JP2511038B2 - How to operate a hollow fiber membrane filter - Google Patents

How to operate a hollow fiber membrane filter

Info

Publication number
JP2511038B2
JP2511038B2 JP62128782A JP12878287A JP2511038B2 JP 2511038 B2 JP2511038 B2 JP 2511038B2 JP 62128782 A JP62128782 A JP 62128782A JP 12878287 A JP12878287 A JP 12878287A JP 2511038 B2 JP2511038 B2 JP 2511038B2
Authority
JP
Japan
Prior art keywords
fiber membrane
hollow fiber
pressure
backwashing
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62128782A
Other languages
Japanese (ja)
Other versions
JPS63294905A (en
Inventor
和矢 山田
孝夫 高田
隆盛 白井
文夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62128782A priority Critical patent/JP2511038B2/en
Publication of JPS63294905A publication Critical patent/JPS63294905A/en
Application granted granted Critical
Publication of JP2511038B2 publication Critical patent/JP2511038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、精密ろ過、限外ろ過あるいは逆浸透用に用
いられる中空糸膜フィルタの運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for operating a hollow fiber membrane filter used for microfiltration, ultrafiltration or reverse osmosis.

(従来の技術) 中空糸膜は、断面が微小な環状をなしており、単位容
積内の膜面積を大きくとることができ、かつ耐圧性にも
優れているので、各種の膜分離装置に広く用いられてい
る。
(Prior Art) Hollow fiber membranes have a minute ring-shaped cross-section, can take a large membrane area in a unit volume, and are excellent in pressure resistance, so they are widely used in various membrane separation devices. It is used.

ところで、このような中空糸膜においては、ろ過時間
の経過とともに膜表面に処理対象の微粒子が付着濃縮さ
れて次第にろ過性能が低下したり、膜面で捕捉濃縮され
た微粒子の回収(処理装置からの排出)が十分に行われ
なくなる。このため、このような状態になった場合に
は、中空糸膜の内側から気体または液体を外側に透過さ
せるとともに、中空糸膜外から中空糸膜に向けて多数の
気泡を噴出させて中空糸膜を収納した容器内の液体を撹
拌振動させ、これにより膜面に付着した微粒子を除去す
る、いわゆる逆洗処理が行われている。
By the way, in such a hollow fiber membrane, as the filtration time elapses, the fine particles to be treated are adhered and concentrated on the membrane surface to gradually reduce the filtration performance, or the fine particles captured and concentrated on the membrane surface are collected (from the treatment device). Will not be fully discharged. Therefore, in such a state, gas or liquid is permeated from the inside of the hollow fiber membrane to the outside, and a large number of bubbles are ejected from the outside of the hollow fiber membrane toward the hollow fiber membrane to blow the hollow fiber. BACKGROUND ART A so-called backwashing process is performed in which a liquid in a container accommodating a film is stirred and vibrated to remove fine particles adhering to the film surface.

第4図は、このような逆洗処理により膜面の再生を行
いながら中空糸膜フィルタを用いてろ過を行う従来の実
験装置の一例を示すものである。
FIG. 4 shows an example of a conventional experimental apparatus for performing filtration using a hollow fiber membrane filter while regenerating the membrane surface by such backwashing treatment.

同図において、1は複数本の中空糸膜からなる中空糸
膜フィルタを示している。この中空糸膜フィルタ1は、
中空糸膜フィルタ収納容器2の内部に固定されている。
中空糸膜フィルタ収納容器2の内部は、しきり板3によ
り原液室4とろ液室5の2室に分けられている。
In the figure, 1 indicates a hollow fiber membrane filter composed of a plurality of hollow fiber membranes. This hollow fiber membrane filter 1 is
It is fixed inside the hollow fiber membrane filter container 2.
A hollow plate 3 divides the inside of the hollow fiber membrane filter container 2 into two chambers, a stock solution chamber 4 and a filtrate chamber 5.

原液室4の底部には、原液供給用配管6と逆洗処理水
排出用配管7とが接続部近傍で合流されて接続されてい
る。原液供給用配管6の、中空糸膜フィルタ収納容器2
に接続されていない他端は分岐して、スラリー供給用配
管8と清浄水供給用配管9に接続されている。さらに、
スラリー供給用配管8の他端はスラリータンク10に、清
浄水供給用配管9の他端は清浄水タンク11に、それぞれ
接続されている。
At the bottom of the stock solution chamber 4, a stock solution supply pipe 6 and a backwash treated water discharge pipe 7 are joined together near the connection part and connected. Hollow fiber membrane filter storage container 2 of undiluted solution supply pipe 6
The other end, which is not connected to, is branched and connected to the slurry supply pipe 8 and the clean water supply pipe 9. further,
The other end of the slurry supply pipe 8 is connected to the slurry tank 10, and the other end of the clean water supply pipe 9 is connected to the clean water tank 11.

また、原液室4の上方側面には、オーバーフロー用配
管12が接続されている。このオーバーフロー用配管12
と、逆洗処理水排出用配管7の他端は、共にスラリータ
ンク10の上方に開口している。
An overflow pipe 12 is connected to the upper side surface of the stock solution chamber 4. This overflow pipe 12
The other end of the backwashing water discharge pipe 7 is open above the slurry tank 10.

この実験装置において、スラリータンク10は、所定の
濃度の微粒子の懸濁液である実験用原液を調製する容器
と逆洗処理後に排出される逆洗処理水を収容する容器と
を兼ねており、懸濁液撹拌のための撹拌機13が設けられ
ている。
In this experimental apparatus, the slurry tank 10 also serves as a container for preparing an experimental stock solution that is a suspension of fine particles having a predetermined concentration and a container for storing backwashing water discharged after the backwashing treatment, A stirrer 13 for stirring the suspension is provided.

なお、原液供給用配管6には、弁14と圧力調整弁15、
逆洗処理水排出用配管7には弁16、スラリー供給用配管
8には弁17および18とスラリー供給用ポンプ19、清浄水
供給用配管9には弁20と清浄水供給用ポンプ21とがそれ
ぞれ設けられている。さらに、供給圧力を調節するため
のバイパス用配管22および弁23が、清浄水供給用配管9
から分岐して設けられている。
The stock solution supply pipe 6 has a valve 14 and a pressure adjusting valve 15,
A valve 16 is provided in the backwash treated water discharge pipe 7, valves 17 and 18 and a slurry supply pump 19 are provided in the slurry supply pipe 8, and a valve 20 and a clean water supply pump 21 are provided in the clean water supply pipe 9. Each is provided. Further, the bypass pipe 22 and the valve 23 for adjusting the supply pressure are the clean water supply pipe 9
It is provided by branching from.

中空糸膜フィルタ収納容器2のろ液室5の頂部には、
ろ液排出用配管24の一端が接続されており、その他端は
清浄水タンク11の上方に開口している。この実験装置に
おける清浄水タンク11は、ろ過処理時に排出されるろ液
を収容する容器と実験原液調製の際の濃度調節用水の貯
溜容器を兼ねている。また、ろ液排出用配管24には、弁
25、流量計26および温度計27が設けられている。
At the top of the filtrate chamber 5 of the hollow fiber membrane filter container 2,
One end of the filtrate discharge pipe 24 is connected, and the other end is opened above the clean water tank 11. The clean water tank 11 in this experimental device serves both as a container for storing the filtrate discharged during the filtration process and a storage container for the concentration adjusting water during the preparation of the experimental stock solution. In addition, a valve is installed on the filtrate discharge pipe 24.
25, a flow meter 26 and a thermometer 27 are provided.

なお、中空糸膜フィルタのろ過差圧(圧力損失)を測
定するためには、原液供給用配管6およびろ液排出用配
管24には、それぞれ圧力計28、29および差圧計30が設置
されている。
In order to measure the filtration differential pressure (pressure loss) of the hollow fiber membrane filter, pressure gauges 28 and 29 and a differential pressure gauge 30 are installed in the stock solution supply pipe 6 and the filtrate discharge pipe 24, respectively. There is.

さらに、この実験装置においては、上述したような給
排液用配管系統(6、7、8、9、12、22、24)の他
に、空気供給用配管系統が設けられている。すなわち、
空気供給用配管31は加圧空気を供給するエアコンプレッ
サ32から、圧力調整弁33とエアフィルタ34を経て、逆洗
処理用加圧空気供給配管35および逆洗処理用気泡噴出配
管36に接続されている。また、逆洗処理用加圧空気供給
配管35には、弁37と流量計38とが設けられており、その
他端は中空糸膜フィルタ収納容器2のろ液室5頂部に接
続されており、この接続部はろ液排出用配管24と開口部
を共用している。逆洗処理用気泡噴出配管36には、同様
に弁39と流量計40とが設けられており、中空糸膜フィル
タ収納容器2の原液室4の底部に接続されていて、この
接続部は原液供給用配管6および逆洗処理水排出用配管
7と開口部を共用している。
Further, in this experimental apparatus, in addition to the supply / drainage piping system (6, 7, 8, 9, 12, 22, 24) described above, an air supply piping system is provided. That is,
The air supply pipe 31 is connected from an air compressor 32 that supplies pressurized air, through a pressure adjusting valve 33 and an air filter 34, to a backwashing pressurized air supply pipe 35 and a backwashing air bubble jetting pipe 36. ing. A valve 37 and a flow meter 38 are provided in the pressurized air supply pipe 35 for the backwashing process, and the other end is connected to the top of the filtrate chamber 5 of the hollow fiber membrane filter storage container 2. This connection portion shares the opening with the filtrate discharge pipe 24. Similarly, a valve 39 and a flowmeter 40 are provided in the bubble jet pipe 36 for backwashing treatment, and the valve 39 and the flowmeter 40 are connected to the bottom of the stock solution chamber 4 of the hollow fiber membrane filter storage container 2, and this connection part is the stock solution. The opening is shared with the supply pipe 6 and the backwash treated water discharge pipe 7.

このように構成された中空糸膜フィルタを用いるろ過
実験装置においては、ろ過処理すべき実験原液をスラリ
ータンク10で調製し、これを予め清浄水タンク11に満た
されていた清浄水と混合して所定の濃度になるように、
弁17、18、20、15、14および流量計26、ポンプ19、21を
調節しながら原液供給用配管6を経て中空糸膜収納容器
2の原液室4へ供給する。このとき、逆洗処理水排出用
配管7の弁16は閉じられている。そして原液が中空糸膜
を透過する際に、膜面に原液中の微粒子が捕捉され、微
粒子が取除かれたろ液はろ液室5に流入し、弁25が開状
態にされたろ液排出用配管24から排出される。
In the filtration experimental device using the hollow fiber membrane filter configured in this way, the experimental stock solution to be filtered is prepared in the slurry tank 10, and this is mixed with the clean water filled in the clean water tank 11 in advance. To reach the desired concentration,
While controlling the valves 17, 18, 20, 15, 14 and the flow meter 26 and the pumps 19, 21, the solution is supplied to the stock solution chamber 4 of the hollow fiber membrane container 2 through the stock solution supply pipe 6. At this time, the valve 16 of the backwash treated water discharge pipe 7 is closed. When the undiluted solution permeates the hollow fiber membrane, the fine particles in the undiluted solution are captured on the membrane surface, and the filtrate from which the particles have been removed flows into the filtrate chamber 5, and the valve 25 is in the open state. Emitted from 24.

ろ過処理の進行に伴い、中空糸膜の膜面に微粒子が付
着してろ過差圧が上昇した場合に行われる逆洗処理は、
弁25を閉状態とし、ろ液排出用配管24の開口部を経てろ
液室5に加圧空気を供給しろ液を逆流させることによ
り、中空糸膜の外側に付着した微粒子を剥離させる。さ
らに、気泡噴出用配管36を経て、加圧空気を原液室4に
供給し、気泡として噴出させて中空糸膜を脈動させ、微
粒子を洗い落とす。なお、このとき逆流したろ液は、原
液とともにオーバーフロー配管12を経て中空糸膜収納容
器外に排出される。
With the progress of the filtration process, the backwashing process performed when the filtration differential pressure increases due to the adhesion of fine particles to the membrane surface of the hollow fiber membrane,
The valve 25 is closed, pressurized air is supplied to the filtrate chamber 5 through the opening of the filtrate discharge pipe 24, and the filtrate is caused to flow backward, whereby the fine particles adhering to the outside of the hollow fiber membrane are peeled off. Further, pressurized air is supplied to the stock solution chamber 4 through the bubble jetting pipe 36 and jetted as bubbles to pulsate the hollow fiber membrane to wash out fine particles. The filtrate that has flowed back at this time is discharged to the outside of the hollow fiber membrane container through the overflow pipe 12 together with the stock solution.

この後、原液室4の底部に設けられた逆洗処理水排出
用配管7の弁16を開けて微粒子を含んだ逆洗処理水を排
出する。
After this, the valve 16 of the backwash treated water discharge pipe 7 provided at the bottom of the stock solution chamber 4 is opened to discharge the backwash treated water containing fine particles.

このような中空糸膜フイルタの逆洗処理においては、
中空糸膜の内側に導入した気体または液体を中空糸膜の
内側から外側に透過させる際に、中空糸膜内に一定の圧
力をかけ、この中空糸膜内外の圧力差により気体または
液体を透過させている。そして、この中空糸膜内に加え
る圧力を変化させることにより、気体または液体が膜を
透過する際の透過流速を調節することが可能である。さ
らに、このような透過流速は、逆洗効果に大きく影響を
及ぼすことは知られているが、これまでのところその影
響を定量的にとらえるには至っていない。
In the backwashing treatment of such a hollow fiber membrane filter,
When the gas or liquid introduced inside the hollow fiber membrane is permeated from the inside to the outside of the hollow fiber membrane, a certain pressure is applied inside the hollow fiber membrane, and the gas or liquid permeates due to the pressure difference between the inside and outside of the hollow fiber membrane. I am letting you. Then, by changing the pressure applied to the hollow fiber membrane, it is possible to adjust the permeation flow rate when the gas or liquid permeates the membrane. Further, it is known that such a permeation flow velocity has a great influence on the backwash effect, but so far, its influence has not been quantitatively grasped.

(発明が解決しようとする問題点) ところで、先に述べたような逆洗処理を行ったとして
も、すべての微粒子を除去することは困難であり、一部
の微粒子は除去されずに膜表面や膜壁の孔内に残ってし
まう。この微粒子の残留量や残留場所等は、微粒子の種
類や中空糸膜フィルタの運転条件等に左右されるが、い
ずれにしてもろ過処理と逆洗処理とのサイクルを繰返す
間に、この残留微粒子は蓄積されてゆく。したがって、
気体や液体が膜を透過する際の抵抗は、次第に増加す
る。その結果、各サイクル毎に中空糸膜内に一定の圧力
をかけて逆洗処理を行っている場合には、逆洗処理時の
中空糸膜の内側から外側へ透過する気体または液体の透
過流速が、処理の進行に伴い次第に低下することにな
る。そして、透過流速が低下した結果、逆洗効果が次第
に低下してしまう。
(Problems to be Solved by the Invention) By the way, it is difficult to remove all fine particles even if the backwashing treatment as described above is performed, and some fine particles are not removed, and the film surface is not removed. And remains in the pores of the membrane wall. The residual amount and location of the fine particles depend on the type of fine particles and the operating conditions of the hollow fiber membrane filter, but in any case, while the cycle of the filtration process and the backwash process is repeated, the residual fine particles are Is accumulating. Therefore,
The resistance of gas or liquid as it permeates the membrane increases progressively. As a result, when backwashing is performed by applying a constant pressure in the hollow fiber membrane in each cycle, the permeation flow rate of gas or liquid that permeates from the inside to the outside of the hollow fiber membrane during backwashing. However, as the processing progresses, it gradually decreases. Then, as a result of the decrease in the permeation flow rate, the backwash effect gradually decreases.

本発明はこのような従来の事情に対処してなされたも
のであり、ろ過処理と逆洗処理とを繰返し行っても逆洗
効果の低下しない中空糸膜フィルタの運転方法を提供す
ることを目的とする。
The present invention has been made in response to such conventional circumstances, and an object thereof is to provide a method for operating a hollow fiber membrane filter in which the backwashing effect is not deteriorated even when the filtration treatment and the backwashing treatment are repeatedly performed. And

[発明の構成] (問題点を解決するための手段) 本発明者らは、逆洗処理時に中空糸膜内にかける圧力
および透過流速に着目し研究をすすめたところ、例えば
逆洗処理の各サイクル毎に中空糸膜内にかける圧力を初
期圧力より増加させることにより、流量を一定値以上に
して逆洗を行った場合に、逆洗効率が低下しないことを
見出した。
[Structure of the Invention] (Means for Solving Problems) The inventors of the present invention conducted research by paying attention to the pressure and the permeation flow rate applied to the hollow fiber membrane during the backwashing treatment. It was found that the backwashing efficiency does not decrease when the backwashing is carried out at a constant flow rate by increasing the pressure applied to the hollow fiber membranes from the initial pressure every cycle.

すなわち本発明は、処理対象となる微粒子を含む原液
を中空糸膜の膜面の外側から内側に透過させてろ液を前
記中空糸膜の内側に排出するとともに前記中空糸膜の外
表面において微粒子を捕捉濃縮するろ液処理工程と、前
記中空糸膜の膜面の内側に加圧空気の圧力を加え液体を
前記中空糸膜の膜面の内側から外側に透過させて前記ろ
過処理工程により前記中空糸膜の外表面に捕捉された微
粒子を除去する逆洗処理工程とを繰り返し行うことから
なる中空糸膜フィルタの運転方法において、前記逆洗処
理工程時に前記中空糸膜の膜面の内側に加える加圧空気
の圧力をろ過処理時のろ過差圧に応じて設定する加圧空
気の圧力設定工程と、この設定された加圧空気を前記中
空糸膜の膜面の内面に加える加圧空気の加圧工程とを具
備することを特徴としている。
That is, the present invention allows a stock solution containing fine particles to be treated to permeate from the outer side to the inner side of the membrane surface of the hollow fiber membrane to discharge the filtrate to the inner side of the hollow fiber membrane and fine particles on the outer surface of the hollow fiber membrane. A filtrate treatment step of capturing and concentrating, and a pressure of pressurized air is applied to the inside of the membrane surface of the hollow fiber membrane to allow the liquid to permeate from the inside to the outside of the membrane surface of the hollow fiber membrane, and the filtration treatment step causes the hollow In a method for operating a hollow fiber membrane filter, which comprises repeatedly performing a backwashing treatment step of removing fine particles trapped on the outer surface of the fiber membrane, adding to the inside of the membrane surface of the hollow fiber membrane during the backwashing treatment step. The pressure setting step of the pressurized air that sets the pressure of the pressurized air according to the filtration differential pressure during the filtration process, and the pressure of the pressurized air that applies the set pressurized air to the inner surface of the membrane surface of the hollow fiber membrane. And a pressurizing step. To have.

本発明においては、逆洗処理工程時に中空糸膜の膜面
の内側に加える加圧空気の圧力をろ過処理時のろ過差圧
に応じて設定する加圧空気の圧力設定工程と、この設定
された加圧空気を中空糸膜の膜面の内面に加える加圧空
気の加圧工程とを設けたので、逆洗処理工程に中空糸膜
の膜面の内側から外側へ透過する液体の透過流速を一定
値以上に維持することが可能となり、これによって、ろ
過処理液に中空糸膜の膜表面に捕捉された微粒子は各サ
イクルにおいて同程度に除去して逆洗効率の低下を防止
することができるという効果が得られる。
In the present invention, a pressure air pressure setting step of setting the pressure of the pressurized air applied to the inside of the membrane surface of the hollow fiber membrane during the backwash treatment step according to the filtration differential pressure during the filtration treatment, and this setting. Since a pressurizing step of applying pressurized air to the inner surface of the hollow fiber membrane is provided, the permeation flow rate of the liquid that permeates from the inner side to the outer side of the hollow fiber membrane in the backwash process. Can be maintained at a certain value or more, whereby the fine particles trapped on the membrane surface of the hollow fiber membrane in the filtered liquid can be removed to the same extent in each cycle to prevent a reduction in backwash efficiency. The effect that it can be obtained.

(作用) 上述のように構成された本発明の中空糸膜フィルタの
運転方法においては、ろ過処理時に膜表面あるいは膜壁
の孔内に捕捉された微粒子を、各逆洗処理工程を通じて
効果的に除去することが可能となり、この微粒子が中空
糸膜に蓄積されることを防止して効率の良い逆洗処理を
行うことができる。
(Operation) In the method for operating the hollow fiber membrane filter of the present invention configured as described above, the fine particles captured on the membrane surface or in the pores of the membrane wall during the filtration treatment are effectively treated through each backwash treatment step. The fine particles can be removed, and the fine particles can be prevented from accumulating in the hollow fiber membrane to perform an efficient backwashing treatment.

(実施例) 以下、本発明の一実施例について説明する。Example An example of the present invention will be described below.

第4図に示した中空糸膜フィルタを用いたろ過実験装
置を用いて、以下のようにしてろ過および逆洗を繰り返
し行った。
Filtration and backwashing were repeated as follows using the filtration experimental apparatus using the hollow fiber membrane filter shown in FIG.

すなわち、まずスラリータンク10で、非結晶鉄コロイ
ドとα−Fe2O3コロイドを4:1の割合で含む懸濁液を調製
し、弁20を開き予め清浄水タンク11に満たされていた清
浄水と混合しつつ鉄含有量10ppmの原液とした。この原
液を弁17、18および14、15を開きポンプ21を調節して0.
1m3/時間・m2の一定流量にして、原液供給用配管6を
経て中空糸膜フィルタ収納容器2の原液室4へ供給す
る。原液は、中空糸膜フィルタ1でろ過されろ液室5に
送られ、弁25が開かれてろ液排出用配管24を経て洗浄水
タンク11に収容される。このろ過処理工程中のろ過差圧
を差圧計30により経時的に測定し、このろ過差圧がろ過
処理開始時のろ過差圧(初期ろ過差圧)より0.3kef/cm2
上昇したところで、前述の各弁を切換えて原液供給を終
了する。
That is, first, in the slurry tank 10, a suspension containing amorphous iron colloid and α-Fe 2 O 3 colloid in a ratio of 4: 1 was prepared, and the valve 20 was opened to clean the water previously filled in the clean water tank 11. An undiluted solution having an iron content of 10 ppm was mixed with water. Open this valve by opening valves 17, 18 and 14, 15 and adjusting pump 21.
A constant flow rate of 1 m 3 / hour · m 2 is supplied to the stock solution chamber 4 of the hollow fiber membrane filter storage container 2 through the stock solution supply pipe 6. The stock solution is filtered by the hollow fiber membrane filter 1 and sent to the filtrate chamber 5, and the valve 25 is opened to be stored in the washing water tank 11 via the filtrate discharge pipe 24. The filtration differential pressure during this filtration process was measured with a differential pressure gauge 30 over time, and this filtration differential pressure was 0.3 kef / cm 2 from the filtration differential pressure at the start of the filtration process (initial filtration differential pressure).
When the temperature rises, the above-mentioned valves are switched to complete the stock solution supply.

そして、ろ液室5に通じる加圧空気供給用配管35の弁
37を開き加圧空気を供給して中空糸膜フィルタ1の内側
に圧力をかけ逆洗処理工程を行う。この際、前もって空
気供給用配管31の圧力調整弁33を調整して供給する空気
の圧力を1kgf/cm2にしておく。
Then, the valve of the pipe 35 for supplying pressurized air leading to the filtrate chamber 5
37 is opened and pressurized air is supplied to apply pressure to the inside of the hollow fiber membrane filter 1 to perform the backwash process. At this time, the pressure of the air to be supplied is adjusted to 1 kgf / cm 2 by adjusting the pressure adjusting valve 33 of the air supply pipe 31 in advance.

次いで、オーバーフロー配管12の弁41を開けてろ液室
5内のろ液を、中空糸膜フィルタ1の内側から外側に透
過させ、その後逆洗処理用気泡噴出配管36の弁39を開
き、原液室5内に気泡を噴出させて中空糸膜を脈動させ
る。なお、この時の空気流量は、中空糸膜フィルタ収納
容器2単位断面積あたり0.04Nm3/時間とした。気泡噴
出後20〜30分経過したところで、弁37、39を閉じ、逆洗
処理水排出用配管7の弁16を開いて微粒子が濃縮されて
含まれる逆洗水をスラリータンク10内へ排出する。排出
後、弁16を閉じ、弁14、15、25を開けて再び原液を中空
糸膜フィルタ収納容器2内へ供給し、原液がオーバーフ
ロー配管12を通って出てきたら弁41を閉じて第2サイク
ルに移り再びろ過処理を開始する。
Next, the valve 41 of the overflow pipe 12 is opened to allow the filtrate in the filtrate chamber 5 to permeate from the inside of the hollow fiber membrane filter 1 to the outside, and then the valve 39 of the bubble jet pipe 36 for backwashing treatment is opened to open the stock solution chamber. Bubbles are jetted out into the hollow fiber membrane to pulsate the hollow fiber membrane. The air flow rate at this time was 0.04 Nm 3 / hour per unit cross-sectional area of the hollow fiber membrane filter container 2. When 20 to 30 minutes have passed after the bubbles were ejected, the valves 37 and 39 were closed, and the valve 16 of the backwash treated water discharge pipe 7 was opened to discharge the backwash water containing the concentrated fine particles into the slurry tank 10. . After the discharge, the valve 16 is closed, the valves 14, 15 and 25 are opened to supply the stock solution again into the hollow fiber membrane filter container 2, and when the stock solution comes out through the overflow pipe 12, the valve 41 is closed and the second Move to the cycle and start the filtration process again.

第2サイクルのろ過処理も第1サイクルのろ過処理と
同様な条件で行ったのち、第2サイクルの逆洗処理を行
う。このようにして、ろ過処理工程と逆洗処理工程とを
繰返し行う。
The second cycle filtration treatment is also performed under the same conditions as the first cycle filtration treatment, and then the second cycle backwash treatment is performed. In this way, the filtration process and the backwash process are repeated.

ところで、前述したように第2サイクル開始時のろ過
差圧は、逆洗処理後も中空糸膜の膜表面および膜孔内に
残留する微粒子により、第1サイクル開始時のろ過差圧
より上昇する。このため、第2サイクルの逆洗処理時の
加圧空気供給用配管35から供給する加圧空気の圧力を第
1サイクルと同圧力とすると、逆洗処理時の中空糸膜の
膜面の内側から外側に透過する液体の透過流速は第1サ
イクルにおける透過流速より低下してしまう。これは各
サイクル毎にあてはまる。
By the way, as described above, the filtration differential pressure at the start of the second cycle is higher than the filtration differential pressure at the start of the first cycle due to the fine particles remaining on the membrane surface and inside the pores of the hollow fiber membrane even after the backwashing treatment. . Therefore, assuming that the pressure of the pressurized air supplied from the pressurized air supply pipe 35 during the backwashing process in the second cycle is the same as in the first cycle, the inside of the membrane surface of the hollow fiber membrane during the backwashing process. The permeation flow velocity of the liquid permeating from the outside to the outside becomes lower than the permeation flow velocity in the first cycle. This applies for each cycle.

そこで、この実施例では、各逆洗処理工程における加
圧空気供給配管35より供給する加圧空気の圧力Pをその
各逆洗処理工程前のろ過差圧により増加させて行った。
Therefore, in this embodiment, the pressure P of the pressurized air supplied from the pressurized air supply pipe 35 in each backwashing process is increased by the filtration differential pressure before each backwashing process.

すなわち、第nサイクルにおける加圧空気の圧力Pn
値を仮に下記(I)式のように設定して、ろ過処理と逆
洗処理とを繰返し行った。
That is, the value of the pressure P n of the pressurized air in the nth cycle was temporarily set as in the following formula (I), and the filtration process and the backwash process were repeated.

Pn=Po×Dn/Do ……(I) (ただし、Doは第1サイクルにおけるろ過処理時の初
期ろ過差圧、Poは第1サイクルの逆洗処理時に中空糸膜
に加えた圧力、Dnは第(n−1)サイクルの逆洗処理終
了時のろ過差圧、すなわち第nサイクルにおけるろ過処
理時の初期ろ過差圧を表わす。) このようにしてろ過処理工程と逆洗処理工程とを繰返
し行った各サイクル毎のろ過処理工程後および逆洗処理
後のろ過差圧を第1図に示す。また、各サイクル毎の逆
洗効率を第2図に示す。
P n = P o × D n / D o (I) (where D o is the initial filtration differential pressure during the first cycle filtration treatment, P o is the hollow fiber membrane during the first cycle backwash treatment) The applied pressure, D n, represents the filtration differential pressure at the end of the backwash treatment in the (n−1) th cycle, that is, the initial filtration differential pressure during the filtration treatment in the nth cycle. FIG. 1 shows the filtration differential pressure after the filtration treatment step and after the backwash treatment in each cycle in which the backwash treatment step was repeated. Further, the backwash efficiency for each cycle is shown in FIG.

なお、これらの図において、○印で示した値は(I)
式に従って加圧空気の圧力Pを増加させて行ったろ過差
圧および逆洗効率であり、△印で示した値は、本発明と
の比較のために、実施例と同様の装置を用いて、逆洗処
理時にろ液室4内に供給する加圧空気の圧力Pを毎回1k
gf/cm2に一定にして逆洗を行い、同様にして求めたろ過
差圧および逆洗効率である。
In these figures, the values marked with ○ are (I)
The filtration differential pressure and the backwashing efficiency were obtained by increasing the pressure P of the pressurized air according to the formula, and the values indicated by Δ are the same as those of the example for comparison with the present invention. , The pressure P of the pressurized air supplied into the filtrate chamber 4 at the time of backwashing is 1 k each time.
Backflushing was performed at a constant gf / cm 2 , and the filtration differential pressure and backwashing efficiency were obtained in the same manner.

これらの図からも明らかなように、この実施例による
(I)式に従って加圧空気の圧力Pを増加させた場合に
は、20サイクル経過後においても逆洗効率が90%以上を
維持しており、各サイクルにおける逆洗処理後のろ過差
圧の上昇もわずかであるという好結果が得られた。一
方、比較例による加圧空気の圧力Pを一定とした場合に
は、逆洗処理後も中空糸膜の膜表面および膜孔内に残留
する微粒子が各サイクル毎に蓄積されてゆき、逆洗処理
時に中空糸膜の膜面の内側から外側に透過するろ液の流
速が次第に低下するため、サイクルが進むにつれ各サイ
クルにおける逆洗処理後のろ過差圧の上昇率が大きくな
るとともに、逆洗効率が低下している。
As is clear from these figures, when the pressure P of the pressurized air is increased according to the formula (I) according to this embodiment, the backwash efficiency remains 90% or more even after 20 cycles. However, good results were obtained in that the increase in the filtration differential pressure after backwashing in each cycle was also slight. On the other hand, when the pressure P of the pressurized air according to the comparative example is kept constant, the fine particles remaining on the membrane surface and the membrane pores of the hollow fiber membrane after each backwashing process are accumulated every cycle, and the backwashing is performed. During the treatment, the flow rate of the filtrate that permeates from the inside to the outside of the hollow fiber membrane gradually decreases.As the cycle progresses, the rate of increase in the filtration differential pressure after backwashing in each cycle increases and the backwashing also increases. Efficiency is decreasing.

すなわち、加圧空気の圧力Pとして、例えば(I)式
に示すように各サイクル毎のろ過差圧に応じた圧力を用
い、これにより逆洗処理時に中空糸膜の膜面の内側から
外側へ透過する液体の透過流速を一定値以上に維持する
ことによって、ろ過処理後に中空糸膜の膜表面に捕捉さ
れた微粒子は各サイクルにおいて同程度に除去され、逆
洗効率が低下しないことが理解される。
That is, as the pressure P of the pressurized air, for example, as shown in the formula (I), a pressure corresponding to the filtration differential pressure in each cycle is used, so that from the inside to the outside of the membrane surface of the hollow fiber membrane during backwashing treatment. It is understood that by maintaining the permeation flow rate of the permeating liquid above a certain value, the fine particles captured on the membrane surface of the hollow fiber membrane after the filtration treatment are removed to the same extent in each cycle, and the backwash efficiency does not decrease. It

ところで、第1図および第2図に示した比較例の結果
によれば、約50サイクル経過付近より逆洗効率の低下が
著しく、開始時から途中まではこの実施例による結果と
大差のないことがわかる。
By the way, according to the results of the comparative example shown in FIG. 1 and FIG. 2, the backwashing efficiency is remarkably reduced from around 50 cycles, and there is no great difference from the results of this example from the start to the middle. I understand.

そこで、ろ過処理時の透過流速および逆洗処理時の透
過流速と逆洗効率との関係について実験を行ったとこ
ろ、第3図に示すような結果が得られた。なお、同図に
おいてはろ過処理時と逆洗処理時との透過流速の比と逆
洗効率との関係で示した。
Therefore, an experiment was conducted on the relationship between the permeation flow rate during the filtration process and the permeation flow rate during the backwash process and the backwash efficiency, and the results shown in FIG. 3 were obtained. In the figure, the relationship between the backflow efficiency and the ratio of the permeation flow rates during the filtration process and the backwash process is shown.

この図からも明らかなように、前述した透過流速比を
1.0以上にすること、すなわち逆洗処理時の透過流速を
ろ過処理時の透過流速以上にすることにより、優れた逆
洗効率が得られることがわかる。なお、透過流速比を4.
0〜5.0と大きくしても逆洗効率はあまり向上しないこと
もわかる。
As is clear from this figure,
It can be seen that excellent backwashing efficiency can be obtained by setting it to 1.0 or more, that is, by setting the permeation flow rate during the backwash treatment to be equal to or higher than the permeation flowrate during the filtration treatment. The permeation velocity ratio is 4.
It can also be seen that the backwash efficiency does not improve much even if the value is increased to 0 to 5.0.

したがって、この実施例においては、(I)式によっ
て設定したP値を用いて各サイクルの逆洗処理を行うこ
とにより、処理進行中に前述の透過流速比が1.0以上に
維持されて良好な逆洗効率が得られる。
Therefore, in this example, by performing the backwashing process of each cycle using the P value set by the formula (I), the above-mentioned permeation flow rate ratio was maintained at 1.0 or more during the progress of the process, and a good reverse Washing efficiency can be obtained.

[発明の効果] 以上説明したように、本発明によれば、中空糸膜フィ
ルタの運転方法において、逆洗処理工程時に中空糸膜の
膜面の内側に加える加圧空気の圧力をろ過処理時のろ過
差圧に応じて設定する加圧空気の圧力設定工程と、この
設定された加圧空気を中空糸膜の膜面の内面に加える加
圧空気の加圧工程とを設けたので、中空糸膜の膜面の内
側から外側へ透過する液体の透過流速を各逆洗処理工程
毎に一定値以上に維持することが可能となり、これによ
って、ろ過処理後に中空糸膜の膜表面に捕捉された微粒
子を効果的に除去し、これが蓄積されることを防いで、
中空糸膜の寿命を延ばすことが可能である。したがって
処理対象の微粒子が放射性物質である場合には、保守点
検の作業回数が少なくなるので、放射線被曝の機会を減
らすことができる。
[Effects of the Invention] As described above, according to the present invention, in the method for operating a hollow fiber membrane filter, the pressure of the pressurized air applied to the inside of the membrane surface of the hollow fiber membrane during the backwash treatment step is set during the filtration treatment. Since the pressure setting step of the pressurized air set according to the filtration differential pressure of and the step of pressurizing the pressurized air to add the set pressurized air to the inner surface of the hollow fiber membrane are provided, It is possible to maintain the permeation flow rate of the liquid that permeates from the inner side to the outer side of the membrane surface of the fiber membrane at a certain value or more for each backwash treatment step, which allows it to be captured on the membrane surface of the hollow fiber membrane after the filtration treatment. Effectively removes fine particles and prevents them from accumulating,
It is possible to extend the life of the hollow fiber membrane. Therefore, when the particles to be treated are radioactive substances, the number of maintenance inspections is reduced, and the chance of radiation exposure can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるサイクル数とろ過処
理後および逆洗処理後のろ過差圧との関係を示すグラ
フ、第2図はその際のサイクル数と逆洗効率との関係を
示すグラフ、第3図は逆洗処理時の透過流速とろ過処理
時の透過流速との比と逆洗効率との関係を示すグラフ、
第4図は本発明の実施例および比較例に使用する中空糸
膜フィルタを用いたろ過実験装置の系統図である。 1……中空糸膜フィルタ 2……中空糸膜フィルタ収納容器 4……原液室 5……ろ液室 6……原液供給用配管 7……逆洗処理水排出用配管 10……スラリータンク 11……清浄水タンク 12……オーバーフロー用配管 24……ろ液排出用配管 28、29……圧力計 30……差圧計 31……空気供給用配管 35……逆洗処理加圧空気供給用配管 36……逆洗処理用気泡噴出配管
FIG. 1 is a graph showing the relationship between the number of cycles and the filtration differential pressure after filtration and after backwashing in one embodiment of the present invention, and FIG. 2 shows the relationship between the number of cycles and backwashing efficiency at that time. The graph shown in FIG. 3 is a graph showing the relationship between the backwash efficiency and the ratio of the permeate flow rate during the backwash process and the permeate flow rate during the filtration process.
FIG. 4 is a system diagram of a filtration experiment device using a hollow fiber membrane filter used in Examples and Comparative Examples of the present invention. 1 ... Hollow fiber membrane filter 2 ... Hollow fiber membrane filter container 4 ... Stock solution chamber 5 ... Filtrate chamber 6 ... Stock solution supply pipe 7 ... Backwash treated water discharge pipe 10 ... Slurry tank 11 …… Clean water tank 12 …… Overflow pipe 24 …… Filtrate discharge pipe 28, 29 …… Pressure gauge 30 …… Differential pressure gauge 31 …… Air supply pipe 35 …… Backwash process Pressurized air supply pipe 36 …… Bubbling jet pipe for backwashing

フロントページの続き (72)発明者 田島 文夫 東京都港区芝浦1丁目1番1号 株式会 社東芝本社事務所内 (56)参考文献 特開 昭61−197004(JP,A)Front Page Continuation (72) Inventor Fumio Tajima 1-1-1 Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters Office (56) Reference JP-A-61-197004 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】処理対象となる微粒子を含む原液を中空糸
膜の膜面の外側から内側に透過させてろ液を前記中空糸
膜の内側に排出するとともに前記中空糸膜の外表面にお
いて微粒子を捕捉濃縮するろ液処理工程と、前記中空糸
膜の膜面の内側に加圧空気の圧力を加え液体を前記中空
糸膜の膜面の内側から外側に透過させて前記ろ過処理工
程により前記中空糸膜の外表面に捕捉された微粒子を除
去する逆洗処理工程とを繰り返し行うことからなる中空
糸膜フィルタの運転方法において、 前記逆洗処理工程時に前記中空糸膜の膜面の内側に加え
る加圧空気の圧力をろ過処理時のろ過差圧に応じて設定
する加圧空気の圧力設定工程と、この設定された加圧空
気を前記中空糸膜の膜面の内面に加える加圧空気の加圧
工程とを具備することを特徴とする中空糸膜フィルタの
運転方法。
1. A stock solution containing fine particles to be treated is permeated from the outer side to the inner side of the membrane surface of the hollow fiber membrane to discharge the filtrate into the hollow fiber membrane, and at the same time, the fine particles are formed on the outer surface of the hollow fiber membrane. A filtrate treatment step of capturing and concentrating, and a pressure of pressurized air is applied to the inside of the membrane surface of the hollow fiber membrane to allow the liquid to permeate from the inside to the outside of the membrane surface of the hollow fiber membrane, and the filtration treatment step causes the hollow In a method for operating a hollow fiber membrane filter, which comprises repeatedly performing a backwashing treatment step of removing fine particles trapped on the outer surface of the fiber membrane, adding to the inside of the membrane surface of the hollow fiber membrane during the backwashing treatment step. The pressure setting step of the pressurized air that sets the pressure of the pressurized air according to the filtration differential pressure during the filtration process, and the pressure of the pressurized air that applies the set pressurized air to the inner surface of the membrane surface of the hollow fiber membrane. A pressurizing step How to operate an empty fiber membrane filter.
【請求項2】逆洗処理工程時に中空糸膜外から中空糸膜
に向けて多数の気泡を噴出させて中空糸膜周囲の液体を
撹拌振動させることを特徴とする特許請求の範囲第1項
記載の中空糸膜フィルタの運転方法。
2. The method according to claim 1, wherein a large number of bubbles are ejected from the outside of the hollow fiber membrane toward the hollow fiber membrane during the backwashing process to stir and vibrate the liquid around the hollow fiber membrane. A method for operating the described hollow fiber membrane filter.
JP62128782A 1987-05-26 1987-05-26 How to operate a hollow fiber membrane filter Expired - Lifetime JP2511038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128782A JP2511038B2 (en) 1987-05-26 1987-05-26 How to operate a hollow fiber membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128782A JP2511038B2 (en) 1987-05-26 1987-05-26 How to operate a hollow fiber membrane filter

Publications (2)

Publication Number Publication Date
JPS63294905A JPS63294905A (en) 1988-12-01
JP2511038B2 true JP2511038B2 (en) 1996-06-26

Family

ID=14993326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128782A Expired - Lifetime JP2511038B2 (en) 1987-05-26 1987-05-26 How to operate a hollow fiber membrane filter

Country Status (1)

Country Link
JP (1) JP2511038B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289958A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197004A (en) * 1985-02-25 1986-09-01 Ebara Corp Operating method for filtration device

Also Published As

Publication number Publication date
JPS63294905A (en) 1988-12-01

Similar Documents

Publication Publication Date Title
JP3302992B2 (en) Concentration of solids in suspension using hollow fiber membranes
JP4838248B2 (en) Reduction of backwash liquid waste
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JPH0657302B2 (en) Backwashing method for hollow fiber membrane filters
JP2009518165A (en) Treatment with reduced backwash volume
JPH07112185A (en) Waste water treating device and washing method therefor
JPH01500732A (en) Cleaning the filter
JP5599189B2 (en) Apparatus for treatment of incoming fluid with bioreactor and membrane filtration module
JPH03154620A (en) Membrane separating device
EP0079040A2 (en) Method and apparatus for increasing the cross-flow filtration fluxes of liquids containing suspended solids
JP3091015B2 (en) Membrane separation device
EP0122439A2 (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JP2511038B2 (en) How to operate a hollow fiber membrane filter
JPH084724B2 (en) How to operate a hollow fiber membrane filter
JPH06170178A (en) Hollow fiber membrane module filtration equipment
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
JPS644802B2 (en)
JP2009241043A (en) Backwashing method of membrane filter apparatus
JP2794304B2 (en) Cleaning method for hollow fiber membrane module
JP3601015B2 (en) Filtration method using membrane
JPH1119485A (en) Method for controlling operation in water treatment using membrane
JP2001259384A (en) Method for washing spiral membrane module
JP2685905B2 (en) How to operate a ceramic filter
JP2691846B2 (en) Solid-liquid separation method and apparatus
JPH05212254A (en) Hollow-fiber membrane module filter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12