JP2691444B2 - Extrusion molding method of magnetic material having hollow portion - Google Patents
Extrusion molding method of magnetic material having hollow portionInfo
- Publication number
- JP2691444B2 JP2691444B2 JP10214089A JP10214089A JP2691444B2 JP 2691444 B2 JP2691444 B2 JP 2691444B2 JP 10214089 A JP10214089 A JP 10214089A JP 10214089 A JP10214089 A JP 10214089A JP 2691444 B2 JP2691444 B2 JP 2691444B2
- Authority
- JP
- Japan
- Prior art keywords
- molded body
- belt
- hollow portion
- extrusion molding
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
Description
【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 本発明は磁性材の焼結製品を押出成形により製造する
方法に関し、特に内部に中空部を有する薄肉製品の引き
取り性及び保形性に優れた押出成形方法を提供するもの
である。DETAILED DESCRIPTION OF THE INVENTION OBJECT OF THE INVENTION [Industrial field of use] The present invention relates to a method for producing a sintered product of a magnetic material by extrusion molding, and in particular, an extrusion molding method which is excellent in the removability and shape retention of a thin product having a hollow portion inside. Is provided.
従来の方法は原料とするペレットは、平均粒径0.5μ
mのNi−Znフェライト粉末や平均粒径10μmの鉄重量比
50%、コバルト重量比50%合金の粉末や平均粒径12μm
のサマリウム・コバルト系磁石の粉末に第1表に示した
組成の熱可塑性バインダーを混合し、混練機を用いて所
定の温度で約20分間程度混練して、これを粉砕して原料
とする。In the conventional method, the raw material pellets have an average particle size of 0.5μ.
ratio of Ni-Zn ferrite powder with m and iron with an average particle size of 10 μm
50%, 50% cobalt weight ratio alloy powder and average particle size 12 μm
The thermoplastic binder of the composition shown in Table 1 is mixed with the powder of the samarium-cobalt-based magnet, and the mixture is kneaded at a predetermined temperature for about 20 minutes using a kneading machine, and this is ground to be a raw material.
この原料を第7図に示した押出成形機1により、製品
となるそれぞれの原料の成形体を押し出した。第7図に
おいて、1は押出成形機であり、2はベルトであり、4
は成形体であり、5は引き取り装置であり、6はホッパ
ーである。原料はホッパー6に投入され、押出成形機に
よって成形体4が成形押出される。ロールによって回転
するベルト2によって、成形体4が搬送されて取り出さ
れる。従来の方法はこのような方法によって成形体が成
形されたが、この従来の方法によると、中空部のない角
柱、円柱、楕円柱などにかぎられていた。また角筒状や
楕円筒状の成形体になると、角柱状、円柱状、楕円柱状
の肉厚が7〜10mmと厚い成形体にかぎられていた。最近
2〜3mmと薄肉の成形体が要求され、従来の方法では薄
肉の成形体は製造困難であった。The raw material was extruded from the raw material by the extruder 1 shown in FIG. In FIG. 7, 1 is an extruder, 2 is a belt, and 4
Is a molded body, 5 is a take-up device, and 6 is a hopper. The raw material is put into the hopper 6, and the molded body 4 is molded and extruded by the extruder. The molded body 4 is conveyed and taken out by the belt 2 rotated by the rolls. In the conventional method, the molded body was molded by such a method, but according to this conventional method, it was limited to a prism without a hollow portion, a cylinder, an elliptic cylinder and the like. Further, in the case of a prismatic or elliptic cylindrical molded body, the prismatic, cylindrical, or elliptical cylindrical wall thickness was limited to a thick molded body of 7 to 10 mm. Recently, a thin molded product having a thickness of 2 to 3 mm has been required, and it has been difficult to manufacture a thin molded product by the conventional method.
一般に磁性材の焼結製品を粉末治金法によって製造す
る工程において焼結前の圧粉体は圧縮成形により得る方
法が広く行われている。これは通常上下方向からパンチ
により磁性粉末を加圧して成形するので、形状としては
比較的単純なものに限られ、特に内部に中空部を持つ薄
肉形状の製品は変形の著しいものは不良になるので、成
形ができなかった。Generally, in the process of manufacturing a sintered product of a magnetic material by a powder metallurgy method, a method of obtaining a green compact before sintering by compression molding is widely used. Since this is usually formed by pressing magnetic powder from above and below with a punch, the shape is limited to a relatively simple shape. Especially, thin-walled products with hollow parts inside are defective if they deform significantly. Therefore, molding could not be performed.
一方で、いわゆるエンジニアリングセラミックス等を
中心とした窯業製品の分野においては、原料の粉末に10
〜20重量%の有機バインダーを加え、混合、混練した
後、押出成形することにより比較的複雑な形の成形体で
も効率良く製造することが工業的に行われ始め、注目さ
れつつある。さらにこの技術は近年の混合・混練技術、
押出成形技術の発展に伴い、金属製品にも適用が試みら
れている。しかしここで問題となるのは、このような成
形に使用する材料は粉末を高濃度で充填しているため、
密度が大きく、又水平方向に押し出した場合、特に内部
に中空部を持つ薄肉形状のものはダイより押し出された
直後に自重による変形が起こり易いという欠点があっ
た。これを解決するためには押出成形機を立型にする
か、クロスヘッドを使用して押し出し方向を垂直とする
こと等が考えられるが、このような方式では押出後の処
理をダイと床面の間で行う必要を生じ、生産速度や作業
性が制限され、根本的な解決とはなっていない。On the other hand, in the field of ceramic products centering on so-called engineering ceramics, etc.
It is beginning to be industrially started to efficiently produce even a comparatively complicated shaped article by adding an organic binder of up to 20% by weight, mixing and kneading, and then extrusion molding, which is attracting attention. Furthermore, this technology is a recent mixing / kneading technology,
With the development of extrusion molding technology, application to metal products has been attempted. However, the problem here is that the material used for such molding is filled with powder at a high concentration,
When it is extruded in a horizontal direction with a high density, there is a drawback that a thin-walled one having a hollow portion inside tends to be deformed by its own weight immediately after being extruded from a die. In order to solve this, it is conceivable to make the extruder vertical, or use a crosshead to make the extrusion direction vertical, but in such a method, the process after extrusion is performed with the die and the floor surface. However, the production speed and workability are limited, and it is not a fundamental solution.
本発明では複雑形状品の角筒、円筒、楕円筒、即ち内
部に中空部を持つ薄肉形状の成形体の製造に関するもの
で、上述の問題のため従来技術では製造が困難であった
成形体を変形することなく製造することを目的とする。The present invention relates to the production of a rectangular tube, a cylinder, an elliptic tube having a complicated shape, that is, a thin-walled molded body having a hollow portion inside, and a molded body which is difficult to manufacture by the conventional technique due to the above-mentioned problems. It is intended to be manufactured without deformation.
ロ.発明の構成 〔課題を解決するための手段〕 本発明は磁性粉末と高分子化合物を主成分とするバイ
ンダーとを混合・混練・ペレット化した混和物を押出成
形法を用いて中空部を有する磁性材を成形する方法にお
いて、押出成形機より押し出された押出成形体の少なく
とも一面以上と該押出成形体を引き取るベルトとが磁気
回路を構成し、ベルトが該押出成形体を吸着する構造を
有することを特徴とする中空部を有する磁性材の押出成
形方法である。すなわち押出成形機により押し出された
直後の成形体は、十分冷却固化していない状態にあり、
内部に中空部を持つ薄肉形状のものは自重により変形を
生じてしまう。これについて変形を生じることなく引き
取る方法として磁力を利用することにより成形体を上下
方向から引き付け、良好な形状を保持しながら引き取る
よう構成したもので、成形体の歩留を向上し得る方法を
提供するものであることを特徴とする。B. Structure of the Invention [Means for Solving the Problems] The present invention is a mixture of magnetic powder and a binder containing a polymer compound as a main component In the method for molding a material, at least one surface of an extruded product extruded from an extruder and a belt that takes the extruded product constitute a magnetic circuit, and the belt has a structure for adsorbing the extruded product. Is a method of extrusion molding a magnetic material having a hollow portion. That is, the molded body immediately after being extruded by the extruder is in a state of not sufficiently cooled and solidified,
A thin-walled product having a hollow portion inside will be deformed by its own weight. A method for attracting a molded body from above and below by utilizing a magnetic force as a method for pulling it without causing deformation, and taking it while maintaining a good shape, provides a method capable of improving the yield of the molded body. It is characterized by being
次に本発明の実施例について図面を参照して詳細に説
明する。Next, embodiments of the present invention will be described in detail with reference to the drawings.
押出成形方法において、押出成形機より押し出された
強磁性体の成形体は引き取り装置の上にそのまま押し出
されると引き取り板の摩擦力の抵抗により変形したり、
破損したりするため、第1図に示すようにベルト2によ
って成形体が保持されて搬送されるが、成形体の自重や
ベルトと成形体の摩擦により、変形してしまう。特に内
側が中空になっている薄肉の角柱状や円筒状や楕円筒状
の成形体はフラットな面が望まれ平行度がでないと、歩
留が悪く、さらに中空部にだれが形成される。In the extrusion molding method, the molded body of the ferromagnetic material extruded from the extruder is deformed by the resistance of the friction force of the take-up plate when extruded as it is on the take-up device,
Since the molded product is held and conveyed by the belt 2 as shown in FIG. 1 because it is damaged, it is deformed by the weight of the molded product and the friction between the belt and the molded product. In particular, a thin prismatic, cylindrical, or elliptic cylindrical molded body having a hollow inside is desired to have a flat surface, and if parallelism is not obtained, the yield is poor and further a sag is formed in the hollow portion.
よってこれを防止するためにベルトの内側に板状の磁
石3を第1図に示すように設置して、強磁性体の成形体
をベルトの背面に設置された磁石によって吸引しながら
搬送されるため、変形がない。また円筒状や楕円状をし
た成形体は、第5図に示すようにベルトを成形体の形状
に合わせて成形して、ベルト自体を磁石として変形を防
止する働きをする。Therefore, in order to prevent this, a plate-like magnet 3 is installed inside the belt as shown in FIG. 1, and the molded body of the ferromagnetic material is conveyed while being attracted by the magnet installed on the back surface of the belt. Therefore, there is no deformation. The cylindrical or elliptical molded body functions to prevent deformation by molding the belt according to the shape of the molded body as shown in FIG. 5 and using the belt itself as a magnet.
実施例1 第1図は本発明の第1の実施例を示す構成図である。 Embodiment 1 FIG. 1 is a block diagram showing the first embodiment of the present invention.
第2図は第1図を説明する横断面図である。尚、第2
図のベルト3巾の矢印は磁力線を示している。FIG. 2 is a transverse sectional view for explaining FIG. The second
The arrow in the width of the belt 3 in the figure indicates the magnetic field line.
第1表に示したように原料とするペレットは平均粒径
が0.5μmのNi−Znフェライト仮焼粉である磁性粉末重
量比91%、酢酸ビニルの含有量が20重量%のエチレン−
酢酸ビニル共重合体を重量比で5%、溶融点60℃のパラ
フィンワックスを重量比で3%、試薬一級のジオクチル
フタレートを重量比で1%の組成に熱可塑性バインダー
を混合し、加圧ニーダーにて130℃で20分間混練した
後、粉砕することによりペレットの原料を得た。この原
料をホッパーに投入し、第1図に示した押出成形機(ス
クリュー径30mm、L/D:22)1により内部に中空を有する
寸法が縦15mm、横30mm、肉厚が3mmの形状の製品を押し
出した。押出成形機1のバレル温度はバンドヒーターに
より120〜140℃の間の一定の温度に設定した。As shown in Table 1, the raw material pellets were Ni-Zn ferrite calcined powder with an average particle size of 0.5 μm, 91% by weight of magnetic powder and 20% by weight of vinyl acetate in ethylene-
5% by weight of vinyl acetate copolymer, 3% by weight of paraffin wax having a melting point of 60 ° C., 1% by weight of dioctyl phthalate of reagent grade and 1% by weight of thermoplastic binder were mixed, and a pressure kneader was used. After kneading at 130 ° C. for 20 minutes, the raw material for pellets was obtained by pulverizing. This raw material is put into a hopper, and an extruder having a hollow inside has a size of 15 mm in length, 30 mm in width, and 3 mm in wall thickness by an extruder (screw diameter of 30 mm, L / D: 22) 1 shown in FIG. Extruded product. The barrel temperature of the extruder 1 was set to a constant temperature between 120 and 140 ° C. by a band heater.
第2図は第1図における引き取り装置5及び成形体4
の断面図を示している。成形体4の断面形状は前記の寸
法が縦15mm横30mm肉厚3mmで内部に中空部を持つ長方形
型の形状を有していて、第1図に示した押出成形機1に
より押し出された成形体4は引き取り装置5の上下のベ
ルト2の間に誘導され引き取られる。尚この際の上下の
ベルト2の間隔は成形体4と同じ15mmとし、又ベルト2
の引き取り速度は押出成形機1の押し出し速度に同期す
る様に設定し約80cm/minである。FIG. 2 shows the take-up device 5 and the molded body 4 shown in FIG.
FIG. The cross-sectional shape of the molded body 4 has a rectangular shape with the above dimensions of 15 mm in width, 30 mm in width and 3 mm in wall thickness, and has a hollow portion inside, and is extruded by the extruder 1 shown in FIG. The body 4 is guided and taken up between the upper and lower belts 2 of the take-up device 5. At this time, the distance between the upper and lower belts 2 is 15 mm, which is the same as that of the molded body 4.
The take-up speed is set at about 80 cm / min so as to be synchronized with the extrusion speed of the extruder 1.
この押出成形機1によって混練・押し出された直後の
成形体4は十分冷却固化されていない状態にあり、保形
性が十分ではなく、特に第2図に示す本製品のような内
部に中空部を作った成形体4はその上側部分が自重によ
り変形を起こしやすい状態にある。ここでベルト2の内
側にベルトと磁石3との間に1〜3mmの間隙があり、保
持具で保持した平坦な板状の磁石3を設置することによ
り、強磁性体の粉末からできている成形体4は、これに
より上下方向から引きつけられるため、自重による変形
を起こすことなく引き取られ前進していく。この際に成
形体4は、ベルト2との接触により熱を奪われ、良好な
形状を保持した状態で冷却固化するため、引き取り装置
5から離れても変形は生じない。又引き取りが終了し成
形体4から離れたベルト2は、成形体4が冷却する過程
で成形体によって帯びた熱を持っており、この状態のま
までは次の引き取りにおいて、成形体4は十分に冷却固
化されず、ベルト2から離れた際に変形を生じる可能性
がある。これを解決する方法として、成形体4から離れ
たベルト2に圧縮空気Aを吹きつけておくことにより、
ベルト2は冷却され、次の引き取りの際に再び成形体4
の熱を奪うことが可能となる。尚、押し出された直後の
成形体4はヒーターによる過熱で120〜140℃になってい
るため、使用するベルト2の材質には耐熱性に優れたも
のを要し、一例を揚げればテフロン、シリコンゴム等や
銅などの熱伝導性の良い金属等を使用する。Immediately after being kneaded and extruded by the extruder 1, the molded body 4 is in a state where it is not sufficiently cooled and solidified, and the shape retention is not sufficient, and in particular, a hollow portion is present inside the product as shown in FIG. The upper part of the molded body 4 that has been made is in a state where it is likely to be deformed by its own weight. Here, there is a gap of 1 to 3 mm between the belt 3 and the magnet 3 inside the belt 2, and the flat plate-shaped magnet 3 held by the holder is installed to make it from the ferromagnetic powder. Since the molded body 4 is attracted from the vertical direction by this, the molded body 4 is pulled and advanced without being deformed by its own weight. At this time, the molded body 4 is deprived of heat by coming into contact with the belt 2, and is cooled and solidified while maintaining a good shape, so that it does not deform even if it is separated from the take-up device 5. Further, the belt 2 that has been taken off and separated from the molded body 4 has the heat carried by the molded body in the process of cooling the molded body 4, and in this state, the molded body 4 will be sufficiently removed in the next take-up. There is a possibility that deformation will occur when the belt 2 is separated from the belt 2 without being solidified by cooling. As a method of solving this, by blowing the compressed air A onto the belt 2 separated from the molded body 4,
The belt 2 is cooled, and when the next take-up is carried out, the molded body 4 is again returned.
It becomes possible to take away the heat. Since the molded body 4 immediately after being extruded has a temperature of 120 to 140 ° C. due to overheating by a heater, the material of the belt 2 to be used needs to have excellent heat resistance. Use a metal with good thermal conductivity such as silicon rubber or copper.
以上の方法により作製した成形体4を50mmの長さに切
断し脱脂炉を使用し、20℃/Hrの温度勾配で大気中にて
加熱し、500℃で1時間保持後、炉冷することにより脱
脂を行った。しかるのちこれを大気中において1200℃で
3時間焼結を行った。これにより寸法が縦12.9mm横25.9
mm肉厚2.6mm、密度が5.19なる磁性材の焼結体を得た。
これにより変形がない成形体が得られ、初期の目的を達
することが出来た。The molded body 4 produced by the above method is cut into a length of 50 mm, and a degreasing furnace is used to heat it in the atmosphere with a temperature gradient of 20 ° C / Hr in the atmosphere, hold it at 500 ° C for 1 hour, and then cool it in the furnace. Was degreased by. After that, this was sintered in the atmosphere at 1200 ° C. for 3 hours. As a result, the size is 12.9 mm in height and 25.9 in width.
A magnetic material sintered body having a thickness of 2.6 mm and a density of 5.19 was obtained.
As a result, a molded body without deformation was obtained, and the initial purpose could be achieved.
実施例2 第3図は本発明のもうひとつの実施例を示す構成図で
ある。Embodiment 2 FIG. 3 is a block diagram showing another embodiment of the present invention.
第4図は第3図を説明する断面図である。尚、第2図
のベルト21中の矢印は磁力線を示している。FIG. 4 is a sectional view for explaining FIG. The arrow in the belt 21 in FIG. 2 indicates the magnetic force line.
原料粉末として鉄重量比50%−コバルト重量比50%な
る組成の合金をアルゴンガス雰囲気中で高周波加熱によ
り溶解製造し、水アトマイズ法により平均粒径10μmに
作製した粉末を使用し、第1表に示したように、磁性粉
末重量比94%、酢酸ビニルの含有量が20重量%のエチレ
ン−酢酸ビニル共重合体を重量比で4%を配合したエチ
レン酢酸ビニル重量比4%、溶融点60℃のパラフィンワ
ックス重量比1%、試薬一級のジオクチルフタレート重
量比1%のバインダー組成にて実施例1と同様の条件、
即ち鉄重量比50%、コバルト重量比50%の平均粒径10μ
mの粉末原料と前記バインダー組成を混合し、加圧ニー
ダーにて130℃で20分間混練した後、粉砕することによ
りペレットの原料を得た。この原料をホッパーに投入
し、第1図に示した押出成形機(スクリュー径30mm、L/
D:22)により内部に中空を有する寸法が縦15mm、横30m
m、肉厚3mmの形状の製品を押し出した。バレル温度は実
施例1と同様120〜140℃の間の一定の温度に設定して、
ここで成形体4の形状を保持するため、実施例1で設置
した磁石3のかわりに引き取り機のベルト本体21を磁石
化させたものを使用した。ベルトの材質としてはシリコ
ンゴムを基材とするゴム磁石を用い、又成形体41の冷却
固化については実施例1と同様な方法により行った。As a raw material powder, an alloy having a composition of iron weight ratio of 50% -cobalt weight ratio of 50% was melt-produced by high frequency heating in an argon gas atmosphere, and powder produced to have an average particle size of 10 μm by a water atomizing method was used. As shown in Fig. 4, an ethylene-vinyl acetate copolymer having a magnetic powder weight ratio of 94% and a vinyl acetate content of 20% by weight was blended at a weight ratio of 4%. The same conditions as in Example 1 with a binder composition having a paraffin wax weight ratio of 1% at 1 ° C and a reagent grade dioctyl phthalate weight ratio of 1%,
That is, 50% by weight of iron and 50% by weight of cobalt have an average particle size of 10μ.
The powder raw material of m and the binder composition were mixed, kneaded in a pressure kneader at 130 ° C. for 20 minutes, and then pulverized to obtain a raw material for pellets. This raw material was put into a hopper, and the extruder shown in FIG. 1 (screw diameter 30 mm, L /
D: 22) has a hollow inside with a length of 15 mm and width of 30 m
A product with a shape of m and a thickness of 3 mm was extruded. The barrel temperature was set to a constant temperature between 120 and 140 ° C as in Example 1,
Here, in order to maintain the shape of the molded body 4, a magnetized belt main body 21 of the take-up machine was used instead of the magnet 3 installed in the first embodiment. A rubber magnet having silicon rubber as a base material was used as the material of the belt, and the cooling and solidification of the molded body 41 was performed in the same manner as in Example 1.
以上の方法により作製した成形体41を50mmの長さに切
断し、脱脂炉を使用し、10℃/Hrの温度勾配でアルゴン
ガス雰囲気にて加熱し、600℃で1時間保持後、冷却す
ることにより脱脂を行った。しかるのちこれを水素雰囲
気において1200℃で2時間焼結を行った。これにより寸
法が縦12.8mm、横25.5mm、肉厚2.6mm、密度が7.90なる
磁性材の焼結体を得た。The molded body 41 produced by the above method is cut into a length of 50 mm, heated in an argon gas atmosphere with a temperature gradient of 10 ° C./Hr using a degreasing furnace, kept at 600 ° C. for 1 hour, and then cooled. Degreasing was performed by this. Thereafter, this was sintered in a hydrogen atmosphere at 1200 ° C. for 2 hours. As a result, a magnetic material sintered body having dimensions of 12.8 mm in length, 25.5 mm in width, 2.6 mm in wall thickness, and 7.90 in density was obtained.
実施例3 第5図は引き取り機及び成形体の断面図であり、ベル
ト211中の矢印は磁力線を示している。サマリウム重量
比25.2%−コバルト重量比49.2%−銅重量比9.2%−鉄
重量比15.0%−ジルコニウム重量比1.4%なる組成のイ
ンゴットを溶解製造し、アルゴンガス雰囲気で1180℃で
5時間溶体化した後、800℃で2時間時効処理を施し
た。さらにジョークラッシャ、ディスクミル、ボールミ
ルにより平均粒径12μmまで粉砕した粉末を作製した。
これを原料粉末として使用し、第1表に示したように、
磁性粉末重量比94%、エチレン−酢酸ビニル共重合体を
重量比3%、パラフィンワックス重量比2%、ジオクチ
ルフタレート重量比1%のバインダー組成にて、実施例
1と同様な条件で第5図に示すような形状、即ち楕円形
の製品の寸法が横40mm、縦15mm、肉厚3mmの成形を行っ
た。(当然ながら同様な方法で円筒形の製品の成形体も
可能である。) 第5図において、211aはゴム磁石のN極であり、211b
はS極であり、411aはS極と接しているので、N極とな
る。ベルト211にはシリコンゴムを基材とするゴム磁石
を使用し、ベルト211の成形体411との接触面は成形体41
1と同じ形状に加工を行った。又、成形体411の冷却固化
については実施例1と同様な方法により行った。以上の
方法により作製した成形体411を50mmの長さに切断し、
脱脂炉を使用し10℃/Hrの温度勾配でアルゴンガス気流
下にて加熱し500℃で1時間保持後、炉冷することによ
り脱脂を行った。しかる後これを真空下において1200℃
で5時間焼結を行い、又800℃で2時間時効を行った。
これにより寸法が縦12.7mm、横25.5mm、肉厚2.5mm、密
度が8.40なるSm2Co17系の磁性材の焼結体を得た。Example 3 FIG. 5 is a cross-sectional view of the take-up machine and the molded body, and the arrows in the belt 211 indicate the lines of magnetic force. An ingot having a composition of samarium weight ratio 25.2% -cobalt weight ratio 49.2% -copper weight ratio 9.2% -iron weight ratio 15.0% -zirconium weight ratio 1.4% was melted and manufactured, and solution-treated for 5 hours at 1180 ° C in an argon gas atmosphere. After that, aging treatment was performed at 800 ° C. for 2 hours. Further, a powder was crushed to a mean particle size of 12 μm with a jaw crusher, a disc mill and a ball mill.
Using this as a raw material powder, as shown in Table 1,
5% under the same conditions as in Example 1 with a binder composition of 94% by weight of magnetic powder, 3% by weight of ethylene-vinyl acetate copolymer, 2% by weight of paraffin wax and 1% by weight of dioctyl phthalate. The shape of the product shown in Fig. 3, that is, the elliptical product was molded with a width of 40 mm, a length of 15 mm and a wall thickness of 3 mm. (Of course, it is possible to form a cylindrical product by the same method.) In FIG. 5, 211a is the N pole of the rubber magnet, and 211b
Is an S pole, and 411a is in contact with the S pole, so it is an N pole. A rubber magnet whose base material is silicon rubber is used for the belt 211, and the contact surface of the belt 211 with the molded body 411 is the molded body 41.
It was processed into the same shape as 1. The cooling and solidification of the molded body 411 was performed in the same manner as in Example 1. Cut the molded body 411 produced by the above method to a length of 50 mm,
Degreasing was performed by using a degreasing furnace, heating at a temperature gradient of 10 ° C./Hr under an argon gas stream, holding at 500 ° C. for 1 hour, and then cooling the furnace. Then, this is put under vacuum at 1200 ℃.
Sintered for 5 hours and aged at 800 ° C for 2 hours.
As a result, a sintered body of Sm 2 Co 17 magnetic material having dimensions of 12.7 mm in length, 25.5 mm in width, 2.5 mm in wall thickness, and 8.40 in density was obtained.
比較例 実施例1と同様の条件で押出成形用ペレットを作製
し、引き取り装置5中の磁石3を設置せずに押出成形を
行った。 Comparative Example Pellets for extrusion molding were prepared under the same conditions as in Example 1, and extrusion molding was performed without installing the magnet 3 in the take-up device 5.
第6図は従来の押出成形法による成形体の変形量を示
したもので、その時の歪率を第6図に示すa、bよりb/
aとして求めた。その結果、磁石3を設置して引き取り
を行った場合の成形体4の歪率は0〜0.026であったの
に対し、磁石3を設置しないで引き取りを行った場合の
成形体4の歪率は0.2〜0.3であった。FIG. 6 shows the amount of deformation of the molded product by the conventional extrusion molding method, and the strain rate at that time is shown by b / from b in FIG.
sought as a. As a result, the distortion rate of the molded body 4 when the magnet 3 was installed and taken back was 0 to 0.026, whereas the distortion rate of the molded body 4 when the magnet 3 was taken out and installed. Was 0.2 to 0.3.
ハ.発明の効果 〔発明の効果〕 以上詳細に述べた様に本発明における磁性粉末の押出
成形法によれば、内部に中空部を持つ薄肉形状の成形体
の製造において、変形のない良好な成形体が製造できる
ので、上述の形状の磁性材焼結製品を効率良く生産で
き、工業上非常に有益である。C. EFFECTS OF THE INVENTION [Advantages of the Invention] As described in detail above, according to the extrusion molding method of the magnetic powder of the present invention, in the production of a thin-walled molded article having a hollow portion inside, a good molded article without deformation is obtained. Since the magnetic material sintered product having the above-mentioned shape can be efficiently produced, it is industrially very useful.
第1図は本発明の実施例1を示す構成正面図。 第2図は第1図を説明するベルト内部を切断する横断面
図。 第3図は実施例2を示す構成正面図。 第4図は第3図を説明するベルト内部を切断する横断面
図。 第5図は実施例3を示すベルト内部を切断する横断面図
である。 第6図は従来の押出成形法による成形体の変形量を示し
た断面図。 第7図は従来の押出成形機を示した構成正面図である。 1……押出成形機、2,21,211……ベルト、3……磁石、
4,41,411……成形体、5……引取装置、21a,211a,3a,4
a,41a,411a……N極、21b,211b,3b……S極、A……ベ
ルト冷却用圧縮空気の吹きつけ方向、a……成形体の
幅、b……成形体の変形量。FIG. 1 is a configuration front view showing a first embodiment of the present invention. FIG. 2 is a cross-sectional view for cutting the inside of the belt for explaining FIG. FIG. 3 is a front view of the configuration showing the second embodiment. FIG. 4 is a cross-sectional view for cutting the inside of the belt for explaining FIG. FIG. 5 is a cross-sectional view for cutting the inside of the belt showing the third embodiment. FIG. 6 is a cross-sectional view showing the amount of deformation of a molded body by the conventional extrusion molding method. FIG. 7 is a configuration front view showing a conventional extrusion molding machine. 1 ... Extruder, 2,21,211 ... Belt, 3 ... Magnet,
4,41,411 …… Molded body, 5 …… Collection device, 21a, 211a, 3a, 4
a, 41a, 411a: N pole, 21b, 211b, 3b: S pole, A: Direction of blowing compressed air for cooling the belt, a: Width of molded body, b: Deformation amount of molded body.
Claims (1)
インダーとを混合・混練・ペレット化した混和物を押出
成形機を用いて中空部を有する磁性材を成形する方法に
おいて、押出成形機より押し出された押出成形体の少な
くとも一面以上と該押出成形体を引き取るベルトとが磁
気回路を構成し、ベルトが該押出成形体を吸着する構造
を有することを特徴とする中空部を有する磁性材の押出
成形方法。1. A method for molding a magnetic material having a hollow portion by using an extrusion molding machine for a mixture obtained by mixing, kneading and pelletizing magnetic powder and a binder containing a polymer compound as a main component, the method being an extrusion molding machine. A magnetic material having a hollow portion, characterized in that at least one surface of the extruded product extruded further and a belt for taking the extruded product constitute a magnetic circuit, and the belt has a structure for adsorbing the extruded product. Extrusion method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10214089A JP2691444B2 (en) | 1989-04-20 | 1989-04-20 | Extrusion molding method of magnetic material having hollow portion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10214089A JP2691444B2 (en) | 1989-04-20 | 1989-04-20 | Extrusion molding method of magnetic material having hollow portion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02279307A JPH02279307A (en) | 1990-11-15 |
JP2691444B2 true JP2691444B2 (en) | 1997-12-17 |
Family
ID=14319460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10214089A Expired - Fee Related JP2691444B2 (en) | 1989-04-20 | 1989-04-20 | Extrusion molding method of magnetic material having hollow portion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2691444B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113459467B (en) * | 2021-08-06 | 2022-08-23 | 重庆万桥交通科技发展有限公司 | Extrusion molding cooling device for outer sheaths of stay cables |
-
1989
- 1989-04-20 JP JP10214089A patent/JP2691444B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02279307A (en) | 1990-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1040887B1 (en) | Method of producing sintered body | |
JPH0647684B2 (en) | Degreasing method for injection molded products | |
JP2691444B2 (en) | Extrusion molding method of magnetic material having hollow portion | |
KR101879000B1 (en) | Rare earth permanent magnet and method for manufacturing rare earth permanent magnet | |
JPH1056210A (en) | Thermoelectric semiconductor sintered element and production thereof | |
JPH0521220A (en) | Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density | |
JP3008202B2 (en) | Method for producing magnetic molded body having hollow portion | |
KR20140037001A (en) | Rare earth permanent magnet and production method for rare earth permanent magnet | |
JPH0332804A (en) | Manufacture and its manufacturing device for molded body having hollow part | |
JP4292599B2 (en) | Composition for injection molding of inorganic powder and method for producing inorganic sintered body | |
JP3399056B2 (en) | Manufacturing method of anisotropic magnet | |
JPS60180966A (en) | Manufacture of high temperature stability high density ceramic formed body | |
JPH073303A (en) | Production of metallic or ceramic sintered compact | |
JPH06158109A (en) | Method for dewaxing and sintering molded body of metal or ceramic powder | |
JP5203521B2 (en) | Rare earth permanent magnet and method for producing rare earth permanent magnet | |
JPH032005A (en) | Method for extrusion molding of powder mixture | |
JPH08183661A (en) | Production of silicon carbide sintered compact | |
JPH03130305A (en) | Manufacture of sintered body having hollow part and manufacturing apparatus used thereto | |
JPS63216309A (en) | Manufacture of cylindrical rare-earth metal sintered magnet | |
JP2004027313A (en) | Method and apparatus for granulating powder | |
SU1340904A1 (en) | Method of producing sintered articles from brass powders | |
JPH11278915A (en) | Composition for injection molding of ceramic | |
JPH01319910A (en) | Magnetic substance and manufacture thereof | |
JPH02310004A (en) | Extrusion molding method of intimate mixture of powder | |
JP3540389B2 (en) | Method for producing sintered R-Fe-B permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |