JPS62233709A - Measuring system for tilt angle of surface - Google Patents

Measuring system for tilt angle of surface

Info

Publication number
JPS62233709A
JPS62233709A JP7653086A JP7653086A JPS62233709A JP S62233709 A JPS62233709 A JP S62233709A JP 7653086 A JP7653086 A JP 7653086A JP 7653086 A JP7653086 A JP 7653086A JP S62233709 A JPS62233709 A JP S62233709A
Authority
JP
Japan
Prior art keywords
measured
light
lens
tilt angle
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7653086A
Other languages
Japanese (ja)
Inventor
Yoshito Tsunoda
義人 角田
Kimio Tateno
立野 公男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7653086A priority Critical patent/JPS62233709A/en
Publication of JPS62233709A publication Critical patent/JPS62233709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve measuring accuracy by arranging a space filter changing the transmissivity in stages in a concentric-circle state on a focal plane of a lens and passing the different parts of the space filter according to the size of a tilt angle at each place of the surface to be measured and converting the size of the tilt angle into the intensity of light. CONSTITUTION:A distribution of the intensity of light is measured at each point of a CCD 11 and stored in a memory and its each value is denoted as xin. Next, the space filter 4 is arranged on the Fourier conversional surface and the distribution of the intensity of light at each point of the CCD 11 after passing through the filter 4 is measured and stored in the other memory and its each value is denoted as xij'. When a ratio of these is made xin'/xij=etaij (O<etaij<=1.0), when this interval is divided every 0.1 for instance, according to the size of etaij, it is divided into the steps of 0-0.1, 0.1-0.2, 0.2-0.3,...0.9-1.0 and when the respective steps are displayed with colors such as red, orange, yellow,...blue, etc., the tilt angle is displayed with color on a colour TV for every place of an object to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2次元的に平面の形状を傾き角の分布として測
定する面傾き角測定方式に係り、特に、平面や球面から
のずれの大きい非球面あるいは光デイスク面、など光の
波長に対し、凹凸の度合が大きく、干渉計で測定不能な
場合特に有効な測定方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface inclination angle measurement method for two-dimensionally measuring the shape of a plane as a distribution of inclination angles, and is particularly applicable to measuring a surface inclination angle that has a large deviation from a flat or spherical surface. This invention relates to a measurement method that is particularly effective when the degree of unevenness of an aspherical surface or an optical disk surface is large relative to the wavelength of light and cannot be measured with an interferometer.

〔従来の技術〕[Conventional technology]

従来、平面の傾き角測定は、例えばホルン・ウオルフ「
光学の原理J (1965年)p256〜369(口a
rn&Waif Pr1nciples of 0pt
ies)にあるように1つには干渉計による干渉縞の曲
がりから読み取る方法。
Traditionally, the measurement of the inclination angle of a plane has been carried out using, for example, the Horn-Wolf method.
Principles of Optics J (1965) p256-369 (mouth a
rn&Waif Pr1ciples of 0pt
One method is to read from the curvature of interference fringes using an interferometer, as described in IES).

あるいは1本のビームを面上にあて、その反射方向のず
れにより測定する方法がとられてきた。しかし、前者に
おいては、凹凸の量が波長に対して大きくなると、干渉
縞の本数が増えすぎて解読不能となること、後者は、2
次元面金体の測定に時間がかかりすぎることなど、多く
の欠点があった。
Alternatively, a method has been used in which a single beam is directed onto a surface and the deviation in the direction of reflection is measured. However, in the former case, if the amount of unevenness increases relative to the wavelength, the number of interference fringes increases too much and becomes impossible to decipher; in the latter case, 2
It had many drawbacks, including the fact that it took too much time to measure dimensional metal bodies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、上述のように、干渉計測においては球
面、あるいは平面からのずれが、波長の数倍オーダ以上
になると、干渉縞の本数が増え、縞間隔が非常に密にな
ってしまい、解読不可能となる。
As mentioned above, in interferometric measurements, when the deviation from a spherical or flat surface is on the order of several times the wavelength or more, the number of interference fringes increases and the spacing between the fringes becomes very dense. It becomes impossible to decipher.

また、1一本のビームを平面上の一点にあて、その反射
ビームをポジションセンサで受け、反射方向の違いによ
り、その点での面の傾き角を測る方法があるが、測定を
点ごとに実施するため、2次元的分布を求めようとする
とき、長時間を要し、スループットが低い。
There is also a method in which each beam is directed at a point on a plane, the reflected beams are received by a position sensor, and the angle of inclination of the surface at that point is measured based on the difference in the direction of reflection, but the measurement is performed point by point. Therefore, when trying to obtain a two-dimensional distribution, it takes a long time and the throughput is low.

本発明の目的は、上述の欠点を解消し、従来法では得ら
れなかった非球面計測を、光学技術の特徴である並列処
理による高速化という特徴を生かし、広いダイナミック
レンジを持って高精度かつ、高速に行う面傾き角8]す
定力式を与えんとするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to take advantage of the high-speed parallel processing characteristic of optical technology to perform aspherical surface measurements that could not be obtained with conventional methods, with a wide dynamic range, and with high precision. , the surface inclination angle 8] which can be performed at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

」;記目的は、レンズの特性を生かすことにより達成さ
れる。すなわち、第1図にあるように、面S上の任意の
点Aでの面の傾き角を八〇とする。
” ; The purpose described above is achieved by making use of the characteristics of the lens. That is, as shown in FIG. 1, the inclination angle of the surface at an arbitrary point A on the surface S is 80.

点Aに、光軸1と平行に入射した光線は反射後光軸と2
・八〇の角をなしてレンズLに入射し、レンズの焦点面
F上に至る。この時、焦点面Fと、該光線との交点をB
とした時、光軸からB点までの距離rは r=2f・Δ0 (f:焦点距離) となる。かくして、面Sの各場所における傾き角に応じ
て、焦点面F上でのスポットダイアグラムが光軸からの
距離として与えられるのである。
A ray of light incident on point A parallel to optical axis 1 is reflected by optical axis 2.
・It enters the lens L at an angle of 80 degrees and reaches the focal plane F of the lens. At this time, the intersection point of the focal plane F and the ray is B
Then, the distance r from the optical axis to point B is r=2f·Δ0 (f: focal length). In this way, a spot diagram on the focal plane F is given as a distance from the optical axis depending on the inclination angle at each location of the surface S.

そこで、焦点面F上に第1図(b)に示す空間フィルタ
ーを配置する。この空間フィルター4は、光軸を中心と
し、同円心状の帯からできており、各輸帯毎に、光の透
過率が順次段階的に変化するように構成されている。
Therefore, a spatial filter shown in FIG. 1(b) is placed on the focal plane F. This spatial filter 4 is made up of concentric bands centered on the optical axis, and is configured so that the light transmittance changes stepwise in each band.

本発明は上記光学系と、空間フィルターとの組合せしこ
より達成されるものである。
The present invention is achieved by combining the above optical system and a spatial filter.

〔作用〕[Effect]

すなわち、第1図(a)における被測定面Sからの反射
光がレンズLを通過後、焦点面Fに至る。
That is, the reflected light from the surface to be measured S in FIG. 1(a) passes through the lens L and reaches the focal plane F.

傾き角Δθに応じて、空間フィルター4上の対応する透
過率を持った部分を通過する。
According to the inclination angle Δθ, the light passes through a portion of the spatial filter 4 having a corresponding transmittance.

一方、被測定面Sはもう一つのレンズにより、撮像手段
である2次元CCD上に結像されるものとする。ここで
光強度分布をCODの各点で測定し、メモリに記憶する
。その各々の値をXI7とする。
On the other hand, it is assumed that the surface to be measured S is imaged by another lens onto a two-dimensional CCD, which is an imaging means. Here, the light intensity distribution is measured at each point of the COD and stored in the memory. Let each value be XI7.

次に空間フィルターをフーリエ変換面上に配置する。、
該フィルターを通過後のCCDにおける光強度分布を測
定し、他のメモリに記憶する。これを各々x、1′ と
する。
Next, a spatial filter is placed on the Fourier transform surface. ,
The light intensity distribution on the CCD after passing through the filter is measured and stored in another memory. Let these be x and 1', respectively.

今これらの比をX I J ’ / X I J =η
、、(0<η目≦1.0)とした時、ηIJの大きさに
応じて1例えばこの間を0.1毎に区切れば0〜0.1
,0.1〜0.2,0.2〜0.3.・・・・・・、0
.9〜1.0のステップに分けられ、各々赤、燈、黄・
・・・・・青などで色表示することにすれば、カラーテ
レビ上で被測定物の場所毎に傾き角が色表示できること
になる。
Now let these ratios be X I J ' / X I J = η
,, (0<ηth≦1.0), then 1 depending on the size of ηIJ. For example, if you divide this range into 0.1 increments, it will be 0 to 0.1.
, 0.1-0.2, 0.2-0.3. ......, 0
.. Divided into steps 9 to 1.0, each with red, light, yellow,
...If the angle is displayed in color, such as blue, the tilt angle can be displayed in color for each location of the object on a color television.

〔実施例〕〔Example〕

以下、本発明の実施例を第2図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

本実施例では被測定物として、光ディスク5を考える。In this embodiment, an optical disk 5 is considered as the object to be measured.

光源7よりのビームがレンズ8およびビームスプリッタ
9を経てフーリエ変換レンズ2にいたり、平行光となっ
て、光デイスク5面に垂直に入射する。光ディスク5は
回転テーブル6上におかれている。従って光源をストロ
ボ発光させれば、回転状態での計測も可能である。さて
、光デイスク5面上で反射された各々の反射光は、光デ
ィスクの各場所における傾き角Δ0に応じて2Δθだけ
角度を持ち、レンズ2に入射する。これらのビームはレ
ンズ2の焦点面3上で、傾き角に応じて光軸からrだけ
、 r=2Δθ−f  (f:レンズの焦点距1I71)は
なれた点を通過する。先述のようにこの面には第1図(
b)で示した空間フィルター4が配置されており、傾き
角に応じて濃淡バタンか得られる。
The beam from the light source 7 passes through the lens 8 and the beam splitter 9 and reaches the Fourier transform lens 2, where it becomes parallel light and is incident perpendicularly on the surface of the optical disk 5. The optical disc 5 is placed on a rotary table 6. Therefore, if the light source emits strobe light, measurement in a rotating state is also possible. Now, each of the reflected lights reflected on the surface of the optical disk 5 enters the lens 2 at an angle of 2Δθ depending on the tilt angle Δ0 at each location of the optical disk. These beams pass through a point on the focal plane 3 of the lens 2 that is separated by r from the optical axis depending on the inclination angle, r=2Δθ−f (f: focal length of the lens 1I71). As mentioned earlier, this side has Figure 1 (
A spatial filter 4 shown in b) is arranged, and a light or dark pattern can be obtained depending on the inclination angle.

レンズ10は、光ディスク5をCCDカメラ11上に結
像させるためのもので、レンズ2と相俟って、結像光学
系を形成する。今、CCDカメラ11からのビデオ信号
を画像処理回路12において濃度信号を疑似カラー信号
に変換し、カラーモニラ−13上に表示することができ
る。この時、モニター上に呪われる像は、光デイスク面
であり、本発明による空間フィルタリングの結果、光デ
イスク面上の各場所での傾き角があらかじめ指定した色
彩として表示されるのである。即ち、前述のように、空
間フィルタ4のない状態で光強度分布xIJをあらかじ
め測定して画像処理回路12内のメモリに記憶しておき
、空間フィルタ4を通過後の光強度分布X+a’ を他
のメモリに記憶し、両者の比Xia’ / XIJ=η
t1を求めその大きさに応じて疑似カラー表示すればよ
い、ここで、本発明を数値的に当たってみることにする
。今、レンズ2の焦点距離をf =1000+nm と
すれば傾き角0.025@で入射した反射光は、フーリ
エ面上でのシフト量r = 2 X 1000X0.0
25−=0.87mm 竜となる。空間フィルター4の各々の輪帯の巾をこの値
にとれば、測定の分解能が0.025° となり。
The lens 10 is for forming an image of the optical disk 5 on the CCD camera 11, and together with the lens 2, forms an imaging optical system. Now, the density signal of the video signal from the CCD camera 11 is converted into a pseudo color signal in the image processing circuit 12, and the signal can be displayed on the color monitor 13. At this time, the cursed image on the monitor is the optical disk surface, and as a result of the spatial filtering according to the present invention, the tilt angle at each location on the optical disk surface is displayed as a prespecified color. That is, as described above, the light intensity distribution xIJ is measured in advance without the spatial filter 4 and stored in the memory in the image processing circuit 12, and the light intensity distribution X+a' after passing through the spatial filter 4 is measured in advance. The ratio of both Xia' / XIJ = η
It is sufficient to find t1 and display it in pseudo color according to its size.Here, we will try to put the present invention into practice numerically. Now, if the focal length of lens 2 is f = 1000 + nm, the reflected light incident at an inclination angle of 0.025@ will have a shift amount r = 2 x 1000 x 0.0 on the Fourier plane.
25-=0.87mm becomes a dragon. If the width of each ring zone of the spatial filter 4 is set to this value, the measurement resolution will be 0.025°.

輪帯全体の半径を20mにとれば、81’l定の範囲は
±0.5°とすることができる。
If the radius of the entire annular zone is set to 20 m, the range of 81'l can be set to ±0.5°.

さらに、C,C,TV上に結像させるためのレンズ系に
ついて数列例を示してみる。第3図に示すように。
Furthermore, an example of a numerical sequence will be shown regarding a lens system for forming an image on C, C, and TV. As shown in Figure 3.

レンズ2より1図中左方Loommの所に反射物体をお
けば、さらにその左方、レンズ主面からをとればレンズ
fも右方70m5のところに結像す次に本発明による第
2の実施例を第4図に示す。
If a reflective object is placed Loomm to the left of lens 2 in Figure 1, the lens f will also form an image at a distance of 70 m5 to the right when viewed from the main surface of the lens. An example is shown in FIG.

すなわち、本実施例によれば、被測定物5を回転動作状
態のままで測定可能となるのである。図のように1回転
台6からの同期信号により、シーケンサ14を通じて光
源7の駆動電源15を制御してストロボ発光させる。と
同時にCCDIIに蓄積された光電荷を読み出し、画像
処理回路12を通LZチーT:ニター13に表示するも
のである。
That is, according to this embodiment, it is possible to measure the object to be measured 5 while it is still in the rotational state. As shown in the figure, the driving power source 15 of the light source 7 is controlled through the sequencer 14 in response to a synchronization signal from the one-turn table 6 to cause strobe light to be emitted. At the same time, the photoelectric charges accumulated in the CCD II are read out and displayed on the LZ/T: monitor 13 through the image processing circuit 12.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、光ディスクなどの平面
の傾き分布を2次元並列的に同時に測定することが可能
となり、データ採取のスループットと測定精度の向上が
図れるものである。これにより、光デイスク作成のプロ
セスにフィードバックし1局所的異常があればこの対策
を立てることもできる。又、光デイスク記録再生ヘッド
に対しては、そのアクチュエータや、光学特性にフィー
ドバックし、その性能を向上していく上での貴重なデー
タを与えることも可能となるのである。
As described above, according to the present invention, it is possible to simultaneously measure the tilt distribution of a plane of an optical disk or the like in two-dimensional parallel fashion, thereby improving the data collection throughput and measurement accuracy. As a result, it is possible to feed back to the process of creating an optical disk and take countermeasures if there is a local abnormality. Furthermore, it is possible to provide valuable data for improving the performance of the optical disk recording/reproducing head by feeding back to its actuator and optical characteristics.

【図面の簡単な説明】 第1図は本発明の動作原理を説明するための図であり、
(a)は光学系の側面図、(b)は空間フィルターの平
面図である。第2図は本発明の第1の実施例であり、シ
ステム構成を示すブロック図である。第3図は、本発明
による光学系の結線関係を近軸解析した図である。第4
図は本発明の第2の実施例を示す図である。 1・・・光軸、2・・・レンズ、3・・・焦点面、4・
・・空間フィルター、5・・・被測定面、6・・・回転
台、7・・・光源。 8・・・結合レンズ、9・・・ビームスプリッタ−11
0・・・レンズ、11・・・CCD、12・・・画像処
理回路、13・・・カラーモニター、14・・・シーケ
ンサ、15Y 1 口 <b) () rIIzrlA  ’ 7 1 %2  口 第 3 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram for explaining the operating principle of the present invention.
(a) is a side view of the optical system, and (b) is a plan view of the spatial filter. FIG. 2 is a first embodiment of the present invention, and is a block diagram showing the system configuration. FIG. 3 is a diagram obtained by paraxially analyzing the connection relationships of the optical system according to the present invention. Fourth
The figure shows a second embodiment of the invention. 1... Optical axis, 2... Lens, 3... Focal plane, 4...
... Spatial filter, 5... Surface to be measured, 6... Turntable, 7... Light source. 8...Coupling lens, 9...Beam splitter-11
0...Lens, 11...CCD, 12...Image processing circuit, 13...Color monitor, 14...Sequencer, 15Y 1 port<b) () rIIzrlA' 7 1 %2 port 3 figure

Claims (1)

【特許請求の範囲】 1、光源からのビームをレンズに導く手段と、該レンズ
を通過したビームを被測定面に照射し、その反射光を撮
像手段上に戻す手段とを具備した光学系において、該レ
ンズの焦点面に透過率を同心円状に段階的に変化させた
空間フィルターを配置し、該被測定面の各場所における
傾き角の大きさに応じ、該空間フィルターの異なった部
分を通過させ、該傾き角の大きさを光強度に変換させた
ことを特徴とする面傾き角測定方式。 2、上記光源をストロボ発光させ、上記撮像手段と同期
をとることにより、上記被測定物の回転動作状態での2
次元分布測定を行うことを特徴とする特許請求の範囲第
1項記載の面傾き角測定方式。
[Scope of Claims] 1. An optical system comprising means for guiding a beam from a light source to a lens, and means for irradiating a surface to be measured with the beam that has passed through the lens and returning the reflected light onto an imaging means. A spatial filter whose transmittance is changed concentrically in stages is placed on the focal plane of the lens, and the light passes through different parts of the spatial filter depending on the size of the tilt angle at each location on the surface to be measured. A surface tilt angle measuring method characterized in that the magnitude of the tilt angle is converted into light intensity. 2. By causing the light source to emit strobe light and synchronizing with the imaging means, 2.
2. The surface inclination angle measuring method according to claim 1, wherein dimensional distribution measurement is performed.
JP7653086A 1986-04-04 1986-04-04 Measuring system for tilt angle of surface Pending JPS62233709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7653086A JPS62233709A (en) 1986-04-04 1986-04-04 Measuring system for tilt angle of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7653086A JPS62233709A (en) 1986-04-04 1986-04-04 Measuring system for tilt angle of surface

Publications (1)

Publication Number Publication Date
JPS62233709A true JPS62233709A (en) 1987-10-14

Family

ID=13607835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7653086A Pending JPS62233709A (en) 1986-04-04 1986-04-04 Measuring system for tilt angle of surface

Country Status (1)

Country Link
JP (1) JPS62233709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196970A (en) * 2007-02-13 2008-08-28 Niigata Univ Shape measurement method and instrument
US20120074294A1 (en) * 2010-09-26 2012-03-29 Raytheon Company Discrete wavefront sampling using a variable transmission filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196970A (en) * 2007-02-13 2008-08-28 Niigata Univ Shape measurement method and instrument
US20120074294A1 (en) * 2010-09-26 2012-03-29 Raytheon Company Discrete wavefront sampling using a variable transmission filter
US8748801B2 (en) * 2010-09-26 2014-06-10 Raytheon Company Discrete wavefront sampling using a variable transmission filter

Similar Documents

Publication Publication Date Title
JP3438855B2 (en) Confocal device
US7006132B2 (en) Aperture coded camera for three dimensional imaging
US6545265B1 (en) System and method for the microscopic generation of object images
US4360269A (en) Apparatus for inspecting defects in a periodic pattern
JPH05203414A (en) Method and apparatus for detecting abso- lute coordinate of object
US4041530A (en) Video disc with phase structure
JPH04232580A (en) Method and apparatus for forming three-dimensional color image
JPS59107321A (en) Optical signal projector
US5684293A (en) Anti-aliasing low-pass blur filter for reducing artifacts in imaging apparatus
US4291990A (en) Apparatus for measuring the distribution of irregularities on a mirror surface
JP4332656B2 (en) Defect inspection method and defect inspection apparatus
US4160269A (en) Apparatus for optically reading a phase-modulated optical record carrier
JPS62121335A (en) Measuring device for thickness, moisture content and other parameter of film or coating
US6075599A (en) Optical device with entrance and exit paths that are stationary under device rotation
JPS62233709A (en) Measuring system for tilt angle of surface
US4079421A (en) Image scanning system
CN206063128U (en) A kind of compound speckle noise reduction system of angle of full tunnel modulating-coding
JPS6142807B2 (en)
JPH0533321B2 (en)
US3664741A (en) Method and devices for the chromatic analysis of an object
CN1026155C (en) Readout apparatus for a laser angular rate sensor
JPH06105168B2 (en) Thin film pattern detector
CN107917759A (en) Polarization interference imaging spectrometer and production method based on stepped phase speculum
JPS5817305A (en) Device for measuring magnetic head spacing
JPS62200969A (en) Color information reader compensating color aberration