JP2691663B2 - Measuring method of interstitial oxygen concentration distribution of silicon wafer - Google Patents

Measuring method of interstitial oxygen concentration distribution of silicon wafer

Info

Publication number
JP2691663B2
JP2691663B2 JP4187451A JP18745192A JP2691663B2 JP 2691663 B2 JP2691663 B2 JP 2691663B2 JP 4187451 A JP4187451 A JP 4187451A JP 18745192 A JP18745192 A JP 18745192A JP 2691663 B2 JP2691663 B2 JP 2691663B2
Authority
JP
Japan
Prior art keywords
silicon wafer
incident
oxygen concentration
wafer
concentration distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4187451A
Other languages
Japanese (ja)
Other versions
JPH063258A (en
Inventor
宏 白井
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP4187451A priority Critical patent/JP2691663B2/en
Publication of JPH063258A publication Critical patent/JPH063258A/en
Application granted granted Critical
Publication of JP2691663B2 publication Critical patent/JP2691663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウエハの格子
間酸素濃度分布の測定方法に関し、特に、測定対象の引
上シリコンウエハと基準の浮遊帯域シリコンウエハ(酸
素を含まない)を組み合わせた赤外吸収分光法によるシ
リコンウエハの格子間酸素濃度分布の測定方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an interstitial oxygen concentration distribution of a silicon wafer, and more particularly to a red color obtained by combining a pulling silicon wafer to be measured and a reference floating zone silicon wafer (containing no oxygen). The present invention relates to a method for measuring the interstitial oxygen concentration distribution of a silicon wafer by external absorption spectroscopy.

【0002】[0002]

【従来の技術】本発明者は、この種のシリコンウエハの
格子間酸素濃度測定方法として、測定ウエハの赤外光透
過特性および基準ウエハの赤外光透過特性を測定して測
定ウエハの格子間酸素濃度を求めることを提案した(特
願平2−204316号他)。また、本発明者は、さら
に、測定ウエハと基準ウエハが互いに異なる厚みを有す
るときに、測定ウエハの格子間酸素濃度濃度を算出する
にあたって厚さ補正をすることを提案した(特願平4−
75561号)。すなわち、本発明者は、入射平行偏光
強度を測定する第1工程と、基準ウエハに対し平行偏光
をブリュースター角で入射せしめることにより基準ウエ
ハの光透過特性を測定する第2工程と、測定ウエハに対
し平行偏光をブリュースター角で入射せしめることによ
り測定ウエハの光透過特性を測定する第3工程と、第1
工程によって測定された入射平行偏光強度と第2工程に
よって測定された基準ウエハの光透過特性と第3工程に
よって測定された測定ウエハの光透過特性とから測定ウ
エハの格子間酸素濃度濃度を算出する第4工程を含むシ
リコンウエハ格子間酸素濃度測定方法を提案した。
2. Description of the Related Art The present inventor has, as a method of measuring the interstitial oxygen concentration of a silicon wafer of this type, measures the infrared light transmission characteristics of a measurement wafer and the infrared light transmission characteristic of a reference wafer to measure We proposed to obtain the oxygen concentration (Japanese Patent Application No. 2-204316, etc.). Further, the present inventor has further proposed that when the measurement wafer and the reference wafer have different thicknesses, the thickness correction is performed in calculating the interstitial oxygen concentration of the measurement wafer (Japanese Patent Application No. 4-
No. 75561). That is, the present inventor has the first step of measuring the incident parallel polarized light intensity, the second step of measuring the light transmission characteristics of the reference wafer by making parallel polarized light incident on the reference wafer at Brewster's angle, and the measurement wafer. The third step of measuring the light transmission characteristics of the measurement wafer by injecting parallel polarized light at a Brewster's angle with respect to
The interstitial oxygen concentration of the measurement wafer is calculated from the incident parallel polarization intensity measured in the step, the light transmission characteristic of the reference wafer measured in the second step, and the light transmission characteristic of the measurement wafer measured in the third step. A silicon wafer interstitial oxygen concentration measurement method including a fourth step was proposed.

【0003】なお、本明細書でいうシリコンウエハは1
mm以下の厚みだけでなく1mm以上の厚みのものを含
む。
The silicon wafer referred to in this specification is 1
Not only those having a thickness of 1 mm or less but also those having a thickness of 1 mm or more are included.

【0004】[0004]

【発明が解決しようとする課題】シリコンウエハの格子
間酸素濃度分布を測定する上でシリコンウエハに対し平
行偏光をブリュースター角で入射せしめることによりシ
リコンウエハの光透過特性を測定する時に、入射光ビー
ムによって形成されるシリコンウエハ表面上での入射ス
ポットの移動をいろいろな方向に変化させてみたとこ
ろ、シリコンウエハの格子間酸素濃度分布の測定上の空
間分解能に著しく差が生じることを発見した。
In measuring the interstitial oxygen concentration distribution of a silicon wafer, incident light is measured when the light transmission characteristic of the silicon wafer is measured by making parallel polarized light incident on the silicon wafer at Brewster's angle. When the movement of the incident spot on the surface of the silicon wafer formed by the beam was changed in various directions, it was found that the spatial resolution in measuring the interstitial oxygen concentration distribution of the silicon wafer was significantly different.

【0005】また、入射光ビームによって形成されるシ
リコンウエハ表面上での入射スポットの形状によってシ
リコンウエハの格子間酸素濃度分布の測定上の空間分解
能に著しく差が生じることも発見した。
It has also been discovered that the shape of the incident spot formed on the surface of the silicon wafer by the incident light beam causes a significant difference in the spatial resolution in measuring the interstitial oxygen concentration distribution of the silicon wafer.

【0006】そこで、この発明の目的は、入射光ビーム
によって形成されるシリコンウエハ表面上での入射スポ
ットの移動方向及び形状について改良して、測定上の空
間分解能が良好となるシリコンウエハの格子間酸素濃度
分布の測定方法を提供することである。
Therefore, an object of the present invention is to improve the moving direction and shape of the incident spot on the surface of the silicon wafer formed by the incident light beam, and to improve the spatial resolution in measurement. An object of the present invention is to provide a method for measuring an oxygen concentration distribution.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、シリコ
ンウエハに対し平行偏光をブリュースター角で入射せし
めることによりシリコンウエハの光透過特性を測定する
シリコンウエハ格子間酸素濃度分布の測定方法におい
て、シリコンウエハ表面での入射スポットを、長軸と短
軸の比率が3〜4である細い形にし、かつ、入射スポッ
トの短軸をシリコンウエハの半径方向に向けて配置し
て、入射スポットをその短軸方向に移動させることを特
徴とするシリコンウエハの格子間酸素濃度分布の測定方
法である。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for measuring the oxygen concentration distribution between silicon wafer lattices, which measures the light transmission characteristics of a silicon wafer by making parallel polarized light incident on the silicon wafer at Brewster's angle. , The incident spot on the surface of the silicon wafer is made thin so that the ratio of the long axis to the short axis is 3 to 4, and the short axis of the incident spot is arranged in the radial direction of the silicon wafer to make the incident spot. It is a method for measuring the interstitial oxygen concentration distribution of a silicon wafer, which is characterized by moving in the short axis direction.

【0008】[0008]

【発明の効果】シリコンウエハの製造過程に起因してシ
リコンウエハの格子間酸素濃度分布はシリコンウエハの
中心を基準として点対称になる傾向が強いため、シリコ
ンウエハ表面での入射スポットを、長軸と短軸の比率が
3〜4である細い形にし、かつ、入射スポットの短軸を
シリコンウエハの半径方向に向けて配置して、入射スポ
ットをその短軸方向に移動させると、細い形の入射スポ
ットが同一濃度の円周方向に沿うことになり、しかも測
定間隔を小さくしても多数の入射スポットが互いにオー
バラップすることなく配置されることになり、測定上の
分解能が向上する。
The interstitial oxygen concentration distribution of a silicon wafer tends to be point-symmetrical with respect to the center of the silicon wafer due to the manufacturing process of the silicon wafer. When the ratio of the minor axis to the minor axis is 3 to 4, and the minor axis of the incident spot is arranged in the radial direction of the silicon wafer and the incident spot is moved in the minor axis direction, The incident spots are arranged along the circumferential direction of the same density, and even if the measurement interval is made small, a large number of incident spots are arranged without overlapping each other, and the measurement resolution is improved.

【0009】本発明によれば、シリコンウエハの格子間
酸素濃度の分布測定が理論的に最も高い空間分解能で行
える。
According to the present invention, the distribution measurement of interstitial oxygen concentration of a silicon wafer can theoretically be performed with the highest spatial resolution.

【0010】[0010]

【実施例】本発明の好適な実施例においては、入射平行
偏光強度を測定し、基準ウエハに対し平行偏光をブリュ
ースター角で入射せしめることにより基準ウエハの光透
過特性を測定し、測定ウエハに対し平行偏光をブリュー
スター角で入射せしめることにより測定ウエハの光透過
特性を測定し、その様に測定された入射平行偏光強度と
基準ウエハの光透過特性と測定ウエハの光透過特性から
測定ウエハの格子間酸素濃度濃度を算出する。その時
に、シリコンウエハ表面での入射スポットを、長軸と短
軸の比率が3〜4である細い形にし、かつ、入射スポッ
トの短軸をシリコンウエハの半径方向に向けて配置し
て、入射スポットをその短軸方向に移動させる。
EXAMPLE In a preferred embodiment of the present invention, the incident parallel polarized light intensity is measured, and the light transmission characteristic of the reference wafer is measured by making parallel polarized light incident on the reference wafer at Brewster's angle. On the other hand, the light transmission characteristics of the measurement wafer are measured by making parallel polarized light incident at Brewster's angle, and from the measured incident parallel polarization intensity, the light transmission characteristics of the reference wafer, and the light transmission characteristics of the measurement wafer, the measurement wafer Calculate the interstitial oxygen concentration. At that time, the incident spot on the surface of the silicon wafer is made into a thin shape in which the ratio of the major axis and the minor axis is 3 to 4, and the minor axis of the incident spot is arranged in the radial direction of the silicon wafer to make incident light. Move the spot along its minor axis.

【0011】入射スポットの面積が同一である場合を想
定すると、入射スポットは長軸と短軸を有する細い形が
分解能の点で効果的である。
Assuming that the incident spots have the same area, it is effective in terms of resolution that the incident spot has a thin shape having a major axis and a minor axis.

【0012】細い形の好適な例は、楕円や長方形であ
る。例えば、入射光ビームの横断面が真円であるとき
は、シリコンウエハのブリュースター角は73.7度に
設定されるので、入射光ビームによって形成されるシリ
コンウエハ表面上での入射スポットは長軸と短軸の比率
が約3.56の楕円になる。また、入射光ビームの横断
面が正方形であるときは、シリコンウエハのブリュース
ター角は73.7度に設定されるので、入射光ビームに
よって形成されるシリコンウエハ表面上での入射スポッ
トは長軸と短軸の比率が約3.56の長方形になる。楕
円や長方形は勿論、他のどの様な細い形であっても、入
射光ビームによって形成されるウエハ表面上での入射ス
ポットの長軸と短軸の比率を約3〜4にするのが好まし
い。
A preferable example of the thin shape is an ellipse or a rectangle. For example, when the cross section of the incident light beam is a perfect circle, the Brewster angle of the silicon wafer is set to 73.7 degrees, so that the incident spot formed on the surface of the silicon wafer by the incident light beam is long. It becomes an ellipse with a ratio of the axis to the minor axis of about 3.56. Further, when the cross section of the incident light beam is square, the Brewster angle of the silicon wafer is set to 73.7 degrees, so that the incident spot formed on the surface of the silicon wafer by the incident light beam has a long axis. And the minor axis ratio becomes a rectangle of about 3.56. It is preferable to set the ratio of the major axis to the minor axis of the incident spot on the wafer surface formed by the incident light beam to about 3 to 4, not to mention ellipses and rectangles as well as any other thin shapes. .

【0013】入射スポットの短軸をシリコンウエハの半
径方向に向けて配置して、入射スポットをその短軸方向
に移動させるのが最適である。
It is optimal to arrange the minor axis of the incident spot in the radial direction of the silicon wafer and move the incident spot in the minor axis direction.

【0014】図示例 図1はシリコンウエハ1に対し平行偏光の入射光ビーム
2をブリュースター角Bで入射せしめることによりシリ
コンウエハ1の光透過特性を測定する状態を概念的に示
している。
Illustrative Example FIG. 1 conceptually shows a state in which the light transmission characteristics of the silicon wafer 1 are measured by making an incident light beam 2 of parallel polarization incident on the silicon wafer 1 at a Brewster's angle B.

【0015】図1において、シリコンウエハ1はXY平
面内に在り、シリコンウエハ1の中心は原点Oに位置し
ている。入射光ビーム2の光路LはYZ平面内にある。
この図示例ではYZ平面が入射光ビーム2の入射面にな
っている。入射光ビーム2によって形成されるシリコン
ウエハ1表面上での入射スポット3は、シリコンウエハ
1のブリュースター角Bが73.7度に設定されている
ので、入射スポット3は長軸と短軸の比率が約3.56
の楕円になる。楕円形状の入射スポット3の長軸はY軸
上にあり、その短軸はX軸上にある。入射スポット3は
その短軸方向つまりX軸方向に移動させてシリコンウエ
ハ格子間酸素濃度分布を測定する。例えば、入射光ビー
ム2の直径が4mmとすると、入射スポット3の長軸長
は約7mmに、短軸長は2mmになる。入射スポット3
をその短軸方向つまりX軸方向に5mm間隔で移動させ
てシリコンウエハ格子間酸素濃度分布を測定する。
In FIG. 1, the silicon wafer 1 is in the XY plane, and the center of the silicon wafer 1 is located at the origin O. The optical path L of the incident light beam 2 lies in the YZ plane.
In this illustrated example, the YZ plane is the incident surface of the incident light beam 2. The incident spot 3 on the surface of the silicon wafer 1 formed by the incident light beam 2 has the Brewster angle B of the silicon wafer 1 set to 73.7 degrees, so that the incident spot 3 has the major axis and the minor axis. Ratio is about 3.56
Becomes an ellipse. The major axis of the elliptical incident spot 3 is on the Y axis and its minor axis is on the X axis. The incident spot 3 is moved in the short axis direction, that is, the X axis direction, and the oxygen concentration distribution between the silicon wafer lattices is measured. For example, when the diameter of the incident light beam 2 is 4 mm, the major axis length of the incident spot 3 is about 7 mm and the minor axis length is 2 mm. Incident spot 3
Is moved in the short axis direction, that is, the X axis direction at intervals of 5 mm to measure the oxygen concentration distribution between silicon wafer lattices.

【0016】図2は、その様なシリコンウエハ格子間酸
素濃度分布の測定手順を概略的に示している。入射スポ
ット3をその短軸方向つまりX軸方向に5mm間隔で移
動させてシリコンウエハ格子間酸素濃度分布を測定す
る。図2には中心位置の入射スポット3以外には、入射
スポット3の短軸方向つまりX軸方向に代表的に2つの
入射スポット3が示されている。
FIG. 2 schematically shows a procedure for measuring such an oxygen concentration distribution between silicon wafer lattices. The incident spot 3 is moved in the short axis direction, that is, the X axis direction at intervals of 5 mm, and the oxygen concentration distribution between the silicon wafer lattices is measured. In addition to the incident spot 3 at the center position, FIG. 2 shows two incident spots 3 as a representative in the minor axis direction of the incident spot 3, that is, in the X-axis direction.

【0017】図2には入射スポット3の長軸方向つまり
Y軸方向にも2つの入射スポット3が示されているが、
このような入射スポット3のY軸方向の移動は本発明の
範囲外である。
Although two incident spots 3 are also shown in FIG. 2 in the major axis direction of the incident spot 3, that is, in the Y-axis direction,
Such movement of the incident spot 3 in the Y-axis direction is outside the scope of the present invention.

【0018】シリコンウエハ1の製造過程に起因してシ
リコンウエハ1の格子間酸素濃度分布は点対称になる傾
向がある。換言すれば、シリコンウエハ1の格子間酸素
濃度分布は中心(原点O)から見て同一半径の円周4上
では実質的に同一になっている。そのため、入射スポッ
ト3を短軸方向(X軸方向)に移動させてシリコンウエ
ハ1の格子間酸素濃度分布を測定する方が、入射スポッ
ト3を長軸方向(Y軸方向)に移動させてシリコンウエ
ハ1の格子間酸素濃度分布を測定するよりも、空間分解
能が各段に優れている。分解能が最も優れているのは、
楕円形状の入射スポット3の長軸が原点Oを中心とした
円4の接線方向に正確に位置するときである。
Due to the manufacturing process of the silicon wafer 1, the interstitial oxygen concentration distribution of the silicon wafer 1 tends to be point-symmetrical. In other words, the interstitial oxygen concentration distribution of the silicon wafer 1 is substantially the same on the circumference 4 having the same radius when viewed from the center (the origin O). Therefore, when the incident spot 3 is moved in the short axis direction (X axis direction) and the interstitial oxygen concentration distribution of the silicon wafer 1 is measured, the incident spot 3 is moved in the long axis direction (Y axis direction). The spatial resolution is far superior to that of measuring the interstitial oxygen concentration distribution of the wafer 1. The highest resolution is
This is when the major axis of the elliptical incident spot 3 is accurately located in the tangential direction of the circle 4 centered on the origin O.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法における測定ウエハと入射光ビーム
と入射スポットの関係を説明するための模式図。
FIG. 1 is a schematic diagram for explaining the relationship between a measurement wafer, an incident light beam, and an incident spot in the method of the present invention.

【図2】測定ウエハに対する入射スポットの移動方向を
説明するための模式図。
FIG. 2 is a schematic diagram for explaining a moving direction of an incident spot with respect to a measurement wafer.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 2 入射光ビーム 3 入射スポット O 原点 B ブリュースター角 L 光路 1 Silicon wafer 2 Incident light beam 3 Incident spot O Origin B Brewster angle L Optical path

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコンウエハに対し平行偏光をブリュ
ースター角で入射せしめることによりシリコンウエハの
光透過特性を測定するシリコンウエハ格子間酸素濃度分
布の測定方法において、シリコンウエハ表面での入射ス
ポットを、長軸と短軸の比率が3〜4である細い形に
し、かつ、入射スポットの短軸をシリコンウエハの半径
方向に向けて配置して、入射スポットをその短軸方向に
移動させることを特徴とするシリコンウエハの格子間酸
素濃度分布の測定方法。
1. A method for measuring a distribution of oxygen concentration between lattices of a silicon wafer, comprising measuring incident light spots on a surface of a silicon wafer by measuring parallel light incident on the silicon wafer at Brewster's angle to measure light transmission characteristics of the silicon wafer. Characterized by making a thin shape in which the ratio of the major axis to the minor axis is 3 to 4, and arranging the minor axis of the incident spot in the radial direction of the silicon wafer and moving the incident spot in the minor axis direction. Measuring method of interstitial oxygen concentration distribution of silicon wafer.
JP4187451A 1992-06-23 1992-06-23 Measuring method of interstitial oxygen concentration distribution of silicon wafer Expired - Lifetime JP2691663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4187451A JP2691663B2 (en) 1992-06-23 1992-06-23 Measuring method of interstitial oxygen concentration distribution of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4187451A JP2691663B2 (en) 1992-06-23 1992-06-23 Measuring method of interstitial oxygen concentration distribution of silicon wafer

Publications (2)

Publication Number Publication Date
JPH063258A JPH063258A (en) 1994-01-11
JP2691663B2 true JP2691663B2 (en) 1997-12-17

Family

ID=16206310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4187451A Expired - Lifetime JP2691663B2 (en) 1992-06-23 1992-06-23 Measuring method of interstitial oxygen concentration distribution of silicon wafer

Country Status (1)

Country Link
JP (1) JP2691663B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123271U (en) * 1979-02-24 1980-09-01
CN1287140C (en) 2000-09-25 2006-11-29 松下电器产业株式会社 Device for chromatographic quantitative measurement
JP4797233B2 (en) * 2000-09-25 2011-10-19 パナソニック株式会社 Compact sample concentration measuring device
US6707056B2 (en) * 2001-06-15 2004-03-16 Therma-Wave, Inc. Stage rotation system to improve edge measurements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855476B2 (en) * 1990-08-29 1999-02-10 東芝セラミックス株式会社 Silicon wafer manufacturing method

Also Published As

Publication number Publication date
JPH063258A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US4167677A (en) Optical device for the alignment of two superimposed objects
CA1145007A (en) Apparatus to measure select properties of a moving sheet with improved standardization means
JP2691663B2 (en) Measuring method of interstitial oxygen concentration distribution of silicon wafer
JP3783848B2 (en) Surface inspection device
JPH08271335A (en) Diffraction grating, and diffraction grating spectroscope using this diffraction grating
JPS5926883B2 (en) Edge detection device
JPH0565020B2 (en)
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP2522880B2 (en) Particle size distribution measuring device
JPS6042905B2 (en) Method for measuring impurity concentration in semiconductors
JPH03238311A (en) Position detecting optical fiber sensor
JPS58201005A (en) Device for measuring particle diameter
JPS63163138A (en) Inspection of diffraction grating
JPS6375627A (en) Wavelength correction jig for raman spectroscopy
JPS62233709A (en) Measuring system for tilt angle of surface
JPH0315738A (en) Method for measuring reflection density of image
JPH0410967B2 (en)
JPH0410578B2 (en)
JPH0438305B2 (en)
JPS5987304A (en) Measuring head for robot adopting optical cutting method
JPH02226034A (en) Eccentricity measuring apparatus for lens
JPS63236929A (en) Spectrophotometer
JPH05346313A (en) Cross-sectional-shape measuring method
JPS59161816A (en) Positioning mark
JPH03210461A (en) Laser optical apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 15