JP2692547B2 - Magnetoresistive head - Google Patents

Magnetoresistive head

Info

Publication number
JP2692547B2
JP2692547B2 JP5274221A JP27422193A JP2692547B2 JP 2692547 B2 JP2692547 B2 JP 2692547B2 JP 5274221 A JP5274221 A JP 5274221A JP 27422193 A JP27422193 A JP 27422193A JP 2692547 B2 JP2692547 B2 JP 2692547B2
Authority
JP
Japan
Prior art keywords
layer
soft magnetic
auxiliary layer
thickness
magnetic bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5274221A
Other languages
Japanese (ja)
Other versions
JPH07129926A (en
Inventor
勉 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5274221A priority Critical patent/JP2692547B2/en
Publication of JPH07129926A publication Critical patent/JPH07129926A/en
Application granted granted Critical
Publication of JP2692547B2 publication Critical patent/JP2692547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体から情報
の読み出しを行う磁気抵抗効果ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head for reading information from a magnetic recording medium.

【0002】[0002]

【従来の技術】磁気抵抗効果を利用した磁気抵抗効果ヘ
ッド(以下、MRヘッドと略す)が広く知られている。
しかしながら、MRヘッドでは、磁気抵抗効果層(以
下、MR層と略す)における不連続な磁壁移動に起因す
る、バルクハウゼンノイズと呼ばれるノイズがしばしば
観測され、実用化の上で大きな問題となっている。この
問題を解決するために、例えば、特開昭62−4061
0号公報には、MR層の端部領域にパターン化された反
強磁性薄膜層を設け、両層の界面に働く交換力によっ
て、MR層の端部領域に一方向性の縦方向バイアス磁界
を印加する方法が開示されている。この方法によれば、
反強磁性薄膜層と接触するMR層の端部領域が単磁区化
されると同時に、MR層の中央領域(少なくともトラッ
ク部を含む)にも単磁区状態が誘導され、その結果、中
央領域部分の磁化は磁気記録媒体からの信号磁界に対し
て磁化回転のみにより動作するため、バルクハウゼンノ
イズの原因となる不連続な磁壁移動を抑制することが可
能である。
2. Description of the Related Art A magnetoresistive head (hereinafter abbreviated as MR head) utilizing the magnetoresistive effect is widely known.
However, in an MR head, noise called Barkhausen noise, which is caused by discontinuous domain wall movement in a magnetoresistive effect layer (hereinafter abbreviated as MR layer), is often observed, which is a serious problem in practical use. . In order to solve this problem, for example, JP-A-62-4061.
In Japanese Patent Laid-Open Publication No. 0-0,099, a patterned antiferromagnetic thin film layer is provided in the end region of the MR layer, and a unidirectional longitudinal bias magnetic field is applied to the end region of the MR layer by the exchange force acting on the interface between the two layers. A method of applying is disclosed. According to this method,
The end region of the MR layer that is in contact with the antiferromagnetic thin film layer is made into a single magnetic domain, and at the same time, the single domain state is induced also in the central region (including at least the track portion) of the MR layer. Since the magnetization of (1) operates only by the magnetization rotation with respect to the signal magnetic field from the magnetic recording medium, it is possible to suppress the discontinuous domain wall movement that causes Barkhausen noise.

【0003】図5は、MR層の端部領域にパターン化さ
れた反強磁性薄膜層を設けた従来のMRヘッドを示す断
面図である。このMRヘッドは、図5に示すように、基
板(図示せず)上に軟磁性バイアス補助層1,非磁性ス
ペーサ層2,MR層3,反強磁性層4および導電体5を
順次成膜して積層し、所定形状のトラック部9を形成し
たものであり、MR層3の端部領域にのみ、磁区安定化
のための縦方向バイアスが印加され、MRヘッドを線形
応答モードに保持する。すなわち、センス電流とMR層
3内の磁化とのなす角度を所定の値(望ましくは45
度)に設定するための横方向バイアス手段として軟磁性
バイアス補助層1の、端部領域の磁化は非確定のままで
ある。このため、軟磁性バイアス補助層1の磁化状態の
不安定性がMR層3の磁化状態に影響を及ぼし、不安定
な磁界応答特性がしばしば観測された。
FIG. 5 is a sectional view showing a conventional MR head in which a patterned antiferromagnetic thin film layer is provided in an end region of the MR layer. In this MR head, as shown in FIG. 5, a soft magnetic bias auxiliary layer 1, a nonmagnetic spacer layer 2, an MR layer 3, an antiferromagnetic layer 4 and a conductor 5 are sequentially formed on a substrate (not shown). Then, the track portion 9 having a predetermined shape is formed by laminating the MR head 3 and the longitudinal bias for stabilizing the magnetic domain is applied only to the end region of the MR layer 3 to keep the MR head in the linear response mode. . That is, the angle formed by the sense current and the magnetization in the MR layer 3 is set to a predetermined value (preferably 45).
The magnetization of the end region of the soft magnetic bias auxiliary layer 1 as a lateral biasing means for setting the temperature is still undetermined. Therefore, the instability of the magnetization state of the soft magnetic bias auxiliary layer 1 affects the magnetization state of the MR layer 3, and an unstable magnetic field response characteristic is often observed.

