乳酸から成る厚み約200μmの素材を用いた他は実施例
1と同様に行い、3ヶ月後の治癒状態を観察した。その
結果、ポリ乳酸膜は殆んどが分解されておらず、ポリ乳
酸から成る膜のエッジに接する歯肉組織は部分的に炎症
を伴っていた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that a material composed of polylactic acid having a molecular weight of about 220,000 and having a thickness of about 200 μm was used as the biodegradable and absorptive membrane, and a healing state after three months was observed. As a result, the polylactic acid film was hardly degraded, and the gingival tissue in contact with the edge of the polylactic acid film was partially inflamed.

〔発明の効果〕〔The invention's effect〕

以上に詳述した如き本発明に係る生体内分解吸収性高
分子材料である歯周組織再生用素材は、生体内非吸収性
高分子材料に比して以下の優れた点を有している。
The periodontal tissue regeneration material which is the biodegradable and absorbable polymer material according to the present invention as described in detail above has the following advantages as compared with the non-bioabsorbable polymer material in vivo. .

イエテボリ大学のニーマン教授等による歯周組織の再
生方法によれば、歯周組織に填入された材料は填入後に
歯周組織の改善が確認されれば速やかに除去する必要が
あり、そのためには除去のために再度、手術を行う必要
があったが、本発明に係る生体内分解吸収性高分子材料
である歯周組織再生用素材は生体内で分解吸収されて了
うので再度、手術を行う必要が無く、患者の苦痛や経済
的な負担を可成り低減させることができる。
According to the method of regenerating periodontal tissue by Professor Niemann of Gothenburg University, the material inserted into the periodontal tissue needs to be removed promptly if the periodontal tissue is improved after filling. It was necessary to perform surgery again for removal, but the material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, has been decomposed and absorbed in the living body. It is possible to considerably reduce the pain and the economic burden on the patient.

また歯周組織に填入された材料は最初に強度が必要
で、歯周組織が改善された後ではむしろ強度は必要では
なく、強度が変わらないと炎症の原因にもなるが、本発
明に係る生体内分解吸収性高分子材料である歯周組織再
生用素材は最初は強度があり、時間が経つと徐々に或い
は急激に強度を低下させることが可能なので、歯肉組織
に対して炎症を起こさせることがない。
In addition, the material inserted into the periodontal tissue requires strength at first, and after the periodontal tissue is improved, it is not necessary to have strength.If the strength does not change, it may cause inflammation. Such a material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material, has strength at first, and can gradually or rapidly reduce the strength over time, so that gingival tissue becomes inflamed. I will not let you.

また、本発明に係る生体内分解吸収性高分子材料であ
る歯周組織再生用素材はポリ乳酸100%のホモポリマー
から成る生体内分解吸収性高分子材料に比して、以下の
優れた点を有している。
The material for periodontal tissue regeneration, which is a biodegradable and absorbable polymer material according to the present invention, has the following advantages as compared with a biodegradable and absorbable polymer material composed of 100% polylactic acid homopolymer. have.

本発明に係る生体内分解吸収性高分子材料である歯周
組織再生用素材は乳酸/ε−カプロラクトン共重合体又
は乳酸/グリコール酸共重合体であるので、歯周組織の
状態に適した力学的性質を付与することができる。
Since the material for periodontal tissue regeneration, which is the biodegradable and absorbable polymer material according to the present invention, is a lactic acid / ε-caprolactone copolymer or a lactic acid / glycolic acid copolymer, dynamics suitable for the state of the periodontal tissue Characteristic can be imparted.

また、歯周組織に填入された材料は歯周疾患の程度に
より生体内での分解吸収速度を変える必要があり、特に
生体内分解吸収性高分子材料を歯周組織に填入後、所定
の期間を過ぎて急激に力学的性質を低下させたいときに
はポリ乳酸100%のホモポリマーから成る生体内分解吸
収性高分子材料は加水分解速度を任意に変えることが困
難であるが、本発明に係る生体内分解吸収性高分子材料
である歯周組織再生用素材は分解吸収速度を自由にコン
トロールすることが可能である。
In addition, it is necessary to change the rate of decomposition and absorption in the living body of the material inserted into the periodontal tissue depending on the degree of periodontal disease. It is difficult to arbitrarily change the hydrolysis rate of a biodegradable and absorbable polymer material composed of a homopolymer of 100% polylactic acid when it is desired to rapidly decrease the mechanical properties after the period. The material for periodontal tissue regeneration, which is such a biodegradable and absorbable polymer material, can freely control the rate of decomposition and absorption.

また、本発明に係る生体内分解吸収性高分子材料であ
る歯周組織再生用素材はポリ乳酸100%のホモポリマー
から成る生体内分解吸収性高分子材料のガラス転移温度
が体温付近なので生体軟組織に対して物理的刺激が少な
い。
In addition, the material for periodontal tissue regeneration, which is the biodegradable and absorbable polymer material according to the present invention, is composed of a homopolymer of 100% polylactic acid. There is little physical stimulation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は乳酸/ε−カプロラクトン共重合体中のε−カ
プロラクトンのモル分率とガラス転移温度との関係を示
す図、第2図はL−乳酸/ε−カプロラクトン共重合体
中のε−カプロラクトンのモル分率と室温に於ける動的
弾性率との関係を示す図、第3図は加水分解時間とL−
乳酸/ε−カプロラクトン共重合体の重量と分子量残存
率との関係を示す図、第4図は加水分解時間とL−乳酸
/ε−カプロラクトン共重合体の引張強度との関係を示
す図である。 第1図中、 第2図中、 第3図,第4図中、 ○……L−乳酸分子量100% □……L−乳酸分子量88% △……L−乳酸分子量65% ◎……L−乳酸分子量15% ×……ε−カプロラクトン分子量100% ●……L−乳酸重量100% ■……L−乳酸重量88% ▲……L−乳酸重量65%
FIG. 1 shows the relationship between the glass transition temperature and the molar fraction of ε-caprolactone in a lactic acid / ε-caprolactone copolymer, and FIG. 2 shows the relationship between the ε-caprolactone copolymer in an L-lactic acid / ε-caprolactone copolymer. FIG. 3 shows the relationship between the molar fraction of caprolactone and the dynamic elastic modulus at room temperature. FIG. 3 shows the hydrolysis time and L-
FIG. 4 is a diagram showing the relationship between the weight of the lactic acid / ε-caprolactone copolymer and the residual molecular weight, and FIG. 4 is a diagram showing the relationship between the hydrolysis time and the tensile strength of the L-lactic acid / ε-caprolactone copolymer. . In FIG. In FIG. 3 and 4, ○: L-lactic acid molecular weight: 100% □: L-lactic acid molecular weight: 88% △: L-lactic acid molecular weight: 65%: L-lactic acid molecular weight: 15% ×: ε- Caprolactone molecular weight 100% ● …… L-lactic acid weight 100% ■ …… L-lactic acid weight 88% ▲ …… L-lactic acid weight 65%

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−217170(JP,A) 特開 昭61−149160(JP,A) 特開 昭60−153868(JP,A) 特表 平3−505535(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-217170 (JP, A) JP-A-61-149160 (JP, A) JP-A-60-153868 (JP, A) 505535 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】歯周組織再生の治療用として、乳酸/ε−
カプロラクトン共重合体又は乳酸/グリコール酸共重合
体のみから成る材料を生体分解吸収性高分子材料として
用い、該共重合体は重量平均分子量が150,000〜500,000
であり組成モル比が95:5〜5:95モル%であって室温(25
℃)に於ける動的弾性率が5×107〜5×109dyne/cm2,
伸び率が100〜2,000%の範囲であり厚みが10〜500μm
である多孔質で均一な構造のフイルム又はシート状をな
していることを特徴とする歯周組織再生用素材。
(1) Lactic acid / ε- is used for the treatment of periodontal tissue regeneration.
A material consisting solely of a caprolactone copolymer or a lactic acid / glycolic acid copolymer is used as a biodegradable and absorbable polymer material, and the copolymer has a weight average molecular weight of 150,000 to 500,000.
At a composition molar ratio of 95: 5 to 5:95 mol% at room temperature (25
℃) dynamic elastic modulus of 5 × 10 7 to 5 × 10 9 dyne / cm 2 ,
Elongation is in the range of 100-2,000% and thickness is 10-500μm
A material for regenerating periodontal tissue, which is a film or sheet having a porous and uniform structure.
【請求項2】乳酸/ε−カプロラクトン共重合体又は乳
酸/グリコール酸共重合体のin vitro(37℃,PH7.4,リ
ン酸緩衝液中)に於ける加水分解に於いて、引張強度の
保持率が1〜6ヶ月間で0になることを特徴とする請求
項1に記載の歯周組織再生用素材。
2. The tensile strength of lactic acid / ε-caprolactone copolymer or lactic acid / glycolic acid copolymer in vitro (37 ° C., pH 7.4, in phosphate buffer). The material for periodontal tissue regeneration according to claim 1, wherein the retention rate becomes 0 in 1 to 6 months.
JP63214835A 1988-08-31 1988-08-31 Materials for periodontal tissue regeneration Expired - Fee Related JP2709349B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP63214835A JP2709349B2 (en) 1988-08-31 1988-08-31 Materials for periodontal tissue regeneration
AU39490/89A AU624847B2 (en) 1988-08-31 1989-08-10 Periodontium-regenerative materials
GB8918343A GB2223027B (en) 1988-08-31 1989-08-11 Periodontium-regenerative materials
BE8900868A BE1002656A5 (en) 1988-08-31 1989-08-11 REGENERATIVE MATERIALS FOR DENTAL PERIOSTS.
CA000608766A CA1340354C (en) 1988-08-31 1989-08-18 Periodontium-regenerative materials
CH3113/89A CH679836A5 (en) 1988-08-31 1989-08-28
SE8902867A SE503230C2 (en) 1988-08-31 1989-08-29 Periodontium regeneration material consisting of copolymers of lactide / lacto-caprolactone or lactide / glycolide
DK426989A DK426989A (en) 1988-08-31 1989-08-30 PERIODONTIUM REGENERATING PREPARATION
FR898911387A FR2635685B1 (en) 1988-08-31 1989-08-30 PERIODONTE REGENERATION MATERIALS
DE3928933A DE3928933C2 (en) 1988-08-31 1989-08-31 Use of a periodontium regenerating material
US07/915,770 US5250584A (en) 1988-08-31 1992-07-21 Periodontium-regenerative materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214835A JP2709349B2 (en) 1988-08-31 1988-08-31 Materials for periodontal tissue regeneration

Publications (2)

Publication Number Publication Date
JPH0263465A JPH0263465A (en) 1990-03-02
JP2709349B2 true JP2709349B2 (en) 1998-02-04

Family

ID=16662325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214835A Expired - Fee Related JP2709349B2 (en) 1988-08-31 1988-08-31 Materials for periodontal tissue regeneration

Country Status (10)

Country Link
JP (1) JP2709349B2 (en)
AU (1) AU624847B2 (en)
BE (1) BE1002656A5 (en)
CA (1) CA1340354C (en)
CH (1) CH679836A5 (en)
DE (1) DE3928933C2 (en)
DK (1) DK426989A (en)
FR (1) FR2635685B1 (en)
GB (1) GB2223027B (en)
SE (1) SE503230C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649872A1 (en) 2004-10-25 2006-04-26 GC Corporation Sheet for guiding regeneration of mesenchymal tissue and production method thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323307B1 (en) 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
US5444113A (en) * 1988-08-08 1995-08-22 Ecopol, Llc End use applications of biodegradable polymers
US5502158A (en) * 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
JPH02152461A (en) * 1988-12-01 1990-06-12 Nippon Sogo Igaku Kenkyusho:Kk Tissue absorbable film
US5171148A (en) * 1989-06-30 1992-12-15 Ethicon, Inc. Dental inserts for treatment of periodontal disease
US5077049A (en) * 1989-07-24 1991-12-31 Vipont Pharmaceutical, Inc. Biodegradable system for regenerating the periodontium
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5487897A (en) 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
DE4229924C2 (en) * 1991-04-17 1995-12-07 Juergens Christian Dr Med Use of absorbable lactide copolymers
DE4112489C2 (en) * 1991-04-17 1994-06-09 Christian Dr Med Juergens Use of resorbable, physiologically harmless copolymers for the topical treatment of human or animal skin
DE4226465C2 (en) * 1991-08-10 2003-12-04 Gunze Kk Jaw bone reproductive material
FR2691901B1 (en) * 1992-06-04 1995-05-19 Centre Nat Rech Scient Use of mixtures of polymers derived from lactic acids in the preparation of bioresorbable membranes for guided tissue regeneration, in particular in periodontology.
US5576418A (en) * 1992-06-29 1996-11-19 Jurgens; Christian Resorbable biocompatible copolymers and their use
JP3257750B2 (en) * 1993-07-20 2002-02-18 エチコン・インコーポレーテツド Liquid copolymer of ε-caprolactone and lactide
US5681873A (en) * 1993-10-14 1997-10-28 Atrix Laboratories, Inc. Biodegradable polymeric composition
DE4343988A1 (en) * 1993-12-22 1995-06-29 Peter Prof Dr Dr Diedrich Dental implant anchoring
NL9401703A (en) * 1994-10-14 1996-05-01 Rijksuniversiteit Chewing gum.
US5962006A (en) * 1997-06-17 1999-10-05 Atrix Laboratories, Inc. Polymer formulation for prevention of surgical adhesions
US6165217A (en) * 1997-10-02 2000-12-26 Gore Enterprise Holdings, Inc. Self-cohering, continuous filament non-woven webs
US6245345B1 (en) 1998-07-07 2001-06-12 Atrix Laboratories, Inc. Filamentous porous films and methods for producing the same
DE19830992C2 (en) * 1998-07-10 2000-06-08 Eckhard Binder Molded parts, especially foils, to promote the new formation of bone material in the jaw
DE19940977A1 (en) * 1999-08-28 2001-03-01 Lutz Claes Film of resorbable polymer material and process for producing such a film
US8226598B2 (en) 1999-09-24 2012-07-24 Tolmar Therapeutics, Inc. Coupling syringe system and methods for obtaining a mixed composition
JP2005046538A (en) * 2003-07-31 2005-02-24 Jms Co Ltd Porous body for medical treatment and method for manufacturing it
JP2011062356A (en) * 2009-09-17 2011-03-31 Gc Corp Bioabsorbable membrane for guided tissue regeneration and manufacturing method of the same
JP2017052725A (en) * 2015-09-10 2017-03-16 田畑 雅士 Blocking membranes for open wounds in dental region, and formation methods thereof
CZ308980B6 (en) * 2020-01-24 2021-11-03 Contipro A.S. Dental preparation made of hyaluronic acid fibres with adjustable biodegradability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1332505A (en) * 1970-10-16 1973-10-03 Ethicon Inc Sutures and other surgical aids
US3839297A (en) * 1971-11-22 1974-10-01 Ethicon Inc Use of stannous octoate catalyst in the manufacture of l(-)lactide-glycolide copolymer sutures
CA1123984A (en) * 1977-11-16 1982-05-18 Yuzi Okuzumi Block copolymers of lactide and glycolide and surgical prosthesis therefrom
NZ205680A (en) * 1982-10-01 1986-05-09 Ethicon Inc Glycolide/epsilon-caprolactone copolymers and sterile surgical articles made therefrom
US4523591A (en) * 1982-10-22 1985-06-18 Kaplan Donald S Polymers for injection molding of absorbable surgical devices
JPS6014861A (en) * 1983-07-05 1985-01-25 株式会社日本メデイカル・サプライ Adhesion preventing material
US4578384A (en) * 1984-02-15 1986-03-25 The United States Of America As Represented By The Secretary Of The Army Polylactic-polyglycolic acids combined with an acidic phospholipid-lysozyme complex for healing osseous tissue
US4595713A (en) * 1985-01-22 1986-06-17 Hexcel Corporation Medical putty for tissue augmentation
SU1830708A1 (en) * 1989-04-27 1996-02-20 Театр полифонической драмы Device for movement of decorative equipment of information and entertainment complexes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649872A1 (en) 2004-10-25 2006-04-26 GC Corporation Sheet for guiding regeneration of mesenchymal tissue and production method thereof

Also Published As

Publication number Publication date
DE3928933A1 (en) 1990-03-01
BE1002656A5 (en) 1991-04-23
SE8902867D0 (en) 1989-08-29
SE503230C2 (en) 1996-04-22
CA1340354C (en) 1999-01-26
SE8902867L (en) 1990-03-01
GB2223027B (en) 1993-04-21
FR2635685A1 (en) 1990-03-02
GB2223027A (en) 1990-03-28
CH679836A5 (en) 1992-04-30
DK426989D0 (en) 1989-08-30
AU3949089A (en) 1990-03-08
JPH0263465A (en) 1990-03-02
AU624847B2 (en) 1992-06-25
DK426989A (en) 1990-06-20
DE3928933C2 (en) 1997-08-07
FR2635685B1 (en) 1994-10-14
GB8918343D0 (en) 1989-09-20

Similar Documents

Publication Publication Date Title
JP2709349B2 (en) Materials for periodontal tissue regeneration
US5250584A (en) Periodontium-regenerative materials
JP4554084B2 (en) Bioabsorbable, biocompatible polymers for tissue manipulation
Ginjupalli et al. Poly (α-hydroxy acid) based polymers: A review on material and degradation aspects
ES2261601T3 (en) COMPOSITIONS AND MEDICAL DEVICES THAT INCLUDE BIOABSORBABLE POLYMERIC WAXES TYPE ALQUIDO.
US3736646A (en) Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures
Piskin Biodegradable polymers as biomaterials
KR101061376B1 (en) Medical Amphiphilic Polymer
JP5031144B2 (en) Medical devices and medical applications of polyhydroxyalkanoate polymers
EP1937182B1 (en) Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices
US3982543A (en) Reducing capillarity of polyglycolic acid sutures
US5358475A (en) High molecular weight bioresorbable polymers and implantable devices thereof
US5061281A (en) Bioresorbable polymers and implantation devices thereof
US5854383A (en) Aliphatic polyesters of trimethylene carbonate epsilon-caprolactone and glycolide
US6251435B1 (en) Hydrogels containing absorbable polyoxaamides
ES2282579T3 (en) ALQUIDO-CATIONIC POLYESTERS FOR MEDICAL APPLICATIONS.
JPH10158377A (en) Hydrogel of amine and/or amido group-containing absorbable polyoxaester
WO2001012240A1 (en) Biological materials
JP2003517352A (en) Method of preventing adhesion by absorbable polyoxaester
Lee et al. Surface perspectives in the biomedical applications of poly (α-hydroxy acid) s and their associated copolymers
JP2508105B2 (en) Biodegradable and absorbable antithrombotic medical material and method for producing the same
EP1878451A1 (en) Bioabsorbable, biocompatible polymers for tissue engineering
US8846845B2 (en) Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices
AU2004242432B2 (en) Bioabsorbable, biocompatible polymers for tissue engineering
MXPA96005422A (en) Polymeric mixtures containing absorbib polioxaesters

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees