JP2685905B2 - How to operate a ceramic filter - Google Patents

How to operate a ceramic filter

Info

Publication number
JP2685905B2
JP2685905B2 JP17701989A JP17701989A JP2685905B2 JP 2685905 B2 JP2685905 B2 JP 2685905B2 JP 17701989 A JP17701989 A JP 17701989A JP 17701989 A JP17701989 A JP 17701989A JP 2685905 B2 JP2685905 B2 JP 2685905B2
Authority
JP
Japan
Prior art keywords
filtration
rate
filter
differential pressure
ceramic filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17701989A
Other languages
Japanese (ja)
Other versions
JPH03131312A (en
Inventor
和矢 山田
卓 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17701989A priority Critical patent/JP2685905B2/en
Publication of JPH03131312A publication Critical patent/JPH03131312A/en
Application granted granted Critical
Publication of JP2685905B2 publication Critical patent/JP2685905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、食品工業、医薬品工業、原子力工業などの
分野で液体中の懸濁固形物を除去または濃縮するために
広く用いられるセラミックフィルタの運転方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is widely used for removing or concentrating suspended solids in a liquid in the fields of food industry, pharmaceutical industry, nuclear industry and the like. The present invention relates to a method of operating a ceramic filter used.

(従来の技術) アルミナ,シリカなどの無機化合物で構成されている
セラミックフィルタは、強度,耐熱性,耐触性に優れて
いるため、食品工業,医薬品工業,原子力工業などの分
野で広く用いられている。
(Prior Art) Ceramic filters composed of inorganic compounds such as alumina and silica have excellent strength, heat resistance, and touch resistance, and are therefore widely used in fields such as food industry, pharmaceutical industry, and nuclear industry. ing.

セラミックフィルタには各種形状の物があり、運転方
法も様々であるが、一様に濾過時間の経過と共にフィル
タ表面に処理対象の固形物が捕捉,沈着されて、次第に
濾過性能が低下し、またフィルタを透過する際の抵抗が
増えて、濾過差圧が上昇して処理流量が低下するので、
所定の処理容量が得られなくなる。そこで、フィルタを
洗浄して処理性能の回復を図る必要が生じる。
There are various shapes of ceramic filters, and there are various operating methods, but the solid matter to be treated is uniformly trapped and deposited on the filter surface with the lapse of filtration time, and the filtration performance gradually deteriorates. Since the resistance when passing through the filter increases, the filtration differential pressure increases and the processing flow rate decreases,
A predetermined processing capacity cannot be obtained. Therefore, it is necessary to wash the filter to recover the processing performance.

フィルタの洗浄には、従来、透過液または清水または
気体により洗浄または逆洗(濾過処理方法とは逆の方向
に流す)している。
Conventionally, the filter is washed with permeated liquid, clear water, or gas by washing or backwashing (flowing in the opposite direction to the filtration treatment method).

従来のセラミックフィルタを用いた運転方法の一例を
第5図の系統図により説明する。
An example of the operation method using the conventional ceramic filter will be described with reference to the system diagram of FIG.

被処理液タンク3内の懸濁固形物を含む被処理液体
は、ポンプ4により給液配管11,13,弁6を経てセラミッ
クフィルタ収納容器2に導かれ、セラミックフィルタ1
の管内側の流路を流れ、弁7,循環配管14を経て再び被処
理液タンク3に戻り、再び同じ経路で循環する。セラミ
ックフィルタ1では、被処理液体の一部が管内側の流路
での流れと垂直方向にフィルタを透過するいわゆるクロ
スフロー濾過が行われ、ろ過液は濾液吐出配管15に吐出
される。
The liquid to be treated containing suspended solids in the liquid to be treated tank 3 is introduced into the ceramic filter container 2 by the pump 4 through the liquid supply pipes 11, 13 and the valve 6, and the ceramic filter 1
Through the valve 7 and the circulation pipe 14 and returns to the liquid tank 3 to be treated again, and circulates again in the same path. In the ceramic filter 1, so-called cross-flow filtration is performed in which a part of the liquid to be treated passes through the filter in the direction perpendicular to the flow in the flow path inside the pipe, and the filtrate is discharged to the filtrate discharge pipe 15.

このように被処理液が循環すると、被処理液体中の懸
濁固形物は次第に濃縮される。濃縮液は弁9を開けるこ
とにより配管16を通って系外に排出される。濃縮液が排
出されると、被処理液タンク3には配管17,弁10を経て
新しい被処理液が供給される。
When the liquid to be treated circulates in this way, suspended solids in the liquid to be treated are gradually concentrated. The concentrated liquid is discharged to the outside of the system through the pipe 16 by opening the valve 9. When the concentrated liquid is discharged, a new liquid to be processed is supplied to the liquid to be processed tank 3 through the pipe 17 and the valve 10.

前記したクロスフロー濾過では、濾過によりフィルタ
を透過する濾過液の流れの方向と被処理液体の流れの方
向が直角であるため、せん断力によりフィルタ表面への
固形物の沈着が抑制されるという利点があり、その結果
逆洗インターバルが長いという特徴がある。
In the above-mentioned cross-flow filtration, since the flow direction of the filtrate passing through the filter by filtration and the flow direction of the liquid to be treated are at right angles, the advantage that the deposition of solid matter on the filter surface is suppressed by the shearing force And as a result, the backwash interval is long.

このクロスフロー方式に対して、弁7を閉じて、濾過
器に供給された被処理液が全てフィルタを透過して濾過
されるいわゆるワンススルー方式の濾過処理がある。こ
の方式によれば装置がコンパクトになるという利点があ
る。
In contrast to this cross-flow method, there is a so-called once-through filtration process in which the valve 7 is closed and all the liquid to be processed supplied to the filter is transmitted through the filter and filtered. According to this method, there is an advantage that the device becomes compact.

ところで、セラミックフィルタに限らず、逆洗再生式
のフィルタを運転する場合、濾過処理から逆洗に切り換
える時期は定流量濾過処理では濾過差圧により、また定
圧濾過処理では濾過速度により規定されることが多い。
以下に定流量濾過処理を例にとり説明する。
By the way, when operating not only a ceramic filter but also a backwash regeneration type filter, the time to switch from the filtration process to the backwash process is specified by the filtration differential pressure in the constant flow rate filtration process and by the filtration speed in the constant pressure filtration process. There are many.
The constant flow rate filtration process will be described below as an example.

濾過差圧は、一般にフィルタの耐圧性および濾過器を
設置した系統の許容圧力などの条件を勘案して決められ
ている。
The filtration differential pressure is generally determined in consideration of conditions such as the pressure resistance of the filter and the allowable pressure of the system in which the filter is installed.

この濾過差圧の大きさは、理論上は次式で表わすこと
ができる。
The magnitude of this filtration differential pressure can theoretically be expressed by the following equation.

ここで、 t :時間[s] △P :濾過差圧[kg/cm2] △Po :t=0における濾過差圧 (初期濾過差圧)[kg/cm2] αm :濾過ケーキの比抵抗[m/kg] C :入口濃度[kg/m3] μ :濾液粘度[kg/m・s] q :膜面での線速度[m/s] gc :単位換算係数9.8[kg・m/s2・Kg] である。 Here, t: time [s] ΔP: filtration differential pressure [kg / cm 2 ] ΔPo: filtration differential pressure at t = 0 (initial filtration differential pressure) [kg / cm 2 ] αm: specific resistance of the filter cake [M / kg] C: Concentration at inlet [kg / m 3 ] μ: Viscosity of filtrate [kg / m · s] q: Linear velocity on membrane surface [m / s] gc: Unit conversion coefficient 9.8 [kg ・ m / s 2 · Kg].

(I)式より、濾過差圧は濾過ケーキの比抵抗(α
m)と膜表面で捕捉した懸濁固形分の量(C×q×t)
および膜面での線速度(q)で決まる。したがって、逆
洗処理に切換える時期を濾過差圧によって規定する方法
は、通常の濾過処理においては、合理的と考えられる。
From the formula (I), the filtration differential pressure is the specific resistance (α
m) and the amount of suspended solids trapped on the membrane surface (C × q × t)
And the linear velocity (q) on the film surface. Therefore, the method of defining the time to switch to the backwash process by the filtration pressure difference is considered to be rational in the normal filtration process.

(発明が解決しようとする課題) しかしながら、非常に濾過しやすい液、すなわち濾過
ケーキの比抵抗(αm)が非常に小さい液を濾過処理す
る場合には、濾過差圧が上昇しないにもかかわらず、多
量の懸濁固形分が捕捉され、逆洗処理に切換えた時には
この捕捉された懸濁固形分でセラミックフィルタの被処
理液側流路またはフィルタ収納容器内が充満し、濃縮液
の排出が困難になって逆洗による再生ができないという
ことが生じる恐れがある。このため、このような液の濾
過処理に際しては、上述したような事態を防ぐため、逆
洗処理の時期を濾過差圧以外に、例えば濾過量あるいは
濾過運転時間で規定することも行われているが、その値
の根拠は必ずしも明確なものではなかった。
(Problems to be Solved by the Invention) However, when a liquid that is extremely easy to filter, that is, a liquid whose filter cake has a very small specific resistance (α m ), is subjected to a filtration treatment, the filtration pressure difference does not increase, although However, when a large amount of suspended solids is captured and the process is switched to backwashing, the suspended solids captured will fill the liquid passage on the liquid side of the ceramic filter or the filter storage container, and the concentrated liquid will be discharged. However, there is a risk that it will become difficult to perform regeneration by backwashing. Therefore, in order to prevent the above-mentioned situation in the filtration process of such a liquid, the time of the backwash process may be regulated by the filtration amount or the filtration operation time other than the filtration differential pressure. However, the rationale for the value was not always clear.

一方、非常に濾過しにくい液、すなわち濾過ケーキの
比抵抗が非常に大きい液を濾過した場合には、膜表面で
捕捉された懸濁固形分がごくわずかであるにもかかわら
ず、濾過差圧が上昇して逆洗処理の規定値に達してしま
い、このため濾過処理より逆洗処理に切換える時期を濾
過差圧によって規定していると、切換えの頻度が非常に
大きくなり、濾過処理がはかどらないという問題があ
る。さらに、膜表面で捕捉された懸濁固形分が濾過ケー
キを形成していない場合には、逆洗処理時には膜表面の
微小孔付近の懸濁固形分だけが除去され、それ以外の懸
濁固形分は残ってしまうため、十分な逆洗効果が得られ
ないという問題もある。
On the other hand, when a liquid that is very difficult to filter, that is, a liquid with a very high specific resistance of the filter cake, is filtered, even though the suspended solids captured on the membrane surface are very small, the filtration pressure difference Rises and reaches the specified value for backwashing process.Therefore, if the time to switch to the backwashing process from the filtration process is specified by the filtration differential pressure, the switching frequency becomes very large, and There is a problem that there is no. Furthermore, when the suspended solids captured on the membrane surface do not form a filter cake, only the suspended solids in the vicinity of the micropores on the membrane surface are removed during the backwash treatment, and other suspended solids are removed. There is also a problem that a sufficient backwashing effect cannot be obtained because the remaining amount remains.

本発明は上記情況に鑑みてなされたもので、その目的
は、逆洗再生式のセラミックフィルタを効率よく長期的
に安定に運転し続け、かつ効率よく濾過処理および逆洗
処理を行うことのできるセラミックフィルタの運転方法
を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to allow a backwash regeneration type ceramic filter to continue to operate efficiently and stably for a long period of time, and to efficiently perform a filtration process and a backwash process. It is to provide a method of operating a ceramic filter.

[発明の構成] (課題を解決するための手段および作用) 本発明のセラミックフィルタの運転方法は、被処理液
を濾過処理し、濾過差圧が上昇または濾過速度が低下し
たときに逆洗を行って濾過性能を回復させ、再び濾過処
理することを繰り返すセラミックフィルタの運転方法に
おいて、被処理液中に含まれる微粒子の性状に応じて濾
過速度を変える点に特徴を有するものであり、すなわ
ち、フィルタで捕捉した固形分単位質量当りの濾過差圧
の上昇率または濾過速度の低下率が大きいいわゆる難濾
過性の場合には濾過速度を小さくし、逆にフィルタで捕
捉した固形分単位質量当りの濾過の上昇率または濾過速
度の低下率が小さいいわゆる易濾過性の場合には濾過速
度を大きくすることを特徴とするものである。
[Structure of the Invention] (Means and Actions for Solving the Problems) A method of operating a ceramic filter according to the present invention comprises subjecting a liquid to be treated to filtration treatment, and performing backwashing when the filtration differential pressure increases or the filtration speed decreases. The method of operating a ceramic filter in which filtration performance is recovered by performing filtration treatment again by repeating filtration treatment is characterized in that the filtration speed is changed according to the properties of the fine particles contained in the liquid to be treated, that is, If the increase rate of the filtration differential pressure per unit mass of the solid content captured by the filter or the rate of decrease of the filtration rate is large, in the case of so-called difficult filtration, decrease the filtration rate, and conversely per unit mass of the solid content captured by the filter. In the case of so-called easy filterability in which the increase rate of filtration or the decrease rate of filtration rate is small, the feature is to increase the filtration rate.

また、上記した本発明の運転方法をさらに具体的に説
明すると、例えば濾過処理工程におけるフィルタに捕捉
された固形分の量が5〜100g/m2のときに濾過差圧が前
回の逆洗後の初期差圧より1kg/cm2以内の範囲内で上昇
するように、濾過速度を制御するとよく、かつ濾過処理
工程におけるフィルタに捕捉された固形分の量が5〜10
0g/m2のときに逆洗を行うようにするとよい。これを次
に説明する。
Further, more specifically explaining the operating method of the present invention described above, for example, when the amount of solids captured by the filter in the filtration treatment step is 5 to 100 g / m 2 The filtration rate may be controlled so that it rises within a range of 1 kg / cm 2 or less than the initial differential pressure, and the amount of solids captured by the filter in the filtration treatment step is 5 to 10
Backwashing should be done at 0 g / m 2 . This will be described below.

第5図の系統図を示したセラミックフィルタ装置を用
い、非結晶鉄コロイドとα−Fe2O3を混合して濾過比抵
抗がそれぞれ約1012,1013,1014m/kgとなるように調整
した懸濁液(含有量は鉄として0.1〜100ppm)を用い
て、一定流量(0.1〜1m3/h/m2)で、逆洗時までにフィ
ルタに捕捉される懸濁固形分の量をパラメータとして、
濾過と逆洗の繰り返し実験を行った。
Mixing amorphous iron colloid and α-Fe 2 O 3 by using the ceramic filter device shown in the system diagram of Fig. 5 so that the filtration resistivity becomes about 10 12 , 10 13 and 10 14 m / kg, respectively. The suspension (content is 0.1 to 100 ppm as iron) adjusted to a constant flow rate (0.1 to 1 m 3 / h / m 2 ) at a constant flow rate (0.1 to 1 m 3 / h / m 2 ) of the suspended solids captured by the filter before backwashing. Quantity as a parameter,
Repeated experiments of filtration and backwash were performed.

結果を第1図、第2図および第3図に示す。第1図は
濾過比抵抗がそれぞれ約1012,1013,1014m/kgの懸濁液
について、濾過速度をパラメータに、単位濾過面積当り
の捕捉固形分量と濾過差圧の上昇の関係を調べた結果を
示したものである。
The results are shown in FIGS. 1, 2 and 3. Figure 1 shows the relationship between the trapped solids content per unit filtration area and the rise of the filtration differential pressure with the filtration rate as a parameter for suspensions with filtration specific resistances of about 10 12 , 10 13 , and 10 14 m / kg, respectively. It shows the results of the examination.

(a)図が濾過比抵抗約1012,(b)図が1013,(c)
図が1014の懸濁液であり、いずれも横軸が単位濾過面積
当りの捕捉固形分量(g/m2)、縦軸が(濾過差圧−初期
濾過差圧)(Kg/m2)である。
(A) figure is about 10 12 filtration specific resistance, (b) figure is 10 13 , (c)
The figure is a suspension of 10 14 , in which the horizontal axis represents the amount of trapped solids per unit filtration area (g / m 2 ), and the vertical axis represents (filtration differential pressure-initial filtration differential pressure) (Kg / m 2 ). Is.

濾過差圧はほぼ前述の(I)式に従って、変化する。
ただし、この実験に使ったセラミックフィルタは、管状
内圧式であるので、管内表面に捕捉された固形分により
形成されるケーキ層のために、管内表面積すなわち濾過
面積が濾過処理の時間経過とともに減少することにな
り、定流量濾過処理を続ければ、実質的には膜面での線
速度が大きくなって、濾過差圧の上昇率が大きくなる。
The filtration differential pressure changes substantially according to the above formula (I).
However, since the ceramic filter used in this experiment is of the tubular internal pressure type, the internal surface area of the pipe, that is, the filtration area, decreases with the lapse of time of the filtration process due to the cake layer formed by the solid content trapped on the interior surface of the pipe. Therefore, if the constant flow rate filtration process is continued, the linear velocity on the membrane surface is substantially increased, and the increase rate of the filtration differential pressure is increased.

第2図は、物質収支から求めた逆洗効率を示すグラフ
であり、第1図の場合と同様に濾過比抵抗1012,1013
1014の懸濁液について調べたものである。この図から1
回の濾過処理で捕捉した懸濁固形分の量が100g/m2より
大きい場合には著しく逆洗効率が低下すること、また5g
/m2より小さい場合もやや逆洗効率が低下することがわ
かる。また、第3図は、20〜100回濾過と逆洗を繰り返
した時の逆洗直後の濾過差圧の上昇率である。この図よ
り、1回の濾過処理で捕捉した懸濁固形分の量が少ない
ほど、逆洗直後の濾過差圧の上昇率が大きいことがわか
る。
FIG. 2 is a graph showing the backwashing efficiency obtained from the mass balance. Similar to the case of FIG. 1, the filtration resistivity 10 12 , 10 13 ,
10 14 suspensions were investigated. 1 from this figure
If the amount of suspended solids captured by one filtration treatment is greater than 100 g / m 2, the backwash efficiency will be significantly reduced.
It can be seen that the backwash efficiency is slightly reduced even when it is smaller than / m 2 . Further, FIG. 3 shows the rate of increase in the filtration pressure difference immediately after backwashing when filtration and backwashing were repeated 20 to 100 times. From this figure, it can be seen that the smaller the amount of suspended solids captured by one filtration process, the greater the rate of increase in the filtration differential pressure immediately after backwashing.

第2図および第3図の結果から、逆洗のタイミングは
1回の濾過処理で捕捉する懸濁固形分の量を5g/m2〜100
g/m2の範囲とした場合とするのが適正であることがわか
る。
From the results of FIG. 2 and FIG. 3, the backwash timing was such that the amount of suspended solids captured by one filtration treatment was 5 g / m 2 to 100.
It can be seen that it is appropriate to set it in the range of g / m 2 .

一方、1回の濾過処理での濾過差圧の上昇幅にも適正
な範囲があり、微小孔への目詰まりを抑制し、常識的な
逆洗条件で十分な逆洗効果を得るには、1回の濾過処理
での濾過差圧の上昇幅は1kg/cm2以内としなければなら
ないことが、別の実験でわかっている。
On the other hand, there is an appropriate range for the rise width of the filtration differential pressure in one filtration treatment, to suppress clogging of the micropores and to obtain a sufficient backwash effect under common-sense backwash conditions. Another experiment has shown that the rise width of the filtration differential pressure in one filtration treatment must be within 1 kg / cm 2 .

ところで、単位濾過面積当りの捕捉固形分の量と濾過
差圧の上昇の関係は第1図に示す通りで、単位濾過面積
当りの捕捉固形分の量が逆洗のタイミングとして適正な
5〜100g/m2の範囲での濾過差圧の上昇は、懸濁固形分
の濾過比抵抗と濾過速度によって様々であり、例えば、
濾過比抵抗1012m/kgの易濾過性の懸濁液を濾過速度1m2
/h・m2で濾過処理した場合、単位濾過面積当りの捕捉固
形分の量が80g/m2で、濾過差圧上昇は、0.5kg/cm2であ
る。これに対して濾過比抵抗1014m/kgの難濾過性の懸濁
液を濾過速度1m3/h・cm2でろ過処理した場合、ろ過差
圧が1kg/cm2上昇しても、捕捉固形分量は3g/m2にすぎ
ず、適正な範囲とはならない。
By the way, the relationship between the amount of trapped solids per unit filtration area and the rise of the filtration differential pressure is as shown in FIG. 1, and the amount of trapped solids per unit filtration area is 5 to 100g which is appropriate for the backwash timing. The increase of the filtration differential pressure in the range of / m 2 varies depending on the filtration resistivity and the filtration rate of the suspended solids.
A readily filterable suspension with a filtration specific resistance of 10 12 m / kg was filtered at a filtration rate of 1 m 2.
When the filtration treatment is carried out at / h · m 2 , the amount of trapped solids per unit filtration area is 80 g / m 2 , and the filtration differential pressure rise is 0.5 kg / cm 2 . On the other hand, when a difficult-to-filter suspension with a filtration resistivity of 10 14 m / kg is filtered at a filtration rate of 1 m 3 / h · cm 2 , even if the filtration differential pressure rises by 1 kg / cm 2 , it will be captured. The solid content is only 3 g / m 2 , which is not within the proper range.

そのため、濾過比抵抗1014m/kgの難濾過性の懸濁液を
長期的に安定に濾過処理と逆洗を続けるためには、濾過
速度0.5m3/h・m2の場合、濾過差圧の上昇は0.7〜1kg/cm
2(捕捉固形分量5〜7g/m2)、濾過速度0.1m3/h/m2の場
合、濾過差圧の上昇は0.15〜1kg/cm2(捕捉固形分量5
〜30g/m2)とすればよい。
Therefore, to continue long-term stable filtration and backwash flame filtration of the suspension of the filtration resistivity 10 14 m / kg in the case of the filtration rate 0.5m 3 / h · m 2, filtered difference Pressure rise is 0.7-1kg / cm
2 (captured solid content 5 to 7 g / m 2 ) and filtration rate 0.1 m 3 / h / m 2 increase of filtration differential pressure is 0.15 to 1 kg / cm 2 (captured solid content 5
~ 30g / m 2 ).

したがって、1回の濾過処理で捕捉する懸濁固形分の
量が5g/m2〜100g/m2の範囲内で逆洗を行い、かつ懸濁固
形分の捕捉量がこの範囲内の時に前回の逆洗直後の濾過
差圧より1kg/cm2以内の範囲内に上昇するように濾過速
度を調整することにより、長期的に安定に濾過処理と逆
洗を続けることができ、効率的な運転を行うことが可能
となる。
Accordingly, performs backwash within amount of suspended solids of 5g / m 2 ~100g / m 2 to capture in a single filtration, and trapping of suspended solids last when within this range By adjusting the filtration speed so that it rises within the range of 1 kg / cm 2 within the filtration differential pressure immediately after backwashing, the filtration process and backwashing can be continued stably for a long period of time, resulting in efficient operation. It becomes possible to do.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

第5図の示したセラミックフィルタ装置を用いてワン
ススルー方式により、以下のように濾過および逆洗を繰
り返し行った。すなわち、第5図において、弁7を閉
じ、被処理液タンク3内の被処理液を、ポンプ4により
給液配管11、13、弁6を経てセラミックフィルタ収納容
器2に導き、ここで濾過処理して処理液を弁8を経て管
15へ流すようにする。この方法によりまず、易濾過性の
α−Fe2O3(濾過比抵抗:1012m/kg)を固形分として含
む懸濁液(鉄含有料10ppm)を濾過速度1m3/h・m2で濾
過処理し、濾過差圧が0.5kg/cm2上昇したところで逆洗
することを繰り返した。この場合、1回の濾過処理で捕
捉した固形分の量は80g/m2であった。
Using the ceramic filter device shown in FIG. 5, filtration and backwash were repeatedly performed by the once-through method as follows. That is, in FIG. 5, the valve 7 is closed, and the liquid to be treated in the liquid to be treated tank 3 is guided by the pump 4 to the ceramic filter storage container 2 through the liquid supply pipes 11 and 13 and the valve 6, and the filtration treatment is performed here. Then, the processing liquid is piped through the valve 8.
Flush to 15. According to this method, first, a suspension (iron content of 10 ppm) containing easily filterable α-F e2 O 3 (filtration specific resistance: 10 12 m / kg) as a solid content was filtered at a filtration rate of 1 m 3 / h · m 2 The filtration treatment was repeated and backwashing was repeated when the filtration pressure difference increased by 0.5 kg / cm 2 . In this case, the amount of solids captured by one filtration process was 80 g / m 2 .

次に、難濾過性の非結晶鉄コロイド(濾過比抵抗:5×
1014m/kg)を固形分として含む懸濁液(鉄含有料10pp
m)を濾過速度0.1m3/h/m2で濾過処理し濾過差圧が1kg/c
m2上昇したところで逆洗することを繰り返した。この場
合、1回の濾過処理で捕捉した固形分の量は、7g/m2
あった。
Next, non-filterable amorphous iron colloid (filtration specific resistance: 5 ×
Suspension containing 10 14 m / kg) as solid content (iron content 10pp
m) is filtered at a filtration rate of 0.1 m 3 / h / m 2 to obtain a filtration differential pressure of 1 kg / c.
Backwashing was repeated when m 2 was raised. In this case, the amount of solid matter captured by one filtration treatment was 7 g / m 2 .

一方、発明との比較のために、難濾過性の非結晶鉄コ
ロイド(濾過比抵抗:5×1014m/kg)を固形分として含む
懸濁液(鉄含有量10ppm)を濾過速度1m3/h・m2で濾過
処理し、濾過差圧が1kg/cm2上昇したところで逆洗する
ことを繰り返した。この場合、1回の濾過処理で捕捉し
た固形分の量は、0.7g/m2であった。
On the other hand, for comparison with the invention, a suspension (iron content 10 ppm) containing a non-filterable amorphous iron colloid (filtration specific resistance: 5 × 10 14 m / kg) as a solid content was filtered at a filtration rate of 1 m 3 The filtration treatment was repeated at / h · m 2 , and backwashing was repeated when the filtration pressure difference increased by 1 kg / cm 2 . In this case, the amount of solids captured by one filtration process was 0.7 g / m 2 .

実施例と比較例のそれぞれのサイクルにおける濾過処
理後および逆洗後の濾過差圧を第4図に示す。この図か
らも明らかなように、1回の濾過処理で捕捉する懸濁固
形分の量を5〜100g/m2の範囲内となるように濾過速度
を制御した実施例では、安定した濾過処理と逆洗とが行
われたが、1回の濾過処理で懸濁固形分を0.7g/m2とし
た比較例では、逆洗頻度が多い上に毎回の逆洗で十分な
逆洗効果が得られないため、処理進行に伴い、濾過差圧
の上昇が甚だしくなり、運転が不可能となった。
FIG. 4 shows the filtration differential pressure after the filtration treatment and after the backwash in each cycle of the example and the comparative example. As is clear from this figure, in the examples in which the filtration rate was controlled so that the amount of suspended solids captured by one filtration treatment was within the range of 5 to 100 g / m 2 , stable filtration treatment was performed. However, in the comparative example in which the suspended solid content was 0.7 g / m 2 in one filtration treatment, the backwashing frequency was high and a sufficient backwashing effect was obtained with each backwashing. Since it could not be obtained, as the treatment progressed, the increase in the filtration differential pressure became so great that the operation became impossible.

[発明の効果] 以上説明したように、本発明の運転方法によれば、難
濾過性、易濾過性等の被処理液の性状にかかわらず、安
定に濾過処理と逆洗を行うことができるので、セラミッ
クフィルタの寿命を延ばすことが可能である。
[Effects of the Invention] As described above, according to the operating method of the present invention, it is possible to perform stable filtration and backwash regardless of the properties of the liquid to be treated, such as difficulty in filtration and easy filtration. Therefore, it is possible to extend the life of the ceramic filter.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図および第3図は本発明の作用を示す図
で、第1図は種々の濾過速度で種々の濾過比抵抗の懸濁
液を濾過した場合の単位濾過面積当りの捕捉固形分量と
濾過差圧の上昇の関係を示すグラフ、第2図は逆洗効果
を示すグラフ、第3図は1回の濾過処理で捕捉した固形
分の量と逆洗直後の濾過差圧の上昇率を示すグラフであ
る。第4図は本発明の実施例における効果を示すグラ
フ、第5図はセラミックフィルタ装置を示す系統図であ
る。 1…セラミックフィルタ 2…セラミックフィルタ収納容器 3…被処理液タンク 4…ポンプ 13…給液配管 15…濾過吐出配管
FIGS. 1, 2 and 3 are views showing the operation of the present invention, and FIG. 1 shows trapping per unit filtration area when a suspension having various filtration specific resistances is filtered at various filtration speeds. Fig. 2 is a graph showing the relationship between the solid content and the rise in filtration differential pressure, Fig. 2 is a graph showing the effect of backwashing, and Fig. 3 is a graph showing the amount of solids captured in one filtration treatment and the filtration pressure difference immediately after backwashing. It is a graph which shows a rate of increase. FIG. 4 is a graph showing the effect in the embodiment of the present invention, and FIG. 5 is a system diagram showing a ceramic filter device. 1 ... Ceramic filter 2 ... Ceramic filter container 3 ... Liquid tank for treatment 4 ... Pump 13 ... Supply pipe 15 ... Filtration and discharge pipe

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被処理液を濾過処理し、濾過差圧が上昇ま
たは濾過速度が低下したときに濾過性能を回復させ、再
び濾過処理することを繰り返すセラミックフィルタの運
転方法において、セラミックフィルタで捕捉した固形分
単位質量当りの濾過差圧の上昇率または濾過速度の低下
率が大きい被処理液の場合は濾過速度を小さくし、逆に
該上昇率または低下率が小さい被処理液の場合は濾過速
度を大きくすることを特徴とするセラミックフィルタの
運転方法。
Claim: What is claimed is: 1. A method for operating a ceramic filter, wherein a liquid to be treated is subjected to a filtration treatment, the filtration performance is restored when the filtration differential pressure rises or the filtration speed decreases, and the filtration treatment is repeated. When the rate of increase in the filtration differential pressure per unit mass of the solid content or the rate of decrease in the filtration rate is large, the filtration rate is decreased. Conversely, when the rate of the increase or decrease is small, the filtration is performed. A method for operating a ceramic filter characterized by increasing the speed.
【請求項2】濾過処理工程におけるフィルタに捕捉され
た固形分の量が5〜100g/m2のときに濾過差圧が前回の
逆洗後の初期差圧より1kg/cm2以内の範囲で上昇するよ
うに、濾過速度を調整する請求項1記載のセラミックフ
ィルタの運転方法。
2. When the amount of solids captured by the filter in the filtration process is 5 to 100 g / m 2 , the filtration pressure difference is within 1 kg / cm 2 from the initial pressure difference after the previous backwashing. The method for operating a ceramic filter according to claim 1, wherein the filtration rate is adjusted so as to increase.
【請求項3】濾過処理工程におけるフィルタに捕捉され
た固形分の量が5〜100g/m2のときに、逆洗を行う請求
項1記載のセラミックフィルタの運転方法。
3. The method of operating a ceramic filter according to claim 1, wherein backwashing is performed when the amount of solids captured by the filter in the filtration step is 5 to 100 g / m 2 .
JP17701989A 1989-07-11 1989-07-11 How to operate a ceramic filter Expired - Lifetime JP2685905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17701989A JP2685905B2 (en) 1989-07-11 1989-07-11 How to operate a ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17701989A JP2685905B2 (en) 1989-07-11 1989-07-11 How to operate a ceramic filter

Publications (2)

Publication Number Publication Date
JPH03131312A JPH03131312A (en) 1991-06-04
JP2685905B2 true JP2685905B2 (en) 1997-12-08

Family

ID=16023737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17701989A Expired - Lifetime JP2685905B2 (en) 1989-07-11 1989-07-11 How to operate a ceramic filter

Country Status (1)

Country Link
JP (1) JP2685905B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO325550B1 (en) * 2006-10-31 2008-06-16 Due Miljo As Procedures for the purification of oils and their use in food and feed
DE102007044524A1 (en) * 2007-09-18 2009-03-19 Man Diesel Se Device and method for cleaning lubricants and lubricant circuit
SG189999A1 (en) * 2010-10-26 2013-06-28 Mitsubishi Gas Chemical Co Crossflow type filtering operation method using ceramic filter
ES2769630T3 (en) 2010-10-26 2020-06-26 Mitsubishi Gas Chemical Co Cross flow type filtration method of operation using a ceramic filter

Also Published As

Publication number Publication date
JPH03131312A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
US4088576A (en) Method of manufacture of tubular inertial filter
US5358552A (en) In situ filter cleaning system for gas streams
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
EP0122867A2 (en) Pneumatic hydro-pulse filter system and method of operation
JP5870044B2 (en) Filter apparatus for fluid filtration process and process execution
CA1272138A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JP2685905B2 (en) How to operate a ceramic filter
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
JPH11197414A (en) Filter element and filter device
JPH084724B2 (en) How to operate a hollow fiber membrane filter
JPS63302910A (en) Method for washing porous filter
US8236183B2 (en) Methods and systems for filtration
JP2511038B2 (en) How to operate a hollow fiber membrane filter
JP2685897B2 (en) Method and device for operating ceramic filter
JPH0380921A (en) Driving method of membrane filtration apparatus
JPS62234515A (en) Operating method for precoating type parallel flow filter device
CN207957966U (en) A kind of used filter of infant industry water process
JPS63315112A (en) Washing method of ceramic filter
Treffry-Goatley et al. The dewatering of sludges using a tubular filter press
RU1782175C (en) Filter slot cap with filtering bulk material
JPH0323294Y2 (en)
JPH10249173A (en) Filtration method by pleated membrane filter
SU915886A1 (en) Cartridge filter
JPH07185234A (en) Method and apparatus for solid-liquid separation
JPS63294916A (en) Filtration method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090815

EXPY Cancellation because of completion of term