【0004】この問題の解決策として、特公平4−39
738号公報には、MR層と同様に軟磁性バイアス補助
層にも縦方向バイアス磁界を印加する方法が開示されて
いる。図6は、MR層と同様に軟磁性バイアス補助層に
も縦方向バイアス磁界を印加することが可能な従来のM
Rヘッドを示す断面図であり、図7は、図6のMRヘッ
ドのMR層および軟磁性バイアス補助層のセンス電流通
電時における磁化状態を示す分解平面図である。
As a solution to this problem, Japanese Patent Publication No. 4-39
Japanese Patent No. 738 discloses a method of applying a longitudinal bias magnetic field to the soft magnetic bias auxiliary layer as well as the MR layer. FIG. 6 shows a conventional M that can apply a longitudinal bias magnetic field to the soft magnetic bias auxiliary layer as well as the MR layer.
FIG. 7 is a cross-sectional view showing the R head, and FIG. 7 is an exploded plan view showing the magnetization states of the MR layer and the soft magnetic bias auxiliary layer of the MR head of FIG. 6 when a sense current is applied.

【0005】[0005]

【発明が解決しようとする課題】上述の従来例では、縦
方向バイアス磁界を軟磁性バイアス補助層を介してMR
層に伝播させる(もしくは、MR層を介して軟磁性バイ
アス補助層に伝播させる)ために、それぞれの層を最適
な縦方向バイアス状態に保持することが困難であった。
In the above-mentioned conventional example, the longitudinal bias magnetic field is applied to the MR via the soft magnetic bias auxiliary layer.
In order to propagate to the layers (or propagate to the soft magnetic bias assist layer via the MR layer), it was difficult to maintain each layer in the optimum longitudinal bias state.

【0006】本発明の目的は、従来とは別の方式でMR
層および軟磁性バイアス補助層の端部領域の磁化を安定
に固定し、バルクハウゼンノイズのない安定な磁界応答
特性を有するMRヘッドを提供することにある。
An object of the present invention is to use MR in a method different from the conventional one.
An object of the present invention is to provide an MR head having a stable magnetic field response characteristic free from Barkhausen noise, by stably fixing the magnetization in the end regions of the layer and the soft magnetic bias auxiliary layer.

【0007】[0007]

【課題を解決するための手段】本発明は、MR層と、こ
のMR層に横方向バイアス磁界を印加する手段としての
軟磁性バイアス補助層と、前記MR層と前記軟磁性バイ
アス補助層を磁気的に分離する非磁性スペーサ層と、前
記MR層もしくは前記軟磁性バイアス補助層の少なくと
も一部に接触して設けられた縦方向バイアス磁界を印加
する手段としての反強磁性層と、センス電流を供給する
導電体とから構成されるMRヘッドにおいて、前記MR
層の厚さをdMR、飽和磁化をMsMRとし、前記軟磁性バ
イアス補助層の厚さをdSAL 、飽和磁化をMsSAL とし
たとき、少なくともトラック部を含む中央領域では、d
MR・MsMR>dSAL ・MsSAL の関係が成り立ち、かつ
前記中央領域によって分離された端部領域では、dMR
MsMR=dSAL ・MsSALの関係が成り立つことを特徴
とする。
According to the present invention, an MR layer, a soft magnetic bias auxiliary layer as a means for applying a lateral bias magnetic field to the MR layer, and the MR layer and the soft magnetic bias auxiliary layer are made magnetic. A non-magnetic spacer layer that is electrically separated, an antiferromagnetic layer that is provided in contact with at least a part of the MR layer or the soft magnetic bias auxiliary layer as a means for applying a longitudinal bias magnetic field, and a sense current. In an MR head composed of a supply conductor, the MR
Assuming that the layer thickness is d MR , the saturation magnetization is Ms MR , the soft magnetic bias auxiliary layer has a thickness d SAL , and the saturation magnetization is Ms SAL , d is at least in the central region including the track portion.
MR · Ms MR > d SAL · Ms SAL holds, and d MR · in the end region separated by the central region.
It is characterized in that the relationship of Ms MR = d SAL · Ms SAL is established.

【0008】[0008]

【作用】以下に、本発明の作用を簡単に説明する。端部
領域では、軟磁性バイアス補助層の厚さと飽和磁化の積
が、MR層の厚さと飽和磁化の積と等しい構造とする結
果、非磁性スペーサを介して作用する静磁結合によっ
て、MR層と軟磁性バイアス補助層の端部領域の磁化
を、縦方向に安定に固定することが可能となる。また、
少なくともトラック部を含む中央領域では、軟磁性バイ
アス補助層の厚さと飽和磁化の積が、MR層の厚さと飽
和磁化の積よりも小さい構造とする結果、MRヘッドを
線形応答モードに保持することが可能となる。具体的に
は、軟磁性バイアス補助層の厚さと飽和磁化の積を、M
R層の厚さと飽和磁化の積の1/21/2程度に設定する
のが望ましい。図4は、この時のMR層および軟磁性バ
イアス補助層のセンス電流通電時における磁化状態を示
す分解平面図である。
The function of the present invention will be briefly described below. In the end region, the product of the thickness of the soft magnetic bias auxiliary layer and the saturation magnetization has the same structure as the product of the thickness of the MR layer and the saturation magnetization, and as a result, the magnetostatic coupling acting through the non-magnetic spacer causes the MR layer to move. And, the magnetization of the end region of the soft magnetic bias auxiliary layer can be stably fixed in the vertical direction. Also,
In the central region including at least the track portion, the structure in which the product of the thickness of the soft magnetic bias auxiliary layer and the saturation magnetization is smaller than the product of the thickness of the MR layer and the saturation magnetization is held, and as a result, the MR head is held in the linear response mode. Is possible. Specifically, the product of the thickness of the soft magnetic bias auxiliary layer and the saturation magnetization is M
It is desirable to set it to about 1/2 1/2 of the product of the thickness of the R layer and the saturation magnetization. FIG. 4 is an exploded plan view showing the magnetization states of the MR layer and the soft magnetic bias auxiliary layer at this time when a sense current is applied.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。 −実施例1− 図1は、本発明の第1の実施例のMRヘッドを示す断面
図である。ガラス基板(図示せず)上にスパッタ法によ
り、軟磁性バイアス補助層1として厚さ50nmのCo
ZrMo膜(Co:82%−Zr:6%−Mo:12
%,原子%)を成膜し、その後、真空雰囲気中で250
℃、1時間の磁界中アニール処理を施した。続いて、所
定形状のフォトレジストパターンを形成し、Arガス雰
囲気中でイオンエッチングを行い、軟磁性バイアス補助
層1の中央領域7に深さ15nmの凹部を形成した。こ
の時、加速電圧を200Vと十分に低く抑えた結果、5
nm/分のエッチングレートが得られ、所定のエッチン
グ深さに再現性良く加工することが可能になった。
Next, embodiments of the present invention will be described with reference to the drawings. Example 1 FIG. 1 is a sectional view showing an MR head of Example 1 of the present invention. A Co layer having a thickness of 50 nm is formed as a soft magnetic bias auxiliary layer 1 on a glass substrate (not shown) by a sputtering method.
ZrMo film (Co: 82% -Zr: 6% -Mo: 12
%, Atomic%) and then 250 in a vacuum atmosphere
Annealing was performed in a magnetic field at 1 ° C. for 1 hour. Subsequently, a photoresist pattern having a predetermined shape was formed, and ion etching was performed in an Ar gas atmosphere to form a recess having a depth of 15 nm in the central region 7 of the soft magnetic bias auxiliary layer 1. At this time, as a result of suppressing the accelerating voltage to a sufficiently low value of 200 V, 5
An etching rate of nm / min was obtained, and it became possible to process to a predetermined etching depth with good reproducibility.

【0010】次に、非磁性スペーサ層2として厚さ20
nmのTa膜を、MR層3として厚さ30nmのNiF
e膜(Ni:82%−Fe:18%,重量%)を、反強
磁性層4として厚さ20nmのFeMn膜(Fe:50
%−Mn:50%,重量%)を、軟磁性バイアス補助層
1上にスパッタ法を用いて連続成膜した。その後、真空
雰囲気中で270℃,1時間の磁界中アニール処理、さ
らに徐冷工程を経て、MR層3に所定の縦方向バイアス
磁界を付与した。アニール処理時の磁界印加方向は、軟
磁性バイアス補助層1の磁化容易軸方向(縦方向)と同
方向である。
Next, the nonmagnetic spacer layer 2 having a thickness of 20 is formed.
nm Ta film as the MR layer 3 with a thickness of 30 nm NiF
The e film (Ni: 82% -Fe: 18%, weight%) is used as the antiferromagnetic layer 4 in a FeMn film (Fe: 50) having a thickness of 20 nm.
% -Mn: 50%, weight%) was continuously deposited on the soft magnetic bias auxiliary layer 1 by the sputtering method. After that, a predetermined longitudinal bias magnetic field was applied to the MR layer 3 through a magnetic field annealing treatment at 270 ° C. for 1 hour in a vacuum atmosphere, and an annealing process. The magnetic field application direction during the annealing process is the same as the easy magnetization axis direction (longitudinal direction) of the soft magnetic bias auxiliary layer 1.

【0011】続いて、所定形状のフォトレジストパター
ンを形成し、Arガス雰囲気中でイオンエッチングを行
い、反強磁性層4を加工し、さらに、積層体全体を長さ
40μm,幅4μmの矩形状のパターンに加工した。最
後に、センス電流を供給するための導電体5として、T
aとAuとの積層蒸着膜(厚さは5nm/250nm)
を成膜し、所定形状のトラック部9を形成するように加
工した。
Subsequently, a photoresist pattern having a predetermined shape is formed, ion etching is performed in an Ar gas atmosphere to process the antiferromagnetic layer 4, and the entire laminated body is formed into a rectangular shape having a length of 40 μm and a width of 4 μm. Processed into a pattern. Finally, as a conductor 5 for supplying a sense current, T
Laminated vapor deposition film of a and Au (thickness is 5 nm / 250 nm)
Was formed into a film and processed to form the track portion 9 having a predetermined shape.

【0012】表1に、本実施例のMRヘッドにおける、
MR層3および軟磁性バイアス補助層1の、中央領域
7、端部領域8の層厚と飽和磁化の関係を示す。
Table 1 shows the MR head of this embodiment.
The relationship between the saturation magnetization and the layer thickness of the central region 7 and the end region 8 of the MR layer 3 and the soft magnetic bias auxiliary layer 1 is shown.

【0013】[0013]

【表1】 [Table 1]

【0014】以上のような構造を有するMRヘッドにお
いて、センス電流10mAのとき、バルクハウゼンノイ
ズのない良好な再生波形が得られることを確認した。ま
た、カー効果顕微鏡を用いセンス電流通電時のMR層3
および軟磁性バイアス補助層1の磁区構造を観察した。
その結果、図4に示すような磁区構造が観察されること
を確認した。さらに、磁区構造の安定性を調べるため
に、磁化困難軸方向(横方向)に膜が飽和するのに十分
な大きさの直流磁界を印加した後、その残留磁化状態を
カー効果顕微鏡を用いて調べた。その結果、中央領域7
には磁壁のない単磁区構造が観察されたことから、MR
層3および軟磁性バイアス補助層1の端部領域8の磁化
は縦方向の静磁結合によって安定に固定されることを確
認した。 −比較例1− 実施例1において、軟磁性バイアス補助層1の厚さを3
5nmとし、中央領域7に凹部を形成する工程を省いた
従来の構造のMRヘッドを作製した。
In the MR head having the above structure, it was confirmed that when the sense current is 10 mA, a good reproduced waveform without Barkhausen noise can be obtained. In addition, the MR layer 3 when a sense current is applied by using a Kerr effect microscope
And the magnetic domain structure of the soft magnetic bias auxiliary layer 1 was observed.
As a result, it was confirmed that a magnetic domain structure as shown in FIG. 4 was observed. Furthermore, in order to investigate the stability of the magnetic domain structure, after applying a DC magnetic field of a magnitude sufficient to saturate the film in the hard axis direction (transverse direction), the residual magnetization state was observed using a Kerr effect microscope. Examined. As a result, the central area 7
Since a single domain structure without domain wall was observed in
It was confirmed that the magnetizations of the layer 3 and the end region 8 of the soft magnetic bias auxiliary layer 1 were stably fixed by the magnetostatic coupling in the vertical direction. -Comparative Example 1-In Example 1, the thickness of the soft magnetic bias auxiliary layer 1 was set to 3
An MR head having a conventional structure having a thickness of 5 nm and omitting the step of forming a recess in the central region 7 was manufactured.

【0015】表2に、本比較例のMRヘッドにおけるM
R層3および軟磁性バイアス補助層1の中央領域7、端
部領域8の層厚と飽和磁化との関係を示す。
Table 2 shows M in the MR head of this comparative example.
The relationship between the saturation magnetization and the layer thickness of the central region 7 and the end region 8 of the R layer 3 and the soft magnetic bias auxiliary layer 1 is shown.

【0016】[0016]

【表2】 [Table 2]

【0017】以上のような構造を有するMRヘッドにお
いて、センス電流10mAのとき、しばしばその再生波
形にバルクハウゼンノイズがみられた。この原因を調べ
るために、磁化困難軸方向(横方向)に、膜が飽和する
のに十分な大きさの直流磁界を印加した後、その残留磁
化状態をカー効果顕微鏡を用いて観察し、磁区構造の安
定性を調べた。その結果、中央領域7では、直流磁界印
加前には単磁区状態であるにもかかわらず、直流磁界印
加後の残留磁化状態において、磁壁の発生が観察され
た。この現象は、端部領域8において、軟磁性バイアス
補助層1の厚さと飽和磁化の積が、MR層3の厚さと飽
和磁化の積と等しくないために、非磁性スペーサ2を介
して作用する静磁結合が不安定となり、その結果、MR
層3および軟磁性バイアス補助層1の端部領域8の磁化
は縦方向に安定に固定されず、再生波形に悪影響を及ぼ
すと推定された。 −実施例2− 図2は、本発明の第2の実施例のMRヘッドを示す断面
図である。ガラス基板(図示せず)上にスパッタ法によ
り、軟磁性バイアス補助層1として厚さ50nmのCo
ZrMo 膜(Co:82%−Zr:6%−Mo:12
%,原子%)を成膜し、その後、真空雰囲気中で250
℃,1時間の磁界中アニール処理を施した。続いて、所
定形状のフォトレジストパターンを形成した後、軟磁性
バイアス補助層1の中央領域7にのみ、Moイオンを加
速電圧100keV,注入量5×1015ions/cm
2 の条件で注入したイオン注入領域6を形成した。この
工程は、軟磁性バイアス補助層1の磁化容易軸方向(縦
方向)に印加した磁界中で行い、注入による異方性分散
の影響を小さくした。なお、加速電圧は、注入イオンが
膜厚方向全体にわたって分布するよう選択した。
In the MR head having the above structure, when the sense current was 10 mA, Barkhausen noise was often observed in the reproduced waveform. In order to investigate the cause of this, a DC magnetic field of a magnitude sufficient to saturate the film was applied in the direction of the hard axis (transverse direction), and then the remanent magnetization state was observed using a Kerr effect microscope to determine the magnetic domain. The stability of the structure was investigated. As a result, in the central region 7, the generation of the domain wall was observed in the remanent magnetization state after the application of the DC magnetic field, although it was in the single domain state before the application of the DC magnetic field. This phenomenon acts through the nonmagnetic spacer 2 in the end region 8 because the product of the thickness of the soft magnetic bias assist layer 1 and the saturation magnetization is not equal to the product of the thickness of the MR layer 3 and the saturation magnetization. Magnetostatic coupling becomes unstable, resulting in MR
It was presumed that the magnetizations of the end regions 8 of the layer 3 and the soft magnetic bias auxiliary layer 1 were not stably fixed in the longitudinal direction and adversely affected the reproduction waveform. Example 2 FIG. 2 is a cross-sectional view showing an MR head of Example 2 of the present invention. A Co layer having a thickness of 50 nm is formed as a soft magnetic bias auxiliary layer 1 on a glass substrate (not shown) by a sputtering method.
ZrMo film (Co: 82% -Zr: 6% -Mo: 12
%, Atomic%) and then 250 in a vacuum atmosphere
Annealing was performed in a magnetic field for 1 hour at ℃. Subsequently, after forming a photoresist pattern having a predetermined shape, Mo ions are accelerated only in the central region 7 of the soft magnetic bias auxiliary layer 1 at an acceleration voltage of 100 keV and an implantation amount of 5 × 10 15 ions / cm 2.
Ion-implanted region 6 was formed under the condition of 2 . This step was performed in a magnetic field applied in the easy axis direction (longitudinal direction) of the soft magnetic bias auxiliary layer 1 to reduce the influence of anisotropic dispersion due to injection. The accelerating voltage was selected so that the implanted ions were distributed throughout the film thickness direction.

【0018】次に、非磁性スペーサ層2として厚さ20
nmのTa膜を、MR層3として厚さ30nmのNiF
e膜(Ni:82%−Fe:18%,重量%)を、反強
磁性層4として厚さ20nmのFeMn膜(Fe:50
%−Mn:50%,重量%)を、軟磁性バイアス補助層
1上にスパッタ法を用いて連続成膜した。その後、真空
雰囲気中で270℃,1時間の磁界中アニール処理、さ
らに徐冷工程を経て、MR層3に所定の縦方向バイアス
磁界を付与した。アニール処理時の磁界印加方向は、軟
磁性バイアス補助層1の磁化容易軸方向(縦方向)と同
方向である。続いて、所定形状のフォトレジストパター
ンを形成し、Arガス雰囲気中でイオンエッチングを行
い、反強磁性層4を加工し、さらに、積層体全体を長さ
40μm幅4μmの矩形状のパターンに加工した。最後
に、センス電流を供給するための導電体5として、Ta
とAuとの積層蒸着膜(厚さ5nm/250nm)を成
膜し、所定のトラック部9を形成するように加工した。
Next, the nonmagnetic spacer layer 2 having a thickness of 20 is formed.
nm Ta film as the MR layer 3 with a thickness of 30 nm NiF
The e film (Ni: 82% -Fe: 18%, weight%) is used as the antiferromagnetic layer 4 in a FeMn film (Fe: 50) having a thickness of 20 nm.
% -Mn: 50%, weight%) was continuously deposited on the soft magnetic bias auxiliary layer 1 by the sputtering method. After that, a predetermined longitudinal bias magnetic field was applied to the MR layer 3 through a magnetic field annealing treatment at 270 ° C. for 1 hour in a vacuum atmosphere, and an annealing process. The magnetic field application direction during the annealing process is the same as the easy magnetization axis direction (longitudinal direction) of the soft magnetic bias auxiliary layer 1. Subsequently, a photoresist pattern having a predetermined shape is formed, ion etching is performed in an Ar gas atmosphere to process the antiferromagnetic layer 4, and the entire laminated body is processed into a rectangular pattern having a length of 40 μm and a width of 4 μm. did. Finally, Ta is used as the conductor 5 for supplying the sense current.
And Au were laminated to form a vapor deposition film (thickness: 5 nm / 250 nm) and processed to form a predetermined track portion 9.

【0019】表3に、本実施例のMRヘッドにおける、
MR層3および軟磁性バイアス補助層1の、中央領域
7、端部領域8の層厚と飽和磁化の関係を示す。
Table 3 shows the MR head of this embodiment.
The relationship between the saturation magnetization and the layer thickness of the central region 7 and the end region 8 of the MR layer 3 and the soft magnetic bias auxiliary layer 1 is shown.

【0020】[0020]

【表3】 [Table 3]

【0021】以上のような構造を有するMRヘッドにお
いて、センス電流10mAのとき、バルクハウゼンノイ
ズのない良好な再生波形が得られることを確認した。ま
た、カー効果顕微鏡を用い、センス電流通電時のMR層
3および軟磁性バイアス補助層1の磁区構造を観察した
結果、図4に示すような磁区構造が観察されることを確
認した。さらに、磁区構造の安定性を調べるために、磁
化困難軸方向(横方向)に、膜が飽和するのに十分な大
きさの直流磁界を印加した後、その残留磁化状態をカー
効果顕微鏡を用いて調べた。その結果、中央領域7には
磁壁のない単磁区構造が観察されたことから、MR層3
および軟磁性バイアス補助層1の端部領域8の磁化は縦
方向の静磁結合によって安定に固定されることを確認し
た。 −実施例3− 図3は、本発明の第3の実施例のMRヘッドを示す断面
図である。ガラス基板(図示せず)上にスパッタ法によ
り、軟磁性バイアス補助層1として厚さ35nmのCo
ZrMo膜(Co:82%−Zr:6%−Mo:12
%,原子%)を成膜し、その後、真空雰囲気中で250
℃,1時間の磁界中アニール処理を施した。続いて、所
定形状のフォトレジストパターンを形成した後、軟磁性
バイアス補助層1の端部領域8にのみ、Coイオンを加
速電圧50keV,注入量5×1015ions/cm2
の条件で注入したイオン注入領域6を形成した。この工
程は、軟磁性バイアス補助層1の磁化容易軸方向(縦方
向)に印加した磁界中で行い、注入による異方性分散の
影響を小さくした。なお、加速電圧は、注入イオンが膜
厚方向全体にわたって分布するよう選択した。
In the MR head having the above structure, it was confirmed that when the sense current was 10 mA, a good reproduced waveform without Barkhausen noise was obtained. Further, as a result of observing the magnetic domain structure of the MR layer 3 and the soft magnetic bias auxiliary layer 1 at the time of applying a sense current using a Kerr effect microscope, it was confirmed that the magnetic domain structure as shown in FIG. 4 was observed. Furthermore, in order to investigate the stability of the magnetic domain structure, after applying a DC magnetic field of sufficient magnitude to saturate the film in the hard axis direction (transverse direction), the Kerr effect microscope was used to determine the residual magnetization state. I looked it up. As a result, a single domain structure without a domain wall was observed in the central region 7.
It was confirmed that the magnetization of the end region 8 of the soft magnetic bias auxiliary layer 1 was stably fixed by the magnetostatic coupling in the vertical direction. Example 3 FIG. 3 is a cross-sectional view showing an MR head of Example 3 of the present invention. A soft magnetic bias auxiliary layer 1 of Co having a thickness of 35 nm is formed on a glass substrate (not shown) by sputtering.
ZrMo film (Co: 82% -Zr: 6% -Mo: 12
%, Atomic%) and then 250 in a vacuum atmosphere
Annealing was performed in a magnetic field for 1 hour at ℃. Subsequently, after forming a photoresist pattern of a predetermined shape, Co ions are accelerated only in the end region 8 of the soft magnetic bias auxiliary layer 1 at an acceleration voltage of 50 keV and an implantation amount of 5 × 10 15 ions / cm 2.
The ion-implanted region 6 was formed under the conditions described above. This step was performed in a magnetic field applied in the easy axis direction (longitudinal direction) of the soft magnetic bias auxiliary layer 1 to reduce the influence of anisotropic dispersion due to the injection. The accelerating voltage was selected so that the implanted ions were distributed throughout the film thickness direction.

【0022】次に、非磁性スペーサ層2として厚さ20
nmのTa膜を、MR層3として厚さ30nmのNiF
e膜(Ni:82%−Fe:18%,重量%)を、反強
磁性層4として厚さ20nmのFeMn膜(Fe:50
%−Mn:50%,重量%)を、軟磁性バイアス補助層
1上にスパッタ法を用いて連続成膜した。その後、真空
雰囲気中で270℃,1時間の磁界中アニール処理、さ
らに徐冷工程を経て、MR層3に所定の縦方向バイアス
磁界を付与した。アニール処理時の磁界印加方向は、軟
磁性バイアス補助層1の磁化容易軸方向(縦方向)と同
方向である。
Next, the nonmagnetic spacer layer 2 having a thickness of 20 is formed.
nm Ta film as the MR layer 3 with a thickness of 30 nm NiF
The e film (Ni: 82% -Fe: 18%, weight%) is used as the antiferromagnetic layer 4 in a FeMn film (Fe: 50) having a thickness of 20 nm.
% -Mn: 50%, weight%) was continuously deposited on the soft magnetic bias auxiliary layer 1 by the sputtering method. After that, a predetermined longitudinal bias magnetic field was applied to the MR layer 3 through a magnetic field annealing treatment at 270 ° C. for 1 hour in a vacuum atmosphere, and an annealing process. The magnetic field application direction during the annealing process is the same as the easy magnetization axis direction (longitudinal direction) of the soft magnetic bias auxiliary layer 1.

【0023】続いて、所定形状のフォトレジストパター
ンを形成し、Arガス雰囲気中でイオンエッチングを行
い、反強磁性層4を加工し、さらに、積層体全体を長さ
40μm、幅4μmの矩形状のパターンに加工した。最
後に、センス電流を供給するための導電体5として、T
aとAuとの積層蒸着膜(厚さ5nm/250nm)を
成膜し、所定のトラック部9を形成するように加工し
た。
Subsequently, a photoresist pattern having a predetermined shape is formed, ion etching is performed in an Ar gas atmosphere to process the antiferromagnetic layer 4, and the entire laminated body is rectangular with a length of 40 μm and a width of 4 μm. Processed into a pattern. Finally, as a conductor 5 for supplying a sense current, T
A laminated vapor deposition film (thickness: 5 nm / 250 nm) of a and Au was formed and processed to form a predetermined track portion 9.

【0024】表4に、本実施例のMRヘッドにおける、
MR層3および軟磁性バイアス補助層1の、中央領域
7、端部領域8の層厚と飽和磁化の関係を示す。
Table 4 shows the MR head of this embodiment,
The relationship between the saturation magnetization and the layer thickness of the central region 7 and the end region 8 of the MR layer 3 and the soft magnetic bias auxiliary layer 1 is shown.

【0025】[0025]

【表4】 [Table 4]

【0026】以上のような構造を有するMRヘッドにお
いて、センス電流10mAのとき、バルクハウゼンノイ
ズのない良好な再生波形が得られることを確認した。ま
た、カー効果顕微鏡を用い、センス電流通電時のMR層
3および軟磁性バイアス補助層1の磁区構造を観察した
結果、図4に示すような磁区構造が観察されることを確
認した。さらに、磁区構造の安定性を調べるために、磁
化困難軸方向(横方向)に、膜が飽和するのに十分な大
きさの直流磁界を印加した後、その残留磁化状態をカー
効果顕微鏡を用いて調べた。その結果、中央領域7には
磁壁のない単磁区構造が観察されたことから、MR層3
および軟磁性バイアス補助層1の端部領域8も磁化は縦
方向の静磁結合によって安定に固定されることを確認し
た。
In the MR head having the above structure, it was confirmed that when the sense current was 10 mA, a good reproduced waveform without Barkhausen noise was obtained. Further, as a result of observing the magnetic domain structure of the MR layer 3 and the soft magnetic bias auxiliary layer 1 at the time of applying a sense current using a Kerr effect microscope, it was confirmed that the magnetic domain structure as shown in FIG. 4 was observed. Furthermore, in order to investigate the stability of the magnetic domain structure, after applying a DC magnetic field of sufficient magnitude to saturate the film in the hard axis direction (transverse direction), the Kerr effect microscope was used to determine the residual magnetization state. I looked it up. As a result, a single domain structure without a domain wall was observed in the central region 7.
It was also confirmed that the magnetization of the end region 8 of the soft magnetic bias auxiliary layer 1 was stably fixed by the magnetostatic coupling in the vertical direction.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、M
R層および軟磁性バイアス補助層の端部領域の磁化が安
定に固定され、バルクハウゼンノイズのない安定な磁界
応答特性を有するMRヘッドを提供できるという効果が
ある。
As described above, according to the present invention, M
The magnetizations of the end regions of the R layer and the soft magnetic bias auxiliary layer are stably fixed, and an MR head having stable magnetic field response characteristics without Barkhausen noise can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す断面図である。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明のMRヘッドにおけるMR層および軟磁
性バイアス補助層の磁化状態(センス電流通電時)を示
す分解平面図である。
FIG. 4 is an exploded plan view showing a magnetization state (when a sense current is applied) of an MR layer and a soft magnetic bias auxiliary layer in the MR head of the present invention.

【図5】MR層の端部領域にパターン化された反強磁性
薄膜層を設けた従来のMRヘッドの一例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing an example of a conventional MR head in which a patterned antiferromagnetic thin film layer is provided in an end region of the MR layer.

【図6】MR層同様に軟磁性バイアス補助層にも縦方向
バイアス磁界を印加が可能な従来のMRヘッドの一例を
示す断面図である。
FIG. 6 is a sectional view showing an example of a conventional MR head capable of applying a longitudinal bias magnetic field to a soft magnetic bias auxiliary layer as well as an MR layer.

【図7】図6に示す従来のMRヘッドにおけるMR層お
よび軟磁性バイアス補助層の磁化状態(センス電流通電
時)を示す分解平面図である。
7 is an exploded plan view showing a magnetization state (when a sense current is applied) of an MR layer and a soft magnetic bias auxiliary layer in the conventional MR head shown in FIG.

【符号の説明】[Explanation of symbols]

1 軟磁性バイアス補助層 2 非磁性スペーサ層 3 磁気抵抗効果層(MR層) 4 反強磁性層 5 導電体 6 イオン注入領域 7 中央領域 8 端部領域 9 トラック部 1 Soft Magnetic Bias Auxiliary Layer 2 Non-Magnetic Spacer Layer 3 Magnetoresistive Layer (MR Layer) 4 Antiferromagnetic Layer 5 Conductor 6 Ion Implantation Region 7 Central Region 8 Edge Region 9 Track Part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気抵抗効果層と、前記磁気抵抗効果層
に横方向バイアス磁界を印加する手段としての軟磁性バ
イアス補助層と、前記磁気抵抗効果層と前記軟磁性バイ
アス補助層を磁気的に分離する非磁性スペーサ層と、前
記磁気抵抗効果層もしくは前記軟磁性バイアス補助層の
少なくとも一部に接触して設けられた縦方向バイアス磁
界を印加する手段としての反強磁性層と、センス電流を
供給する導電体とを備える磁気抵抗効果ヘッドにおい
て、前記磁気抵抗効果層の厚さをdMR、飽和磁化をMs
MRとし、前記軟磁性バイアス補助層の厚さをdSAL 、飽
和磁化をMsSAL としたとき、少なくともトラック部を
含む中央領域では、 dMR・MsMR > dSAL ・MsSAL の関係が成り立ち、かつ前記中央領域によって分離され
た端部領域では、 dMR・MsMR = dSAL ・MsSAL の関係が成り立つことを特徴とする磁気抵抗効果ヘッ
ド。
1. A magnetoresistive effect layer, a soft magnetic bias auxiliary layer as means for applying a lateral bias magnetic field to the magnetoresistive effect layer, and the magnetoresistive effect layer and the soft magnetic bias auxiliary layer magnetically. A non-magnetic spacer layer for separating, an antiferromagnetic layer as a means for applying a longitudinal bias magnetic field provided in contact with at least a part of the magnetoresistive effect layer or the soft magnetic bias auxiliary layer, and a sense current In a magnetoresistive head including a supplying conductor, the thickness of the magnetoresistive layer is d MR , and the saturation magnetization is Ms.
When MR , the thickness of the soft magnetic bias auxiliary layer is d SAL , and the saturation magnetization is Ms SAL , the relationship of d MR · Ms MR > d SAL · Ms SAL holds in the central region including at least the track portion, The magnetoresistive effect head is characterized in that the relationship of d MR · Ms MR = d SAL · Ms SAL is established in the end regions separated by the central region.
JP5274221A 1993-11-02 1993-11-02 Magnetoresistive head Expired - Fee Related JP2692547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274221A JP2692547B2 (en) 1993-11-02 1993-11-02 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274221A JP2692547B2 (en) 1993-11-02 1993-11-02 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH07129926A JPH07129926A (en) 1995-05-19
JP2692547B2 true JP2692547B2 (en) 1997-12-17

Family

ID=17538717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274221A Expired - Fee Related JP2692547B2 (en) 1993-11-02 1993-11-02 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JP2692547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980043B2 (en) * 1996-12-24 1999-11-22 日本電気株式会社 Magnetic head and magnetic recording / reproducing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594605A (en) * 1991-09-30 1993-04-16 Toshiba Corp Magneto-resistance effect type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594605A (en) * 1991-09-30 1993-04-16 Toshiba Corp Magneto-resistance effect type magnetic head

Also Published As

Publication number Publication date
JPH07129926A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US6639766B2 (en) Magneto-resistance effect type composite head and production method thereof
US6452204B1 (en) Tunneling magnetoresistance transducer and method for manufacturing the same
US5329413A (en) Magnetoresistance sensor magnetically coupled with high-coercive force film at two end regions
JP3635504B2 (en) Magnetoresistive head, manufacturing method thereof, and magnetic recording apparatus
US20030021072A1 (en) Magnetic sensor capable of providing stable resistance change rate
JP2692547B2 (en) Magnetoresistive head
JPH10124823A (en) Magneto-resistive element and magnetic head, magnetic recording and reproducing head and magnetic memory device formed by using the same
JPH1091920A (en) Magneto-resistance effect type head
JP2001256619A (en) Magnetoresistive head and magnetic recording and reproducing device using the same
KR0123448B1 (en) Magnetoresistive sensor
JP2000306218A (en) Magnetoresistance effect type head and magnetic recording and reproducing device
JP2513085B2 (en) Magnetoresistive head manufacturing method
JPH04275471A (en) Magnetoresistance effect element and manufacture thereof
JP2724014B2 (en) Magnetic head and method of manufacturing the same
JP2692468B2 (en) Magnetoresistive head
JPH065573B2 (en) Magnetoresistive effect head
JPH08221717A (en) Magneto-resistive magnetic head
JPH0642566B2 (en) Method of manufacturing magnetic low resistance element
JP3333945B2 (en) Magnetoresistive magnetic head
JPH09251616A (en) Thin film magnetic head
JPH09180135A (en) Magnetoresistive head
JPH06162442A (en) Vertical magnetic head
JP2001189505A (en) Manufacturing method for magneto-resistance effect thin-film
JP2000132818A (en) Production of magnetoresistance effect film, magnetoresistance effect film and thin film magnetic head using the method
JPH07201019A (en) Magneto-resistance effect type head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees