JP2691309B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements

Info

Publication number
JP2691309B2
JP2691309B2 JP1308613A JP30861389A JP2691309B2 JP 2691309 B2 JP2691309 B2 JP 2691309B2 JP 1308613 A JP1308613 A JP 1308613A JP 30861389 A JP30861389 A JP 30861389A JP 2691309 B2 JP2691309 B2 JP 2691309B2
Authority
JP
Japan
Prior art keywords
external lead
oxide
semiconductor element
lead terminal
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1308613A
Other languages
Japanese (ja)
Other versions
JPH03167864A (en
Inventor
弘 松本
公明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308613A priority Critical patent/JP2691309B2/en
Priority to US07/573,406 priority patent/US5057905A/en
Publication of JPH03167864A publication Critical patent/JPH03167864A/en
Application granted granted Critical
Publication of JP2691309B2 publication Critical patent/JP2691309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッ
ケージの改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to an improvement in a semiconductor device housing package for housing a semiconductor device.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特に
ガラスの溶着によって封止するガラス封止型半導体素子
収納用パッケージは、絶縁基体と蓋体とから成り、内部
に半導体素子を収容する空所を有する絶縁容器と、該容
器内に収容される半導体素子を外部電気回路に電気的に
接続するための外部リード端子とから構成されており、
絶縁基体及び蓋体の相対向する主面に予め封止用のガラ
ス部材を被着形成すると共に、絶縁基体主面に外部リー
ド端子を固定し、半導体素子の各電極と外部リード端子
とをワイヤボンド接続した後、絶縁基体及び蓋体のそれ
ぞに被着させた封止用のガラス部材を溶融一体化させる
ことによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a package for accommodating a glass-encapsulated semiconductor element sealed by welding glass, includes an insulating base and a lid, and accommodates the semiconductor element inside. And an external lead terminal for electrically connecting a semiconductor element housed in the container to an external electric circuit,
A glass member for sealing is applied in advance on the opposing main surfaces of the insulating base and the lid, and external lead terminals are fixed on the main surface of the insulating base, and each electrode of the semiconductor element and the external lead terminal are wired. After the bond connection, the semiconductor element is hermetically sealed inside by fusing and integrating a sealing glass member attached to each of the insulating base and the lid.

(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納
用パッケージは通常、外部リード端子がコバール(29Wt
% Ni−16Wt% Co−55Wt% Fe合金)や42Alloy(42Wt%
Ni−58Wt% Fe合金)の導電性材料から成っており、該
コバールや42Alloy等は透磁率が高く、且つ導電率が低
いことから以下に述べる欠点を有する。
(Problems to be Solved by the Invention) However, this conventional package for housing a glass-sealed semiconductor element usually has an external lead terminal of Kovar (29 Wt).
% Ni-16Wt% Co-55Wt% Fe alloy) and 42Alloy (42Wt%
Ni-58Wt% Fe alloy), and Kovar and 42Alloy have the following disadvantages due to their high magnetic permeability and low electric conductivity.

即ち、 コバールや42Alloyは鉄(Fe)、ニッケル(Ni)、コ
バルト(Co)といった強磁性体金属のみから成ってお
り、その透磁率は250〜700(CGS)と高い。そのためこ
のコバールや42Alloy等から成る外部リード端子に電流
が流れると外部リード端子中に透磁率に比例した大きな
自己インダクタンスが発生し、これが逆起電力を誘発し
てノイズとなると共に、該ノイズが半導体素子に入力さ
れて半導体素子に誤動作を生じさせる、 コバールや42Alloyはその導電率が3.0〜3.5%(IAC
S)と低い。そのためこのコバールや42Alloy等から成る
外部リード端子に信号を伝搬させた場合、信号の伝搬速
度が極めて遅いものとなり、高速駆動を行う半導体素子
はその収容が不可となってしまう、 半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記に
記載のコバールや42Alloyの導電率が低いことと相俊っ
て電気抵抗が極めて大きなものになってきており、外部
リード端子に信号を伝搬させると、該外部リード端子の
電気抵抗に起因して信号が大きく減衰し、内部に収容す
る半導体素子に信号を正確に入力することができず、半
導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
That is, Kovar and 42Alloy are made of only ferromagnetic metals such as iron (Fe), nickel (Ni), and cobalt (Co), and have high magnetic permeability of 250 to 700 (CGS). Therefore, when a current flows through the external lead terminal made of Kovar or 42Alloy, a large self-inductance is generated in the external lead terminal in proportion to the magnetic permeability, which induces a back electromotive force to become noise, and the noise becomes a semiconductor. The conductivity of Kovar or 42Alloy is 3.0 to 3.5% (IAC
S) and low. Therefore, when a signal is propagated to an external lead terminal made of Kovar or 42Alloy, the signal propagation speed becomes extremely slow, and semiconductor devices that perform high-speed driving cannot be accommodated. The number of electrodes of a semiconductor element has increased significantly with the progress of higher density and higher integration of semiconductor elements housed inside the semiconductor device, and wires of external lead terminals for connecting each electrode of the semiconductor element to an external electric circuit. The width has also become extremely narrow. For this reason, the external lead terminal has become extremely large in electrical resistance in tandem with the low conductivity of Kovar and 42 Alloy described above, and when a signal is propagated to the external lead terminal, the external lead terminal becomes The signal is greatly attenuated due to the electric resistance, and the signal cannot be accurately input to the semiconductor element housed therein, thereby causing a malfunction in the semiconductor element.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的
は外部リード端子で発生するノイズ及び外部リード端子
における信号の減衰を極小となし、内部に収容する半導
体素子への信号の入出力を確実に行うことを可能として
半導体素子を長期間にわたり正常、且つ安定に作動させ
ることができる半導体素子収納用パッケージを提供する
ことにある。
(Object of the Invention) The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to minimize the noise generated at the external lead terminals and the signal attenuation at the external lead terminals to minimize the semiconductor device housed therein. An object of the present invention is to provide a package for housing a semiconductor element capable of reliably inputting / outputting a signal and allowing a semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を
収容することができる半導体素子収納用パッケージを提
供することにある。
Another object of the present invention is to provide a semiconductor element housing package capable of housing a semiconductor element which operates at high speed.

(課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有
する絶縁容器に外部リード端子をガラス部材を介して取
着して成る半導体素子収納用パッケージにおいて、前記
絶縁容器をフォルステライト質焼結体もしくはジルコニ
ア質焼結体で、外部リード端子を透磁率200(CGS)以
下、熱膨張係数95乃至110×10-7/℃、導電率10%(IAC
S)以上の金属で、ガラス部材を酸化鉛70.0乃至90.0Wt
%、酸化ホウ素10.0乃至15.0Wt%、シリカ0.5乃至3.0Wt
%、アルミナ0.5乃至3.0Wt%、酸化亜鉛及び酸化ビスマ
ス3.0Wt%以下から成るガラス成分にチタン酸鉛、β−
ユークリプタイト、コージライト、ジルコン、酸化錫、
ウイレマイト及びチタン酸錫の少なくとも1種から成る
フィラーを15Vol%以下添加したガラスで形成したこと
を特徴とするものである。
(Means for Solving the Problems) The present invention relates to a package for housing semiconductor elements, wherein external lead terminals are attached via a glass member to an insulating container having a space for housing semiconductor elements therein. an insulating container with forsterite sintered body or zirconia sintered body, permeability 200 permeable to external lead terminals (CGS) below, 95 to the thermal expansion coefficient of 110 × 10 -7 / ℃, conductivity 10% (IAC
S) or higher metal, glass oxide lead oxide 70.0 to 90.0Wt
%, Boron oxide 10.0 to 15.0 Wt%, silica 0.5 to 3.0 Wt
%, Alumina 0.5 to 3.0 wt%, zinc oxide and bismuth oxide 3.0 wt% or less lead titanate, β-
Eucryptite, cordierite, zircon, tin oxide,
It is characterized in that it is formed of glass to which a filler containing at least one of willemite and tin titanate is added in an amount of 15 vol% or less.

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be described in detail with reference to the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パッケ
ージの一実施例を示し、1は絶縁基体、2は蓋体であ
る。この絶縁基体1と蓋体2とにより絶縁容器3が構成
される。
1 and 2 show an embodiment of a package for accommodating a semiconductor element according to the present invention, wherein 1 is an insulating base and 2 is a lid. The insulating container 3 is constituted by the insulating base 1 and the lid 2.

前記絶縁基体1及び蓋体2はそれぞれの中央部に半導
体素子を収容する空所を形成するための凹部が設けてあ
り、絶縁基体1の凹部底面には半導体素子4が樹脂、ガ
ラス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a concave portion for forming a space for accommodating a semiconductor element at the center thereof, and the semiconductor element 4 is formed of resin, glass, brazing agent on the bottom surface of the concave portion of the insulating base 1. It is attached and fixed via an adhesive such as.

前記絶縁基体1及び蓋体2はフォルステライト質焼結
体もしくはジルコニア質焼結体から成り、第1図に示す
ような絶縁基体1及び蓋体2に対応した形状を有するプ
レス型内に、フォルステライト質焼結体の場合はマグネ
シア(MgO)、シリカ(SiO2)等の原料粉末を、ジルコ
ニア質焼結体の場合は酸化ジルコニウム(ZrO2)、イッ
トリア(Y2O3)等の原料粉末を充填させるとともに一定
圧力を印加して成形し、しかる後、成形品を約1200〜15
00℃の温度で焼成することによって製作される。
The insulating base 1 and the lid 2 are made of a forsterite-based sintered body or a zirconia-based sintered body, and are placed in a press die having a shape corresponding to the insulating base 1 and the lid 2 as shown in FIG. Raw material powders such as magnesia (MgO) and silica (SiO 2 ) for stellite sintered bodies, and raw material powders such as zirconium oxide (ZrO 2 ) and yttria (Y 2 O 3 ) for zirconia sintered bodies And molding by applying a constant pressure.
It is manufactured by firing at a temperature of 00 ° C.

尚、前記絶縁基体1及び蓋体2を形成するフォルステ
ライト質焼結体もしくはジルコニア質焼結体はその熱膨
張係数が100乃至110×10-7/℃であり、後述する封止用
ガラス部材の熱膨張係数との関係において絶縁基体1及
び蓋体2と封止用ガラス部材間に大きな熱膨張の差が生
じることはない。
The forsterite-based sintered body or zirconia-based sintered body forming the insulating base 1 and the lid 2 has a thermal expansion coefficient of 100 to 110 × 10 −7 / ° C., and a sealing glass member described later. There is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member in relation to the thermal expansion coefficient of

また前記絶縁基体1及び蓋体2にはその相対向する主
面に封止用のガラス部材6が予め被着形成されており、
該絶縁基体1及び蓋体2の各々に被着されている封止用
ガラス部材6を加熱溶融させ一体化させることにより絶
縁容器3内の半導体素子4を気密に封止する。
Further, a glass member 6 for sealing is previously formed on the opposing main surfaces of the insulating base 1 and the lid 2.
The semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 to be integrated.

前記絶縁基体1及び蓋体2の相対向する主面に被着さ
れる封止用ガラス部材6は、酸化鉛70.0乃至90.0Wt%、
酸化ホウ素10.0乃至15.0Wt%、シリカ0.5乃至3.0Wt%、
アルミナ0.5乃至3.0Wt%、酸化亜鉛及び酸化ビスマス3.
0Wt%以下から成るガラス成分にフィラーとしてのチタ
ン酸鉛、β−ユークリプタイト、コージライト、ジルコ
ン、酸化錫、ウイレマイト及びチタン酸錫の少なくとも
1種を15Vol%以下添加したガラスから成り、上記各成
分を所定の値となるように秤量混合すると共に、該混合
粉末を950〜1100℃の温度で加熱溶融させることによっ
て製作される。このガラス部材6の熱膨張係数は90乃至
120×10-7/℃である。
The sealing glass member 6 adhered to the main surfaces of the insulating base 1 and the lid 2 facing each other is made of lead oxide 70.0 to 90.0 Wt%,
Boron oxide 10.0 to 15.0 Wt%, silica 0.5 to 3.0 Wt%,
Alumina 0.5 to 3.0 Wt%, zinc oxide and bismuth oxide 3.
A glass component containing 0 wt% or less of lead titanate, β-eucryptite, cordierite, zircon, tin oxide, willemite, and tin titanate as a filler, added at 15 vol% or less. It is manufactured by weighing and mixing the components so as to have predetermined values, and heating and melting the mixed powder at a temperature of 950 to 1100 ° C. The coefficient of thermal expansion of this glass member 6 is 90 to
It is 120 × 10 -7 / ° C.

前記封止用ガラス部材6は、その熱膨張係数が90乃至
120×10-7/℃であり、絶縁基体1及び蓋体2の各々の熱
膨張係数と近似することから絶縁基体1及び蓋体2の各
々に被着されている封止用ガラス部材6を加熱溶融させ
一体化させることにより絶縁容器3内の半導体素子4を
気密に封止する際、絶縁基体1及び蓋体2と封止用ガラ
ス部材6との間には両者の熱膨張係数の相違に起因する
熱応力が発生することは殆どなく、絶縁基体1と蓋体2
とを封止用ガラス部材6を介し強固に接合することが可
能となる。
The sealing glass member 6 has a thermal expansion coefficient of 90 to 90.
120 × 10 −7 / ° C., which is close to the thermal expansion coefficient of each of the insulating base 1 and the lid 2, so that the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 is When the semiconductor element 4 in the insulating container 3 is hermetically sealed by heating, melting, and integrating, there is a difference in thermal expansion coefficient between the insulating base 1 and the lid 2 and the sealing glass member 6. Almost no thermal stress is generated due to the insulating base 1 and the lid 2.
Can be firmly joined via the sealing glass member 6.

尚、前記封止用ガラス部材6は酸化鉛(PbO)が70.0W
t%未満であるとガラスの熱膨張が小さくなって絶縁基
体1と蓋体2の熱膨張と合わなくなり、また90.0Wt%を
越えるとガラスの耐薬品性が劣化して絶縁容器3の気密
封止の信頼性が大きく低下するため酸化鉛(PbO)は70.
0乃至90.0Wt%の範囲に限定される。
The sealing glass member 6 contains 70.0 W of lead oxide (PbO).
If it is less than t%, the thermal expansion of the glass becomes small and it does not match the thermal expansion of the insulating base 1 and the lid 2. If it exceeds 90.0 Wt%, the chemical resistance of the glass deteriorates and the insulating container 3 is hermetically sealed. The reliability of lead oxide (PbO) is 70.
It is limited to the range of 0 to 90.0 Wt%.

また酸化ホウ素(B2O3)が10.0Wt%未満であるとガラ
スの熱膨張が大きくなって絶縁基体1と蓋体2の熱膨張
と合わなくなり、また15.0Wt%を越えるとガラスの耐薬
品性が劣化して絶縁容器3の気密封止の信頼性が大きく
低下するため酸化ホウ素(B2O3)は10.0乃至15.0Wt%の
範囲に限定される。
Further, when the content of boron oxide (B 2 O 3 ) is less than 10.0 Wt%, the thermal expansion of the glass becomes large, and the thermal expansion of the insulating substrate 1 and the lid 2 does not match, and when it exceeds 15.0 Wt%, the chemical resistance of the glass is high. Boron oxide (B 2 O 3 ) is limited to the range of 10.0 to 15.0 Wt% because the reliability is deteriorated and the reliability of the airtight sealing of the insulating container 3 is significantly reduced.

またアルミナ(Al2O3)が0.5Wt%未満であるとガラス
の結晶化が進んで絶縁容器3の気密封止が困難となり、
また3.0Wt%を越えるとガラスの熱膨張が小さくなって
絶縁基体1と蓋体2の熱膨張と合わなくなることからア
ルミナ(Al2O3)は0.5乃至3.0Wt%の範囲に限定され
る。
Further, when the amount of alumina (Al 2 O 3 ) is less than 0.5 Wt%, the crystallization of the glass progresses and it becomes difficult to hermetically seal the insulating container 3,
On the other hand, if it exceeds 3.0 Wt%, the thermal expansion of the glass becomes so small that it does not match the thermal expansion of the insulating substrate 1 and the lid 2. Therefore, alumina (Al 2 O 3 ) is limited to the range of 0.5 to 3.0 Wt%.

またシリカ(SiO2)が0.5Wt%未満であるとガラスの
結晶化が進んで絶縁容器3の気密封止が困難となり、ま
た3.0Wt%を越えると絶縁容器3に外部リード端子5を
ガラス部材6を介して取着する際、ガラスの溶融温度が
上がり、絶縁容器3内部に収容する半導体素子に熱劣化
を招来させることからシリカ(SiO2)は0.50乃至3.0Wt
%の範囲に限定される。
If silica (SiO 2 ) is less than 0.5 Wt%, the crystallization of the glass will proceed and it will be difficult to hermetically seal the insulating container 3. If it exceeds 3.0 Wt%, the external lead terminal 5 will be attached to the insulating container 3 as a glass member. Silica (SiO 2 ) is 0.50 to 3.0 Wt because the melting temperature of the glass rises when attaching via 6 and causes thermal deterioration of the semiconductor element housed inside the insulating container 3.
Limited to the range of%.

また酸化亜鉛(ZnO)が3.0Wt%を越えるとガラスの結
晶化が進んで絶縁容器3の気密封止が困難となることか
ら酸化亜鉛(ZnO)は3.0Wt%以下に限定される。
If zinc oxide (ZnO) exceeds 3.0 wt%, crystallization of the glass proceeds and it becomes difficult to hermetically seal the insulating container 3. Therefore, zinc oxide (ZnO) is limited to 3.0 wt% or less.

また酸化ビスマス(Bi2O3)が3.0Wt%を越えるとガラ
スの耐薬品性が劣化して絶縁容器3の気密封止の信頼性
が大きく低下するため酸化ビスマス(Bi2O3)は3.0Wt%
以下に限定される。
The bismuth oxide (Bi 2 O 3) bismuth oxide because the reliability of the hermetic sealing of the chemical resistance of the glass is deteriorated insulating container 3 exceeds 3.0 wt% significantly decreases (Bi 2 O 3) is 3.0 Wt%
Limited to:

更に、フィラーとして添加されるチタン鉛(PbTi
O3)、β−ユークタプタイト(Li2Al2Si2O8)、コージ
ライト(Mg2Al4Si5O18)、ジルコン(ZrSiO4)、酸化錫
(SnO2)、ウイレマイト(Zn2SiO4)及びチタン酸錫(S
n4SiO4)の少なくとも1種が15Vol%を越えるとガラス
の熱膨張が絶縁基体1と蓋体2の熱膨張と合わなくなる
ことからその添加は15Vol%以下に限定される。
In addition, titanium lead (PbTi
O 3 ), β-euctaptite (Li 2 Al 2 Si 2 O 8 ), cordierite (Mg 2 Al 4 Si 5 O 18 ), zircon (ZrSiO 4 ), tin oxide (SnO 2 ), willemite (Zn 2 SiO 4). ) And tin titanate (S
If at least one of n 4 SiO 4 ) exceeds 15 vol%, the thermal expansion of the glass will not match the thermal expansion of the insulating substrate 1 and the lid 2. Therefore, its addition is limited to 15 vol% or less.

前記封止用ガラス部材6は前述した成分から成るガラ
スに適当な有機溶剤、溶媒を添加して得たガラスペース
トを従来周知の厚膜手法を採用することによって絶縁基
体1及び蓋体2の相対向する主面に被着形成される。
The sealing glass member 6 is made of a glass paste obtained by adding a suitable organic solvent and a solvent to the glass composed of the above-described components, by employing a conventionally known thick-film technique, by using a conventionally known thick-film technique. It is formed on the opposite main surface.

前記絶縁基体1と蓋体2との間には導電性材料から成
る外部リード端子5が配されており、該外部リード端子
5は半導体素子4の各電極がワイヤ7を介し電気的に接
続され、外部リード端子5を外部電気回路に接続するこ
とによって半導体素子4が外部電気回路に接続されるこ
ととなる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base 1 and the lid 2. The external lead terminal 5 is electrically connected to each electrode of the semiconductor element 4 via a wire 7. By connecting the external lead terminal 5 to an external electric circuit, the semiconductor element 4 is connected to the external electric circuit.

前記外部リード端子5は絶縁基体1と蓋体2の相対向
する主面に被着させた封止用ガラス部材6を溶融一体化
させ、絶縁容器3を気密封止する際に同時に絶縁基体1
と蓋体2との間に取着される。
The external lead terminals 5 are formed by melting and integrating a sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating container 3 with the insulating base 1.
And the cover 2.

前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面にクロム−鉄合金(Cr−Fe合金)
を接合させたもの、或いは板状のインバー合金(36.5Wt
% Ni−63.5Wt% Fe合金)の上下面に非磁性体金属であ
る銅(Cu)を接合させたもの等から成り、その透磁率は
200(CGS)以下、導電率は10%(IACS)以上、熱膨張係
数は95乃至110×10-7/℃の導電性材料から成る。
The external lead terminal 5 is made of a non-magnetic metal such as copper (Cu).
Chromium-iron alloy (Cr-Fe alloy) on the outer surface of a core made of
Or plate-like Invar alloy (36.5Wt
% Ni-63.5Wt% Fe alloy) and non-magnetic metal copper (Cu) bonded to the top and bottom surfaces, and its magnetic permeability is
It is made of a conductive material with a conductivity of 200 (CGS) or less, a conductivity of 10% (IACS) or more, and a coefficient of thermal expansion of 95 to 110 × 10 -7 / ℃.

前記外部リード端子5はその透磁率が200(CGS)以下
であり、透磁率が低いことから外部リード端子5に電流
が流れたとしても外部リード端子5中には大きな自己イ
ンダクタンスが発生することはなく、その結果、前記自
己インダクタンスにより誘発される逆起電力に起因した
ノイズを極小となし、内部に収容する半導体素子4を常
に正常に作動させることができる。
The external lead terminal 5 has a magnetic permeability of 200 (CGS) or less, and since the magnetic permeability is low, a large self-inductance is generated in the external lead terminal 5 even when a current flows through the external lead terminal 5. As a result, the noise caused by the back electromotive force induced by the self-inductance can be minimized, and the semiconductor element 4 housed therein can always operate normally.

また前記外部リード端子5はその導電率が10%(IAC
S)以上であり、電気を流し易いことから外部リード端
子5の信号伝搬速度を極めて速いものとなすことがで
き、絶縁容器3内に収容した半導体素子4を高速駆動さ
せたとしても半導体素子4と外部電気回路との間におけ
る信号の出し入れは常に正常、且つ確実となすことがで
きる。
The external lead terminal 5 has a conductivity of 10% (IAC
S) This is the above, and since it is easy to conduct electricity, the signal propagation speed of the external lead terminal 5 can be made extremely high. Even if the semiconductor element 4 housed in the insulating container 3 is driven at high speed, the semiconductor element 4 Signals can be always transmitted and received between the device and the external electric circuit normally and reliably.

また同時に外部リード端子5の導電率が高いことから
外部リード端子5の線幅が細くなったとしても外部リー
ド端子5の電気抵抗を低く抑えることができ、その結
果、外部リード端子5における信号の減衰を極小として
内部に収容する半導体素子4に外部電気回路から供給さ
れる電気信号を正確に入力することができる。
At the same time, since the electrical conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 is reduced, the electrical resistance of the external lead terminal 5 can be suppressed low. An electric signal supplied from an external electric circuit can be accurately input to the semiconductor element 4 housed therein with the attenuation being minimized.

更に前記外部リード端子5はその熱膨張係数が95乃至
110×10-7/℃であり、封止用ガラス部材6の熱膨張係数
と近似することから外部リード端子5を絶縁基体1と蓋
体2の間に封止用ガラス部材6を用いて固定する際、外
部リード端子5と封止用ガラス部材6との間には両者の
熱膨張係数の相違に起因する熱応力が発生することな
く、外部リード端子5を封止用ガラス部材6で強固に固
定することも可能となる。
Further, the external lead terminal 5 has a thermal expansion coefficient of 95 to
110 × 10 −7 / ° C., which is close to the thermal expansion coefficient of the sealing glass member 6, so that the external lead terminal 5 is fixed between the insulating substrate 1 and the lid body 2 by using the sealing glass member 6. In doing so, the external lead terminals 5 and the sealing glass member 6 are firmly fixed to each other by the sealing glass member 6 without causing thermal stress due to the difference in thermal expansion coefficient between the external lead terminals 5 and the sealing glass member 6. It is also possible to fix it to.

かくして、この半導体素子収納用パッケージによれば
絶縁基体1の凹部底面に半導体素子4を取着固定すると
ともに該半導体素子4の各電極をボンディングワイヤ7
により外部リード端子5に接続させ、しかる後、絶縁基
体1と蓋体2とを該絶縁基体1及び蓋体2の相対向する
主面に予め被着させておいた封止用ガラス部材6を溶融
一体化させることによって接合させ、これによって最終
製品としての半導体装置が完成する。
Thus, according to the package for accommodating the semiconductor element, the semiconductor element 4 is attached and fixed to the bottom surface of the concave portion of the insulating base 1 and each electrode of the semiconductor element 4 is connected to the bonding wire 7.
After that, the sealing glass member 6 in which the insulating substrate 1 and the lid 2 are previously adhered to the opposing main surfaces of the insulating substrate 1 and the lid 2 is removed. The semiconductor device as a final product is completed by joining by melting and integrating.

(発明の効果) 本発明の半導体素子収納用パッケージによれば、半導
体素子を収容するための絶縁容器をフォルステライト質
焼結体もしくはジルコニア質焼結体で、外部リード端子
を透磁率200(CGS)以下、熱膨張係数が95乃至110×10
-7/℃、導電率10%(IACS)以上の金属で、ガラス部材
を酸化鉛70.0乃至90.0Wt%、酸化ホウ素10.0乃至15.0Wt
%、シリカ0.5乃至3.0Wt%、アルミナ0.5乃至3.0Wt%、
酸化亜鉛及び酸化ビスマス3.0Wt%以下から成るガラス
成分にフィラーとしてのチタン酸鉛、β−ユークリプタ
イト、コージライト、ジルコン、酸化錫、ウイレマイト
及びチタン酸錫の少なくとも1種を15Vol%以下添加し
たガラスで形成したことから外部リード端子に電流を流
したとしても該外部リード端子中に大きな自己インダク
タンスが発生することはなく、その結果、前記自己イン
ダクタンスにより誘発される逆起電力に起因したノイズ
を極小となし、内部に収容する半導体素子を常に正常に
作動させることが可能となる。
(Effect of the Invention) According to the package for housing a semiconductor element of the present invention, the insulating container for housing the semiconductor element is a forsterite sintered body or a zirconia sintered body, and the external lead terminal has a magnetic permeability of 200 (CGS). ) Below, the coefficient of thermal expansion is 95 to 110 × 10
-7 / ℃, metal with a conductivity of 10% (IACS) or more, glass member made of lead oxide 70.0 to 90.0 Wt%, boron oxide 10.0 to 15.0 Wt
%, Silica 0.5 to 3.0 Wt%, alumina 0.5 to 3.0 Wt%,
At least one of lead titanate, β-eucryptite, cordierite, zircon, tin oxide, willemite and tin titanate as a filler was added to a glass component consisting of zinc oxide and bismuth oxide of 3.0 Wt% or less in an amount of 15 Vol% or less. Since it is made of glass, a large self-inductance does not occur in the external lead terminal even when a current is applied to the external lead terminal, and as a result, the noise caused by the counter electromotive force induced by the self-inductance is reduced. Since it is extremely small, it is possible to always operate the semiconductor element housed inside normally.

また外部リード端子の信号伝搬速度を極めて速いもの
となすことができ、絶縁容器内に収容した半導体素子を
高速駆動させたとしても半導体素子と外部電気回路との
間における信号の出し入れを安定、且つ確実となすこと
が可能となる。
Also, the signal propagation speed of the external lead terminal can be made extremely high, and even if the semiconductor element housed in the insulating container is driven at a high speed, the transfer of signals between the semiconductor element and the external electric circuit is stable, and It is possible to make sure.

更に外部リード端子の線幅が細くなったとしても外部
リード端子の電気抵抗を低く抑えることができ、その結
果、外部リード端子における信号の減衰を極小として内
部に収容する半導体素子に外部電気回路から供給される
電気信号を正確に入力することができる。
Furthermore, even if the line width of the external lead terminal is reduced, the electric resistance of the external lead terminal can be kept low. The supplied electric signal can be input accurately.

また更に外部リード端子はその熱膨張係数が絶縁基
体、蓋体及び封止用ガラス部材の各々の熱膨張係数と近
似し、絶縁基体と蓋体との間に外部リード端子を挟み、
各々を封止用ガラス部材で取着接合したとしても絶縁基
体及び蓋体と封止用ガラス部材との間、外部リード端子
と封止用ガラス部材との間のいずれにも熱膨張係数の相
違に起因する熱応力は発生せず、すべてを強固に取着接
合することも可能となる。
Furthermore, the coefficient of thermal expansion of the external lead terminal approximates to the coefficient of thermal expansion of each of the insulating substrate, the lid and the sealing glass member, and the external lead terminal is sandwiched between the insulating substrate and the lid.
Even if each of them is attached and bonded with a sealing glass member, the thermal expansion coefficient is different between the insulating base and the lid and the sealing glass member, and between the external lead terminal and the sealing glass member. No thermal stress is caused by this, and it is possible to firmly attach and join all of them.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 1……絶縁基体、2……蓋体 3……絶縁容器 5……外部リード端子 6……封止用ガラス部材
FIG. 1 is a cross-sectional view showing one embodiment of a package for housing a semiconductor element according to the present invention, and FIG. 2 is a plan view of the package shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Insulating base 2 ... Lid 3 ... Insulating container 5 ... External lead terminal 6 ... Glass member for sealing

フロントページの続き (56)参考文献 特開 昭50−146899(JP,A) 特開 昭53−123080(JP,A) 特開 昭64−5041(JP,A) 特開 昭62−256741(JP,A) 実開 昭63−185318(JP,U) 実開 昭55−100239(JP,U)Continuation of the front page (56) References JP-A-50-146899 (JP, A) JP-A-53-123080 (JP, A) JP-A 64-5041 (JP, A) JP-A-62-256741 (JP , A) Actually opened 63-185318 (JP, U) Actually opened 55-100239 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部に半導体素子を収容するための空所を
有する絶縁容器に外部リード端子をガラス部材を介して
取着して成る半導体素子収納用パッケージにおいて、前
記絶縁容器をフォルステライト質焼結体もしくはジルコ
ニア質焼結体で、外部リード端子を透磁率200(CGS)以
下、熱膨張係数95乃至110×10-7/℃、導電率10%(IAC
S)以上の金属で、ガラス部材を酸化鉛70.0乃至90.0Wt
%、酸化ホウ素10.0乃至15.0Wt%、シリカ0.5乃至3.0Wt
%、アルミナ0.5乃至3.0Wt%、酸化亜鉛及び酸化ビスマ
ス3.0Wt%以下から成るガラス成分にチタン酸鉛、β−
ユークリプタイト、コージライト、ジルコン、酸化錫、
ウイレマイト及びチタン酸錫の少なくとも1種から成る
フィラーを15Vol%以下添加したガラスで形成したこと
を特徴とする半導体素子収納用パッケージ。
1. A package for storing a semiconductor device, comprising an external lead terminal attached via a glass member to an insulating container having a space for housing a semiconductor device therein, wherein the insulating container is made of forsterite. A sintered body or a zirconia sintered body, the external lead terminal has a magnetic permeability of 200 (CGS) or less, a coefficient of thermal expansion of 95 to 110 × 10 -7 / ° C, an electrical conductivity of 10% (IAC
S) or higher metal, glass oxide lead oxide 70.0 to 90.0Wt
%, Boron oxide 10.0 to 15.0 Wt%, silica 0.5 to 3.0 Wt
%, Alumina 0.5 to 3.0 wt%, zinc oxide and bismuth oxide 3.0 wt% or less lead titanate, β-
Eucryptite, cordierite, zircon, tin oxide,
A package for accommodating a semiconductor element, which is formed of glass containing 15 vol% or less of a filler containing at least one of willemite and tin titanate.
JP1308613A 1989-08-25 1989-11-27 Package for storing semiconductor elements Expired - Fee Related JP2691309B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308613A JP2691309B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements
US07/573,406 US5057905A (en) 1989-08-25 1990-08-24 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308613A JP2691309B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03167864A JPH03167864A (en) 1991-07-19
JP2691309B2 true JP2691309B2 (en) 1997-12-17

Family

ID=17983157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308613A Expired - Fee Related JP2691309B2 (en) 1989-08-25 1989-11-27 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2691309B2 (en)

Also Published As

Publication number Publication date
JPH03167864A (en) 1991-07-19

Similar Documents

Publication Publication Date Title
JP2691309B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JP2742617B2 (en) Package for storing semiconductor elements
JP2742616B2 (en) Package for storing semiconductor elements
JP2678509B2 (en) Package for storing semiconductor elements
JP2736455B2 (en) Package for storing semiconductor elements
JP2742618B2 (en) Package for storing semiconductor elements
JP2691308B2 (en) Package for storing semiconductor elements
JP2736463B2 (en) Package for storing semiconductor elements
JP2736462B2 (en) Package for storing semiconductor elements
JP2742613B2 (en) Package for storing semiconductor elements
JP2742612B2 (en) Package for storing semiconductor elements
JP2742614B2 (en) Package for storing semiconductor elements
JP2736461B2 (en) Package for storing semiconductor elements
JP2747613B2 (en) Package for storing semiconductor elements
JP2736454B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JP2736453B2 (en) Package for storing semiconductor elements
JP2691304B2 (en) Package for storing semiconductor elements
JP2691305B2 (en) Package for storing semiconductor elements
JP2691311B2 (en) Package for storing semiconductor elements
JP2736452B2 (en) Package for storing semiconductor elements
JP2742615B2 (en) Package for storing semiconductor elements
JP2736464B2 (en) Package for storing semiconductor elements
JP2736458B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees