JPH02310004A - Extrusion molding method of intimate mixture of powder - Google Patents

Extrusion molding method of intimate mixture of powder

Info

Publication number
JPH02310004A
JPH02310004A JP13009289A JP13009289A JPH02310004A JP H02310004 A JPH02310004 A JP H02310004A JP 13009289 A JP13009289 A JP 13009289A JP 13009289 A JP13009289 A JP 13009289A JP H02310004 A JPH02310004 A JP H02310004A
Authority
JP
Japan
Prior art keywords
die
cylinder
extrusion
powder
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13009289A
Other languages
Japanese (ja)
Inventor
Norio Kono
幸野 憲雄
Yuuichi Tatsutani
雄一 立谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP13009289A priority Critical patent/JPH02310004A/en
Publication of JPH02310004A publication Critical patent/JPH02310004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a two-dimensional or three dimensional curved surface without having post processing, by a method wherein a velocity ingredient of an extruder speed is added in the direction vertical to an extruding direction. CONSTITUTION:An extrusion molding device of an intimate mixture of powder is constituted of an extrusion cylinder 1, screw 2 and die 3 comprised of dies 12, 12 ', die holder 15 and a breaker plate 16. The cylinder 1 and die 3 can be heated to a desired temperature with heaters 21, 22 positioning at the outside of the cylinder 1 and die holder 15. Lengths of respective linear parts 42, 42 ' of the dies 12, 12 ' are different from each other. The intimate mixture obtained by mixing and kneading ceramics, at least a kind of metallic powder and a binder having plasticity is melted by filling the same into a space between the cylinder 1 and screw 2 after heating of the cylinder 1, screw 2 and die 3. Since a velocity ingredient vertical to an extruding direction is generated by generating difference in flow resistance at the time when the intimate mix ture passes through an air gap between the linear parts 42, 42 ' since the lengths of the linear parts 42, 42 ' of the dies 12, 12 ' are different from each other, an extrusion molded body 30 becomes a bent matter having a two-dimensional curved surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末混和物の押出し成形方法、特に二次元的
もしくは三次元的な曲面を有する押出し成形体を提供し
うる粉末混和物の押出し成形方法=   1  − に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an extrusion molding method for a powder mixture, particularly a method for extruding a powder mixture that can provide an extruded body having a two-dimensional or three-dimensional curved surface. Regarding molding method = 1-.

[従来の技術] 従来、押出し成形法は主として熱可塑性プラスチック材
料や各種ゴム等を管状や棒状の様な一定断面を持つ成形
体を連続的に成形する方法として広く用いられている。
[Prior Art] Conventionally, extrusion molding has been widely used as a method for continuously molding thermoplastic plastic materials, various rubbers, etc. into molded bodies having a constant cross section, such as tubular or rod shapes.

さらに、上述した押出し成形法を利用して熱可塑性プラ
スックやゴム等に一例を掲げれば、バリウムフェライト
粉末等の様な強磁性粉末を混合し押出し成形をすること
によりいわゆるプラスチック磁石やゴム磁石を製造する
方法が広く工業的に行なわれている。
Furthermore, using the above-mentioned extrusion molding method to produce thermoplastic plastics, rubber, etc., for example, by mixing ferromagnetic powder such as barium ferrite powder and extrusion molding, so-called plastic magnets and rubber magnets can be produced. Manufacturing methods are widely used industrially.

一方、近年セラミックス粉末や金属粉末を押出し成形法
で成形する方法が注目されている。
On the other hand, in recent years, a method of molding ceramic powder or metal powder by extrusion molding has attracted attention.

即ち、セラミックス粉末や金属粉末に10〜20重量部
程度の有機バインダを加え、混合混練した後に押出し成
形することによってグリーン成形体を得、ついで脱パイ
ンダニ程及び焼結工程を経て所望の焼結製品を得る方法
であり、さらに詳しくは、セラミックス粉末または金属
粉末と有機バインダとの混和物を押出し成形機のシリン
ダ内に溶融状態で充填し、ついで、シリンダ内に位置す
るスクリュにより、ダイスより押出され押出し成形体と
し、ついで、押出し成形体は所望の長さに切断され、上
述したいわゆるプラスチック磁石やゴム磁石の様に、そ
のまま利用される製品や。
That is, about 10 to 20 parts by weight of an organic binder is added to ceramic powder or metal powder, mixed and kneaded, and then extruded to obtain a green molded product.Then, the desired sintered product is obtained through a depine mite process and a sintering process. More specifically, a mixture of ceramic powder or metal powder and an organic binder is filled in the cylinder of an extruder in a molten state, and then extruded from a die by a screw located in the cylinder. The extruded molded product is then cut into a desired length and used as is, such as the so-called plastic magnets and rubber magnets mentioned above.

押出し成形体を脱バインダ及び焼結工程を経て焼結体と
して利用される製品となる。
The extruded body undergoes a binder removal and sintering process to become a product that can be used as a sintered body.

[発明か解決しようとする課題] 上述した従来の粉末混和物の押出し方法は、混和物が押
出し方向に一様に、かつ連続して押出されるので、得ら
れる成形体は同一断面形状を持った押出し方向に平行な
形状となる。従って押出し方向に垂直な曲面を持つ押出
し成形体を得る為には、押出成形体に後加I、いわゆる
曲げ加工を必要とし加工工数が増えるばかりか押出成形
体自体が脆弱である為に後加]二の自由度が小さく、か
つ曲げ加工が施された部位に加工に伴う密度の疎密が生
じやすいという欠点があった。
[Problems to be Solved by the Invention] In the conventional method for extruding a powder mixture described above, the mixture is extruded uniformly and continuously in the extrusion direction, so the molded bodies obtained have the same cross-sectional shape. The shape is parallel to the extrusion direction. Therefore, in order to obtain an extruded product with a curved surface perpendicular to the extrusion direction, the extruded product must be subjected to post-processing I, so-called bending, which not only increases the number of processing steps, but also requires post-processing because the extruded product itself is fragile. ] The two disadvantages were that the degree of freedom was small, and that the bending process was likely to result in uneven density in the bending process.

そこで、本発明の技術的課題は、」二連した従来の粉末
混和物の押出し成形方法の欠点を除去するために、粉末
混和物の押出し成形の際に後加玉なしに二次元的もしく
は三次元的な曲面を有する粉末混和物の押出し成形体を
得る方法を提供することにある。
Therefore, the technical problem of the present invention is to eliminate the drawbacks of the conventional extrusion molding method for powder mixtures in two-dimensional or three-dimensional form without post-addition balls during extrusion molding of powder mixtures. The object of the present invention is to provide a method for obtaining an extrusion molded product of a powder mixture having an original curved surface.

「課題を解決するための手段] 本発明の粉末混和物の押出し成形方法は、セラミックス
及び金属粉末の少なくとも1種と可塑性を有するバイン
ダとを混合、混練して得られた混和物を押出し成形法を
用いて成形体を得る方法において、該混和物を押出す際
の押出し方向の流速を押出し方向と垂直な向きに速度勾
配を持たせて押出し湾曲物を製造することを特徴とする
"Means for Solving the Problems" The extrusion molding method for a powder mixture of the present invention is a method for extruding a mixture obtained by mixing and kneading at least one of ceramic and metal powders and a binder having plasticity. A method for obtaining a molded article using the above method is characterized in that when extruding the mixture, the flow velocity in the extrusion direction has a velocity gradient in a direction perpendicular to the extrusion direction to produce an extruded curved article.

即ち1本発明者らは、前記混和物が押出し成形によって
押出し成形体となる過程において押出し方向と垂直な向
きに押出し速度の速度勾配を付加することにより押出し
方向と押出し成形体の押出される方向とが異なった方向
になり結果として押出し成形体が二次元もしくは三次元
的な曲面を有することに着目し1本発明を完成するに至
ったものである。
That is, 1. the present inventors added a speed gradient of the extrusion speed in a direction perpendicular to the extrusion direction during the process of extrusion forming the mixture into an extruded body, thereby increasing the extrusion direction and the direction in which the extruded body is extruded. The present invention was completed by focusing on the fact that the extrusion molded product has a two-dimensional or three-dimensional curved surface as a result of the extrusion molded product having a two-dimensional or three-dimensional curved surface.

[実施例] 次に本発明の実施例につき図面を参照して詳細に説明す
る。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

実施例1 第1図(a)は本発明を実施する為の装置の第1の例を
示す部分上面断面図で、第1図(b)は第1図(a)の
側面断面図である。
Example 1 FIG. 1(a) is a partial top sectional view showing a first example of an apparatus for carrying out the present invention, and FIG. 1(b) is a side sectional view of FIG. 1(a). .

第1図(a) 、 (b)において1粉末混和物の押出
し成形装置は、押出しシリンダ1及びスクリュ2と。
In FIGS. 1(a) and 1(b), the extrusion molding apparatus for one powder mixture includes an extrusion cylinder 1 and a screw 2.

ダイス11.11’ 、12.12’ とダイホルダ1
5及びブレーカプレート16より成るダイ3を含んで構
成される。さらにシリンダ1とダイホルダ】5の外側に
位置するヒータ21,22によってシリンダ1及びダイ
3を所望の温度に加熱できる構造を有している。
Dies 11.11', 12.12' and die holder 1
5 and a breaker plate 16. Further, the cylinder 1 and the die 3 can be heated to a desired temperature by heaters 21 and 22 located outside the cylinder 1 and the die holder 5.

第1図(a)においてダイス12とダイス12′は各々
の直線部42.42’の長さが異なるだけであり、かつ
第1図(b)においてはダイス1]とダイス]]′は各
々の直線部41.41’の長さ−区    − も含めすべて同一の形状を有している。
In FIG. 1(a), the die 12 and the die 12' differ only in the length of the straight portions 42 and 42', and in FIG. 1(b), the die 1] and the die ]]' are respectively They all have the same shape, including the lengths of the straight portions 41 and 41'.

このような装置を用いて次のような押出成形を行った。The following extrusion molding was performed using such an apparatus.

押出し成形用原料としてFe50wv%−Co50wt
%なる組成を持ち、平均粒径101z+nの合金粉末1
00重量部に対しエチレン酢酸ビニル共重合樹脂5.5
重量部、高密度ポリエチレン2゜7重量部、ジオクチル
フタシー1−1.8重二部を混合・混練して混和物を得
た。
Fe50wv%-Co50wt as raw material for extrusion molding
% alloy powder 1 with an average particle size of 101z+n
5.5 parts by weight of ethylene vinyl acetate copolymer resin
parts by weight, 2.7 parts by weight of high-density polyethylene, and 2 parts by weight of 1-1.8 parts of dioctyl phthalate were mixed and kneaded to obtain a mixture.

ついで、ヒータ21を130℃、ヒータ22を120℃
とじてシリンダ1.スクリュ2及びダイ3を加熱した後
、上述した混和物をシリンダ1とスクリュ2間に充填し
溶融させ、さらにスクリュ2の回転によって、該溶融混
和物はブレーカプレー 1−16を通りさらにダイス1
1.11′、12゜12′によって形成された空隙より
押出し、押11し成形体30の湾曲物を得た。
Next, the heater 21 is heated to 130°C, and the heater 22 is heated to 120°C.
Close cylinder 1. After heating the screw 2 and die 3, the above-mentioned mixture is filled between the cylinder 1 and the screw 2 and melted, and by further rotation of the screw 2, the molten mixture passes through the breaker plate 1-16 and further into the die 1.
The molded product 30 was extruded through the gap formed by 1.11' and 12°12', and a curved product 30 was obtained.

ここで、上述した粉末混和物の押出し成形方法において
ダイス12,12′の直線部42゜42′の長さが異な
る為に溶融した混和物が直線部42.42’間の空隙を
通過する際に流動抵抗=  6 − に差が生じ押出し方向と垂直な向きに速度勾配か生じる
ので押出し成形体30が二次元的な曲面をHする湾曲物
になったものである。
Here, in the extrusion molding method of the powder mixture described above, since the lengths of the straight parts 42 and 42' of the dies 12 and 12' are different, when the molten mixture passes through the gap between the straight parts 42 and 42', Since a difference in flow resistance = 6 - occurs and a velocity gradient occurs in a direction perpendicular to the extrusion direction, the extruded body 30 becomes a curved object with a two-dimensional curved surface H.

さらに、上述した押出し成形体30をアルゴンガスを2
g/min流した雰囲気中で室温から毎時10℃のy?
温速度で600℃まで昇温加熱し。
Furthermore, the extrusion molded body 30 described above was heated with argon gas for 2 hours.
y? from room temperature to 10°C per hour in an atmosphere flowing at g/min.
Heat up to 600℃ at a heating rate.

600℃で2時間保持した後、室温まで冷却することに
より脱バインダを行ない、ついで真空炉中に投入した室
温から毎時200℃の昇温速度で。
After holding at 600° C. for 2 hours, the binder was removed by cooling to room temperature, and then the material was placed in a vacuum furnace at a heating rate of 200° C./hour from room temperature.

1200°Cまで昇温加熱し10時間保持した後。After heating to 1200°C and holding for 10 hours.

急冷することにより前記押出し成形体30と相似な形状
を持つFe−Co合金焼結体を得た。
By rapid cooling, a Fe--Co alloy sintered body having a shape similar to the extruded body 30 was obtained.

比較として2 ダイス12.12’ の直線部42゜4
2′の長さを等しくシ、他はすべて」二連した第1の実
施例と同様の方法で混和物の押出し成形を行ない1曲面
を持たない押出し方向に平行な面より成る押出し成形体
を得、押出し直後の軟化状態において上述した第1の実
施例での押出し成形体30に′、9しい形状に変形させ
た後、第1の実施例と同一の方法で脱バインダを行なっ
たところ1曲面部に亀裂を生じ良好な脱バインダ体を得
ることが出来ず、第1−の実施例の有用性が確認された
For comparison, 2 dies 12.12' straight section 42°4
The mixture was extruded in the same manner as in the first embodiment, in which the lengths of 2' and 2' were equal, and all other conditions were made in duplicate, to obtain an extruded product having no curved surface and a surface parallel to the extrusion direction. In the softened state immediately after extrusion, the extruded body 30 of the first embodiment described above was deformed into an appropriate shape, and then the binder was removed in the same manner as in the first embodiment. Cracks were generated in the curved surface portion, and a good debinding body could not be obtained, thus confirming the usefulness of the first example.

実施例2 第2図(a)は本発明の押出成形方法を実施する為の装
置の第2の例を示す部分上面断面図、第2図(b)は部
分側面断面図である。
Example 2 FIG. 2(a) is a partial top sectional view showing a second example of an apparatus for carrying out the extrusion molding method of the present invention, and FIG. 2(b) is a partial side sectional view.

第2図(a) 、 (b)において、粉末混和物の押出
し成形装置はシリンダ1及びスクリュ2とダイス11.
12とダイホルダ15及びブレーカプレート16より成
るダイ3を含んで構成される。さらにシリンダ1の外側
に位置するヒータ21とダイホルダ]5の外側に位置す
るヒータ22,22′によって、シリンダ1及びダイ3
を所望の温度に加熱できる構造を台ビている。
In FIGS. 2(a) and 2(b), the extrusion molding apparatus for a powder mixture includes a cylinder 1, a screw 2, and a die 11.
12, a die 3 consisting of a die holder 15, and a breaker plate 16. Furthermore, the cylinder 1 and the die 3 are heated by the heater 21 located outside the cylinder 1 and the heater 22, 22' located outside the die holder]
It has a structure that allows it to be heated to the desired temperature.

このような装置を用いた押出成形を次のように行った。Extrusion molding using such an apparatus was carried out as follows.

押出し成形用原料として平均粒径が0.5μmのアルミ
ナ粉末100重量部に対しエチレン酢酸ビニル教重合樹
脂5.1重量部、ポリブチルメタクリレート2.3重量
部、高密度ポリエチレン2.6重量部、ジブチルフタレ
ート2.0重量部を混合、混練して混和物を得た。
As raw materials for extrusion molding, 5.1 parts by weight of ethylene vinyl acetate polymer resin, 2.3 parts by weight of polybutyl methacrylate, 2.6 parts by weight of high density polyethylene, per 100 parts by weight of alumina powder with an average particle size of 0.5 μm. 2.0 parts by weight of dibutyl phthalate was mixed and kneaded to obtain a mixture.

ついでヒータ21を140°C,ヒータ22′を130
℃、ヒータ22を115℃としてシリンダ]1 スクリ
ュ2及びダイ3を加熱した後、上述した混和物をシリン
ダ1とスクリュ2間に充填し溶融させ、さらにスクリュ
2の回転によって、該溶融混和物はブレーカプレート1
6を通りさらにダイス]、1.12によって形成された
空隙より押出し成形体30′をiすた。
Next, heat the heater 21 to 140°C, and heat the heater 22' to 130°C.
After heating the screw 2 and die 3, the above-mentioned mixture is filled between the cylinder 1 and the screw 2 and melted, and by further rotation of the screw 2, the molten mixture is Breaker plate 1
6 and a die], and the extruded product 30' was placed through the gap formed by 1.12.

ここで上述した粉末混和物の押出し成形方法においてダ
イス11.12のヒータ22,22’ による加熱温度
か異なる為に溶融した混和物がダイス11.12の間の
空隙を通過する際の粘度の差による流動抵抗の差を生じ
押出し方向と垂直な向きに速度勾配が生じるので押出し
成形体30′か二次元的曲面を何する湾曲物になったも
のである。
Here, in the extrusion molding method for a powder mixture described above, since the heating temperatures of the heaters 22 and 22' of the dies 11.12 are different, there is a difference in viscosity when the molten mixture passes through the gap between the dies 11.12. This causes a difference in flow resistance and a velocity gradient perpendicular to the extrusion direction, resulting in the extruded product 30' being a curved object with a two-dimensional curved surface.

さらに、上述した押出し成形体30′を窒素ガスを2g
/min流した雰囲気中で室温から毎時10℃の昇温速
度で600℃まて昇温加熱し−8−一 60’O℃で2時間保持した後、室温まで冷却すること
により脱バインダを行ない、ついで大気雰囲気中でガス
炉を用い、室温から毎時200 ’Cの昇温速度で1.
600℃まで昇温加熱し、2時間保持I7た後毎時20
0℃で800℃まで徐冷した後。
Furthermore, the above-mentioned extrusion molded body 30' was heated with 2 g of nitrogen gas.
The binder was removed by heating from room temperature to 600°C at a temperature increase rate of 10°C/hour in an atmosphere with a flow of 10°C/min, holding the temperature at -8-160°C for 2 hours, and then cooling to room temperature. Then, using a gas furnace in an air atmosphere, the temperature was increased from room temperature to 1.
After heating to 600℃ and holding for 2 hours, 20℃ per hour.
After slowly cooling from 0°C to 800°C.

空気中で放冷することにより前記押出し成形体30’ 
と相似な形状を持つアルミナ焼結体を?1ノ、た。
The extruded body 30' is cooled by cooling in air.
An alumina sintered body with a similar shape? 1 no, ta.

比較としてダイス11.12のヒータ22,22′を両
者共130℃として他はすべて上述した第2の実施例と
同様の方法で混和物の押出し成形を行ない1曲面を持た
ない押出し方向に平行な面より成る押出し成形体を得、
押出し7直後の軟化状態において上述した第2の実施例
での押出し成形体30′に等しい形状に変形させた後、
第2の実施例と同一の方法で脱バインダを行なったとこ
ろ。
For comparison, the heaters 22 and 22' of the dies 11 and 12 were both heated to 30°C, and the mixture was extruded in the same manner as in the second embodiment described above. Obtain an extruded body consisting of a surface,
After deforming it into a shape equivalent to the extrusion molded body 30' in the second embodiment described above in the softened state immediately after extrusion 7,
The binder was removed using the same method as in the second example.

曲面部に亀裂を生し良好な脱バインダ体を得ることが出
来ず、第2の実施例の有用性が確認された。
The usefulness of the second example was confirmed because cracks were generated in the curved surface part and a good debinding body could not be obtained.

実施例3 第3図(a)は本発明の押出成形方法を実施する為の装
置のさらにもう一つの例を示す部分上面断面図、第3図
(b)は側面断面図である。
Embodiment 3 FIG. 3(a) is a partial top sectional view showing yet another example of an apparatus for carrying out the extrusion molding method of the present invention, and FIG. 3(b) is a side sectional view.

第3図(a) 、 (b)に示すように、粉末混和物の
押出し成形装置はシリンダ1及びスクリュ2とダイス1
2.12′、12’、12”’とダイホルダ15及びブ
レーカプレート16より成るダイ3を含んで構成される
。さらにシリンダ1の外側に位置するヒータ21とダイ
ホールド15の外側に位置するヒータ22によってシリ
ンダ及びダイ3を所望の温度に加熱できる構造を有して
いる。
As shown in FIGS. 3(a) and 3(b), the extrusion molding device for a powder mixture consists of a cylinder 1, a screw 2, and a die 1.
2. It includes a die 3 consisting of 12', 12', 12"', a die holder 15, and a breaker plate 16. Furthermore, a heater 21 located outside the cylinder 1 and a heater 22 located outside the die holder 15. It has a structure in which the cylinder and die 3 can be heated to a desired temperature.

第3図(a)においてダイス12とダイス12′は各々
の直線部42.42′の長さが異なり、かつ第3図(b
)においてもダイス12′とダイス12゛°の直線部4
2’ 、42”’の長さは異なっている。
In FIG. 3(a), the dice 12 and the die 12' have different lengths of the straight portions 42, 42', and in FIG. 3(b)
), the straight part 4 between die 12' and die 12°
The lengths of 2' and 42'' are different.

このような装置を用いて次のように押出成形を行った。Extrusion molding was carried out as follows using such an apparatus.

次に押出し成形用原料としてTi80at%−Ni20
at%なる組成の平均粒径12μmの合金粉末に平均粒
径10 ft mのNi粉末を平均組成がTi50aL
%−Ni50at%となる様に配合し、ボールミルにて
混合した混合粉末100重量部に対し、エチl/ン酢酸
ビニル共重合体樹脂。
Next, Ti80at%-Ni20 was used as a raw material for extrusion molding.
Ni powder with an average particle size of 10 ft m was added to an alloy powder with an average particle size of 12 μm with a composition of at% Ti50aL.
%-Ni50 at% and 100 parts by weight of mixed powder mixed in a ball mill, ethyl/vinyl acetate copolymer resin.

7.8重量部、ポリブチルメタクリレート11,0重量
部、融点68℃のパラフィンワックス4.2重量部。
7.8 parts by weight, 11.0 parts by weight of polybutyl methacrylate, 4.2 parts by weight of paraffin wax with a melting point of 68°C.

ジブチルフタレート2,8重量部を混合、混練して混和
物を得た。
A mixture was obtained by mixing and kneading 2.8 parts by weight of dibutyl phthalate.

ついで、ヒータ21を130°C,ヒータ22を120
℃としてシリンダ1.スクリュ2及びダイ3を加熱した
後、上述した混和物をシリンダ1とスクリュ2間に充填
し溶融させ、さらにスクリュ2の回転によって該溶融混
和物はブレーカプレート16を通りさらにダイス12.
12’ 、12’。
Next, the heater 21 was heated to 130°C, and the heater 22 was heated to 120°C.
Cylinder 1. as °C. After heating the screw 2 and die 3, the above-mentioned mixture is filled between the cylinder 1 and the screw 2 and melted, and as the screw 2 rotates, the molten mixture passes through the breaker plate 16 and further through the die 12.
12', 12'.

]2°゛°によって形成された空隙より押出されコイル
状の押出し成形体30′を得た。
]2° to obtain a coil-shaped extruded product 30'.

ここで上述した粉末混和物の押出し成形方法においてダ
イス12.12’及びダイス12’。
The die 12, 12' and the die 12' in the method of extruding a powder mixture described hereinabove.

12“パの直線部42.42’及び42′。12" straight sections 42, 42' and 42'.

42−゛の長さが異なる為に溶融した混和物が直線部4
2.42’ 、42’ 、42°゛°間の空隙を通過す
る際に流動抵抗に差が生じ押出し方向と垂直な向きに速
度勾配が生じるので押出し成形体はコイル状となり、い
わゆる三次元的な曲面を有する湾曲物となったものであ
る。
Because the lengths of 42-゛ are different, the molten mixture is in the straight part 4.
2. When passing through the gaps between 42', 42', and 42°, there is a difference in flow resistance and a velocity gradient occurs in the direction perpendicular to the extrusion direction, so the extruded product becomes coiled and has a so-called three-dimensional shape. It is a curved object with a curved surface.

さらに、上述した押出し成形体30″をアルゴンガスを
2.Q/m]n流した雰囲気中で室温から毎時10℃の
昇温速度で600℃まて昇温加熱し。
Further, the extruded body 30'' described above was heated from room temperature to 600° C. at a temperature increase rate of 10° C./hour in an atmosphere in which argon gas was flowed at 2.Q/m]n.

600℃で2時間保持した後、室温まで冷却することに
より脱バインダを行ない、ついで真空炉中に投入し室温
から毎時150℃の昇温速度で1、1.00 ’Cまで
昇温加熱し5時間保持することにより前記押出し成形体
30′と相似な形状を持つコイル状のTi−Ni合金焼
結体を得た。
After holding it at 600°C for 2 hours, the binder was removed by cooling it to room temperature, and then it was placed in a vacuum furnace and heated from room temperature to 1.00'C at a heating rate of 150°C per hour. By holding for a certain period of time, a coil-shaped Ti--Ni alloy sintered body having a shape similar to the extruded body 30' was obtained.

比較としてダイス12.12’、12’、12゛°“の
直線部42,42′、42′、42“″の長さを等しく
シ、他はすべて上述した第3の実施例と同様の方法で混
和物の押出し成形を行ない曲面を持たない押出し方向に
平行な面より成る押出し成形体を得、押出し直後の軟化
状態において上述した第3の実施例での押出し成形体3
0′に等しい形状に変形させた後、第3の実施例と同一
の方法で脱バインダを行ったところ2曲面部に亀裂を生
じ良好な脱バインダ体を得ることか出来す。
For comparison, the lengths of the straight parts 42, 42', 42', 42'' of the dice 12. The mixture was extruded to obtain an extrusion molded body having a surface parallel to the extrusion direction without a curved surface, and in a softened state immediately after extrusion, the extrusion molded body 3 in the third embodiment described above was obtained.
After deforming to a shape equal to 0', the binder was removed in the same manner as in the third embodiment, and cracks were generated in the two curved surfaces, making it possible to obtain a good binder-free body.

第3の実施例の有用性が確認された。The usefulness of the third example was confirmed.

以上1本発明の実施例を詳細に説明したか、上述した実
施例に限定されず1本発明の主旨を逸脱しない範囲で種
々の変更が可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention.

例えば、上述した実施例では、いづれもバインダとして
いわゆる熱可塑性を持つ高分子祠を用いたか、各種ゴム
やメチルセルロース等の水溶性材料もバインダとして適
用できることはもちろんである。
For example, in the above embodiments, a so-called thermoplastic polymer was used as the binder, but it goes without saying that water-soluble materials such as various rubbers and methyl cellulose can also be used as the binder.

また、セラミックスもしくは金属粉末も上述したFe−
Co合金粉末、アルミナ粉末、Ti−Ni合金粉末に限
定するものでないことは言うまでもない。
In addition, ceramics or metal powder can also be used as Fe-
It goes without saying that the material is not limited to Co alloy powder, alumina powder, and Ti-Ni alloy powder.

さらに上述した実施例ではいづれも押出し成形体を脱バ
インダし焼結しているが、押出し成形体自体を最終製品
として使用しても何らさしつかえない。
Further, in all of the above-mentioned embodiments, the extrusion molded body is debindered and sintered, but there is no problem in using the extrusion molded body itself as a final product.

[発明の効果] 以上述べた様に1本発明の粉末混和物の押出し成形方法
はセラミックス及び金属粉末の少なくとも1種以上と可
塑性を有するバインダとの混和物を押出し成形する際に
押出し方向の流速が押出し方向と垂直な向きに速度勾配
を持つことにより。
[Effects of the Invention] As described above, the extrusion molding method for a powder mixture of the present invention is such that when extruding a mixture of at least one of ceramic and metal powders and a binder having plasticity, the flow rate in the extrusion direction is by having a velocity gradient perpendicular to the extrusion direction.

押出し成形体に二次元的または三次元的な曲面を付加し
た湾曲物を製造できるので、二次元的な曲げ加圧を必要
とせす、製造工程が簡略化できると共に該二次元加工の
際に押出し成形体に加わる応力による変形あるいは破壊
を回避できるという効果が有る。
Since a curved object can be manufactured by adding a two-dimensional or three-dimensional curved surface to an extrusion molded object, the manufacturing process that requires two-dimensional bending and pressure can be simplified, and the extrusion can be removed during the two-dimensional processing. This has the effect of avoiding deformation or destruction due to stress applied to the molded body.

従って1本発明の粉末混和物の押出し成形方法は製造上
程の簡略化及び歩留向上が図れるので。
Therefore, the method of extrusion molding a powder mixture of the present invention can simplify the manufacturing process and improve the yield.

生業上極めて有益である。It is extremely useful for one's livelihood.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の押出成形方法を実施する為の装
置の一例を示す上面断面図、第1図(b)は第1図(a
)の側面断面図、第2図(a)は本発明のもうひとつの
押出成形方法を実施する為の装置の他の例を示す上面断
面図、第2図(b)は側面断面=  15 〜 図、第3図(a)は本発明の押出成形方法を実施する為
の装置のさらにもう一つの例を示す」二面断面図、第3
図(b)は第3図(a)の側面断面図である。 図中。 1・・・ンリンダ、2・=スクリュ13・・・ダイ、1
]。 11’、12.12’、12’、12°°°・ ダイス
、15・・・ダイホルダ、16・・ブレーカプレート。 21.22. 22′ ・・・ヒータ、3C1,30’
。 30″・押出し成形体、41.4i’、42゜42’ 
、42’ 、42″″・−・・・ダイス直線部。
FIG. 1(a) is a top sectional view showing an example of an apparatus for carrying out the extrusion molding method of the present invention, and FIG.
), FIG. 2(a) is a top sectional view showing another example of an apparatus for carrying out another extrusion molding method of the present invention, and FIG. 2(b) is a side sectional view of = 15 ~ Figure 3(a) shows yet another example of an apparatus for carrying out the extrusion molding method of the present invention.
FIG. 3(b) is a side sectional view of FIG. 3(a). In the figure. 1...Nylinder, 2.=Screw 13...Die, 1
]. 11', 12.12', 12', 12°°°・Dice, 15...Die holder, 16...Breaker plate. 21.22. 22'...Heater, 3C1, 30'
. 30″/Extrusion molded body, 41.4i’, 42°42’
, 42', 42'''' ---Die straight part.

Claims (1)

【特許請求の範囲】 1、セラミックス及び金属粉末の少なくとも1種と、可
塑性を有するバインダとを混合、混練して得られた混和
物を押出し成形法を用いて成形体を得る方法において、 該混和物を押出す際の押出し方向の流速を押出し方向と
垂直な向きに速度勾配を持たせて押し出し湾曲物を製造
することを特徴とする粉末混和物の押出し成形方法。
[Claims] 1. A method for obtaining a molded body by extruding a mixture obtained by mixing and kneading at least one of ceramics and metal powder and a binder having plasticity, comprising: A method for extruding a powder mixture, characterized in that a curved object is produced by extruding the object by making the flow velocity in the extrusion direction have a velocity gradient in a direction perpendicular to the extrusion direction.
JP13009289A 1989-05-25 1989-05-25 Extrusion molding method of intimate mixture of powder Pending JPH02310004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009289A JPH02310004A (en) 1989-05-25 1989-05-25 Extrusion molding method of intimate mixture of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009289A JPH02310004A (en) 1989-05-25 1989-05-25 Extrusion molding method of intimate mixture of powder

Publications (1)

Publication Number Publication Date
JPH02310004A true JPH02310004A (en) 1990-12-25

Family

ID=15025776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009289A Pending JPH02310004A (en) 1989-05-25 1989-05-25 Extrusion molding method of intimate mixture of powder

Country Status (1)

Country Link
JP (1) JPH02310004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079509A (en) * 2000-06-30 2002-03-19 Denso Corp Method and apparatus for molding ceramic sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079509A (en) * 2000-06-30 2002-03-19 Denso Corp Method and apparatus for molding ceramic sheet
JP4670174B2 (en) * 2000-06-30 2011-04-13 株式会社デンソー Ceramic sheet forming method and forming apparatus

Similar Documents

Publication Publication Date Title
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
US6776955B1 (en) Net shaped articles having complex internal undercut features
JPH02310004A (en) Extrusion molding method of intimate mixture of powder
JPH0339405A (en) Manufacture of metal powder sintered body
JPH0244056A (en) Production of sintered article
JPH032005A (en) Method for extrusion molding of powder mixture
JP2858972B2 (en) Method for manufacturing ceramic molded body
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JP3008202B2 (en) Method for producing magnetic molded body having hollow portion
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JPH05208405A (en) Composite sintered body and manufacture thereof
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JP2681816B2 (en) Method for manufacturing mating article
JPS63274746A (en) Manufacture of ceramics-reinforced aluminum composite material
JPH02279307A (en) Extrusion molding method for magnetic material with hollow section
JPH0820803A (en) Production of sintered compact
JPH06287055A (en) Production of sintered article of ceramic
JPH0499801A (en) Method for compacting powder
JPH05179309A (en) Method and die for extrusion
JPH073303A (en) Production of metallic or ceramic sintered compact
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH1179845A (en) Production of silicon carbide having high toughness
JPH02200703A (en) Manufacture of metal powder sintered body
JPH0332804A (en) Manufacture and its manufacturing device for molded body having hollow part
JPH07173502A (en) Production of metallic or ceramic sintered body