JP2708818B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2708818B2
JP2708818B2 JP63279691A JP27969188A JP2708818B2 JP 2708818 B2 JP2708818 B2 JP 2708818B2 JP 63279691 A JP63279691 A JP 63279691A JP 27969188 A JP27969188 A JP 27969188A JP 2708818 B2 JP2708818 B2 JP 2708818B2
Authority
JP
Japan
Prior art keywords
discharge
battery
positive electrode
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63279691A
Other languages
Japanese (ja)
Other versions
JPH02126555A (en
Inventor
親典 石橋
和郎 森脇
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63279691A priority Critical patent/JP2708818B2/en
Publication of JPH02126555A publication Critical patent/JPH02126555A/en
Application granted granted Critical
Publication of JP2708818B2 publication Critical patent/JP2708818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム又はリチウム合金からなる負極と、
非水電解液と、酸化第二銅を活物質とする正極とを備え
た非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a negative electrode made of lithium or a lithium alloy,
The present invention relates to a non-aqueous electrolyte battery including a non-aqueous electrolyte and a positive electrode using cupric oxide as an active material.

(ロ)従来の技術 この種電池は例えば特公昭59−33935号公報に開示さ
れており、その電池電圧は低率放電の場合、約1.4V程度
であるので電子機器の電源に汎用されている既存のアル
カリ乾電池、水銀電池或いは銀電池等と互換使用しうる
利点がある。
(B) Conventional technology This type of battery is disclosed, for example, in Japanese Patent Publication No. 59-33935, and its battery voltage is about 1.4 V in the case of low-rate discharge. There is an advantage that it can be used interchangeably with existing alkaline dry batteries, mercury batteries or silver batteries.

(ハ)発明が解決しようとする課題 ところで、この電池は放電初期時電池電圧が低下し、
特に低温、高率放電等の電池電圧の低下が大きく、その
ため電子機器の電源として使用した場合、放電初期に機
器の誤動作を生じるという課題がある。
(C) Problems to be solved by the invention By the way, in this battery, the battery voltage at the initial stage of discharge decreases,
In particular, there is a problem that when the battery is used as a power source of an electronic device, the device malfunctions at an early stage of discharge, particularly when the battery voltage is significantly lowered at a low temperature and a high rate discharge.

(ニ)課題を解決するための手段 本発明の要旨とするところは、リチウム又はリチウム
合金からなる負極と、非水電解液と、酸化第二銅を活物
質とする正極とを備え、前記正極中に金属多硫化物MeSx
(ここでMeはコバルトCo,鉄Fe,ニッケルNi、銅Cu、レニ
ウムRe及びタングステンWからなる群から選択された少
なくとも1種の金属原子、Sはイオウ原子、x≧2.5で
ある)を添加したことを特徴とする非水電解液電池にあ
る。
(D) Means for Solving the Problems The gist of the present invention is to provide a negative electrode made of lithium or a lithium alloy, a nonaqueous electrolyte, and a positive electrode containing cupric oxide as an active material. Metal polysulfide MeSx in
(Where Me is at least one metal atom selected from the group consisting of cobalt Co, iron Fe, nickel Ni, copper Cu, rhenium Re, and tungsten W, S is a sulfur atom, and x ≧ 2.5). A non-aqueous electrolyte battery characterized in that:

又、金属多硫化物の添加量としては5〜30重量%の範
囲が好ましい。
Further, the addition amount of the metal polysulfide is preferably in the range of 5 to 30% by weight.

(ホ)作用 酸化第二銅(CuO)のみを正極活物質に用い、800Ω負
荷の高率で放電すると約1.25Vの作動電圧を示し、且放
電初期に電池電圧の低下が認められる。
(E) Function When only cupric oxide (CuO) is used as the positive electrode active material and the battery is discharged at a high rate of 800 Ω load, an operating voltage of about 1.25 V is exhibited, and a decrease in battery voltage is observed at the beginning of discharging.

これに対し、金属多硫化物MeSx(ここでMeはコバルト
Co,鉄Fe,ニッケルNi、銅Cu、レニウムRe及びタングステ
ンWからなる群から選択された少なくとも1種の金属原
子、Sはイオウ原子、x≧2.5である)のみを正極活物
質に用い、800Ω負荷の高率で放電すると、先ず式で
示す放電反応が進行する。
In contrast, metal polysulfide MeSx (where Me is cobalt
At least one metal atom selected from the group consisting of Co, iron Fe, nickel Ni, copper Cu, rhenium Re, and tungsten W, S is a sulfur atom, x ≧ 2.5), and only 800Ω is used as the positive electrode active material. When the discharge is performed at a high rate of the load, first, a discharge reaction represented by the formula proceeds.

この式の反応時における作動電圧は約1.38〜1.40V
であり、CuOのみの場合に比して高く、且放電初期の電
池電圧の低下も認められない。
The operating voltage during the reaction of this equation is about 1.38-1.40V
This is higher than when only CuO is used, and no decrease in the battery voltage at the initial stage of discharge is observed.

但し、金属多硫化物MeSxのみを正極活物質に用いる場
合、更に放電が進行すると、式で示す反応が起こる。
However, when only the metal polysulfide MeSx is used as the positive electrode active material, when the discharge further proceeds, the reaction represented by the formula occurs.

MeS+2Li→Me+Li2S …… この式の反応時における作動電圧は約1.17〜1.20V
と低い。それ故、金属多硫化物MeSxのみを正極活物質に
用いた場合には2段の放電電圧特性を示すという欠点が
ある。
MeS + 2Li → Me + Li 2 S …… The working voltage during the reaction of this equation is about 1.17 to 1.20V
And low. Therefore, when only the metal polysulfide MeSx is used as the positive electrode active material, there is a disadvantage that two-stage discharge voltage characteristics are exhibited.

そこで、CuOに金属多硫化物MeSxを添加したものを正
極活物質に用いると、CuOとMeSxの同時放電による混成
電位が生じ、放電初期の電池電圧の落込みがなく且放電
容量も比較的大きい電池を得ることができる。
Therefore, when a material obtained by adding metal polysulfide MeSx to CuO is used as the positive electrode active material, a mixed potential occurs due to simultaneous discharge of CuO and MeSx, there is no drop in battery voltage at the initial stage of discharge, and the discharge capacity is relatively large. You can get a battery.

尚、金属多硫化物の添加量が多くなると、放電末期に
作動電圧の低下を招き平坦性が悪くなる。従って、金属
多硫化物の添加量としては5〜30重量%の範囲が好まし
い。
In addition, when the addition amount of the metal polysulfide increases, the operating voltage decreases at the end of discharge, and the flatness deteriorates. Therefore, the addition amount of the metal polysulfide is preferably in the range of 5 to 30% by weight.

(ヘ)実施例 市販特級のCuO70重量%、CuS520重量%に、導電剤と
しての黒鉛5重量%及び結着剤としてのフッ素樹脂粉末
5重量%を加えて混合した後、この混合物を約2トン/c
m2の圧力で加圧成型して径15.0mm、厚み0.6mmの成型体
を得、この成型体を200〜300℃の温度で熱処理して正極
とする。
(F) Example 70% by weight of commercial grade CuO and 20% by weight of CuS 5 were added with 5% by weight of graphite as a conductive agent and 5% by weight of a fluororesin powder as a binder, and then mixed. 2 tons / c
A molded body having a diameter of 15.0 mm and a thickness of 0.6 mm was obtained by press molding with a pressure of m 2 , and this molded body was heat-treated at a temperature of 200 to 300 ° C. to obtain a positive electrode.

負極はリチウム板を約0.6mmの厚みに圧延し、このリ
チウム圧延板を径15.0mmに打抜いたものである。
The negative electrode is obtained by rolling a lithium plate to a thickness of about 0.6 mm, and punching this rolled lithium plate to a diameter of 15.0 mm.

電解液はプロピレンカーボネートと1.2ジメトキシエ
タンとの混合溶媒に過塩素酸リチウムを1モル/溶解
したものであり、又セパレータはポリプロピレン不織布
を用いた。
The electrolyte was a mixture of propylene carbonate and 1.2 dimethoxyethane in which 1 mol / mol of lithium perchlorate was dissolved, and the separator used was a nonwoven polypropylene fabric.

これらの要素を用いて直径20.0mm、厚み2.5mmの扁平
型の本発明電池(A)を作成した。
Using these elements, a flat battery of the present invention (A) having a diameter of 20.0 mm and a thickness of 2.5 mm was prepared.

比較例1 正極活物質としてCuO単独を用いることを除いて他は
実施例1と同様の比較電池(B)を作成した。
Comparative Example 1 A comparative battery (B) was prepared in the same manner as in Example 1 except that CuO alone was used as the positive electrode active material.

比較例2 正極活物質としてCoS5単独を用いることを除いて他は
実施例1と同様の比較電池(C)を作成した。
Comparative Example 2 A comparative battery (C) was prepared in the same manner as in Example 1 except that CoS 5 alone was used as the positive electrode active material.

第1図はこれら電池を温度25℃、負荷800Ωの条件で
放電した時の放電特性を示す。第1図より本発明電池
(A)は放電初期の電池電圧の落込みがなく且平坦な放
電電圧特性を示すことがわかる。
FIG. 1 shows discharge characteristics when these batteries were discharged at a temperature of 25 ° C. and a load of 800Ω. From FIG. 1, it can be seen that the battery (A) of the present invention shows a flat discharge voltage characteristic without a drop in the battery voltage at the beginning of discharge.

第2図はCoSx系の金属多硫化物においてxの値が2.5
以上の4種を、CuOに夫々添加した時の添加量と電池放
電容量との関係を示す図である。尚、放電条件は第1図
と同様に温度25℃、負荷800Ωである。
FIG. 2 shows that the value of x was 2.5 in CoSx-based metal polysulfide.
It is a figure which shows the relationship between the addition amount at the time of adding each of the above four types to CuO, respectively, and battery discharge capacity. The discharge conditions were a temperature of 25 ° C. and a load of 800Ω as in FIG.

第2図より金属硫化物の添加量としては5〜30重量%
の範囲が特に好ましいことがわかる。
From FIG. 2, the addition amount of metal sulfide is 5 to 30% by weight.
Is particularly preferable.

第3図はCoSx系、FeSx系、NiSx系の金属多硫化物20重
量%をCuOに添加した時のxの値と放電初期の電池電圧
との関係を示す図であり、いずれの場合もxの値が2.5
以上になると電池電圧が上昇することがわかる。尚、放
電条件は第1図と同様に温度25℃、負荷800Ωである。
FIG. 3 is a diagram showing the relationship between the value of x when adding 20% by weight of CoSx-based, FeSx-based, and NiSx-based metal polysulfides to CuO and the battery voltage at the beginning of discharge. Is 2.5
It can be seen that the battery voltage rises above this. The discharge conditions were a temperature of 25 ° C. and a load of 800Ω as in FIG.

下表は各種組成の正極活物質を用いた場合の放電電圧
値を示す。
The following table shows the discharge voltage values when using positive electrode active materials of various compositions.

(ト)発明の効果 上述した如く、酸化第二銅を活物質とする正極を備え
た非水電解液電池において、正極中に金属多硫化物MeSx
(ここでMeはコバルトCo,鉄Fe,ニッケルNi、銅Cu、レニ
ウムRe及びタングステンWからなる群から選択された少
なくとも1種の金属原子、Sはイオウ原子、x≧2.5で
ある)を添加することにより、この種電池の放電特性を
改善しうるものであり、その工業的価値は極めて大であ
る。
(G) Effects of the Invention As described above, in a nonaqueous electrolyte battery provided with a positive electrode using cupric oxide as an active material, metal polysulfide MeSx
(Where Me is at least one metal atom selected from the group consisting of cobalt Co, iron Fe, nickel Ni, copper Cu, rhenium Re, and tungsten W, S is a sulfur atom, and x ≧ 2.5). As a result, the discharge characteristics of this type of battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池と比較電池との高率放電特性比較
図、第2図はCoSx系添加剤の添加量と電池放電容量との
関係を示す図、第3図はMeSxのxの値と放電初期の電池
電圧との関係を示す図である。
FIG. 1 is a graph showing a comparison between high-rate discharge characteristics of the battery of the present invention and a comparative battery, FIG. 2 is a graph showing the relationship between the amount of CoSx-based additive added and the battery discharge capacity, and FIG. FIG. 5 is a diagram showing the relationship between the battery voltage at the beginning of discharge and the battery voltage at the beginning of discharge.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム又はリチウム合金からなる負極
と、非水電解液と、酸化第二銅を活物質とする正極とを
備え、前記正極中に金属多硫化物MeSx(ここでMeはコバ
ルトCo,鉄Fe,ニッケルNi、銅Cu、レニウムRe及びタング
ステンWからなる群から選択された少なくとも1種の金
属原子、Sはイオウ原子、X≧2.5である)を添加した
ことを特徴とする非水電解液電池。
1. A negative electrode comprising lithium or a lithium alloy, a nonaqueous electrolyte, and a positive electrode having cupric oxide as an active material, wherein a metal polysulfide MeSx (where Me is cobalt Co , Iron Fe, nickel Ni, copper Cu, rhenium Re, and tungsten W, at least one metal atom selected from the group consisting of S and sulfur, and X ≧ 2.5. Electrolyte battery.
JP63279691A 1988-11-04 1988-11-04 Non-aqueous electrolyte battery Expired - Fee Related JP2708818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279691A JP2708818B2 (en) 1988-11-04 1988-11-04 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279691A JP2708818B2 (en) 1988-11-04 1988-11-04 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02126555A JPH02126555A (en) 1990-05-15
JP2708818B2 true JP2708818B2 (en) 1998-02-04

Family

ID=17614529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279691A Expired - Fee Related JP2708818B2 (en) 1988-11-04 1988-11-04 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2708818B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107661A (en) * 1984-10-30 1986-05-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPS61107662A (en) * 1984-10-30 1986-05-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH02126555A (en) 1990-05-15

Similar Documents

Publication Publication Date Title
EP0951083B1 (en) Solid state lithium secondary battery
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JPH05242891A (en) Non-aqueous battery
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JPS6223433B2 (en)
JP2680673B2 (en) Non-aqueous electrolyte battery manufacturing method
JP2708818B2 (en) Non-aqueous electrolyte battery
US20200365888A1 (en) Substituted ramsdellite manganese dioxides in an alkaline electrochemical cell
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP2708884B2 (en) Non-aqueous electrolyte battery
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH0746603B2 (en) Non-aqueous electrolyte battery
JPH0626120B2 (en) Non-aqueous electrolyte battery
JPH0586626B2 (en)
JP3332488B2 (en) Nickel-hydrogen alkaline storage battery
JPH0750604B2 (en) Manufacturing method of positive electrode for non-aqueous battery
JPH01286253A (en) Nonaqueous electrolytic battery
JP2708883B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP2804577B2 (en) Non-aqueous electrolyte battery
JPH0677456B2 (en) Non-aqueous electrolyte battery
JPH0586627B2 (en)
JPH05166510A (en) Secondary lithium battery
JPH02270260A (en) Nonaqueous electrolyte battery
JPS6222227B2 (en)
JPS63174270A (en) Nonaqueous electrolyte cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees