JP2684291B2 - Decompression evaporative cooling equipment - Google Patents

Decompression evaporative cooling equipment

Info

Publication number
JP2684291B2
JP2684291B2 JP6140392A JP6140392A JP2684291B2 JP 2684291 B2 JP2684291 B2 JP 2684291B2 JP 6140392 A JP6140392 A JP 6140392A JP 6140392 A JP6140392 A JP 6140392A JP 2684291 B2 JP2684291 B2 JP 2684291B2
Authority
JP
Japan
Prior art keywords
nozzle
ejector
evaporative cooling
cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6140392A
Other languages
Japanese (ja)
Other versions
JPH05223426A (en
Inventor
高之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP6140392A priority Critical patent/JP2684291B2/en
Publication of JPH05223426A publication Critical patent/JPH05223426A/en
Application granted granted Critical
Publication of JP2684291B2 publication Critical patent/JP2684291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷却室内を減圧状態に
して、供給した冷却水を蒸発させることにより被冷却物
を気化冷却するものに関する。具体的には、各種反応を
行う反応釜の冷却装置、食品や医薬品や紙・パルプや繊
維等の気化冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system in which a cooling chamber is depressurized and the supplied cooling water is evaporated to vaporize and cool an object to be cooled. More specifically, the present invention relates to a cooling device for a reaction vessel for performing various reactions, and a vaporizing cooling device for food, medicine, paper, pulp, fiber, and the like.

【0002】[0002]

【従来の技術】従来の反応釜の冷却装置として、例えば
特開平1−315336号公報に示されたものがある。
これは、ノズルと吸込室から成るエゼクタと、エゼクタ
とタンクとポンプを組合せた組合せポンプと、反応釜の
流体室に組合せポンプの吐出水の一部を供給できる切替
え弁手段と、エゼクタ内を通過する流体の温度を制御す
る温度制御部とから成り、反応釜の流体室に、冷却用の
組合せポンプからの吐出水を供給して、反応釜を気化冷
却するものである。エゼクタのノズルで生じる吸引力即
ち減圧度は、ノズルを通過する流体の温度に対する飽和
圧力となるために、ノズルでの減圧度を高め、ひいては
冷却室の減圧度を高めて、気化冷却をより促進するため
には、温度制御部によりノズルを通過する流体の温度を
低下することによりできる。
2. Description of the Related Art As a conventional cooling device for a reactor, there is, for example, one disclosed in Japanese Patent Application Laid-Open No. 1-315336.
This is an ejector consisting of a nozzle and a suction chamber, a combination pump that combines the ejector, a tank, and a pump, a switching valve means that can supply a part of the discharge water of the combination pump to the fluid chamber of the reaction vessel, and a passage inside the ejector. And a temperature controller for controlling the temperature of the fluid to be supplied, and the discharge water from the combination pump for cooling is supplied to the fluid chamber of the reaction vessel to evaporate and cool the reaction vessel. The suction force, that is, the degree of reduced pressure generated in the nozzle of the ejector, becomes a saturation pressure with respect to the temperature of the fluid passing through the nozzle, so the degree of reduced pressure in the nozzle is increased, and by extension, the degree of reduced pressure in the cooling chamber is increased to further promote vaporization cooling This can be done by lowering the temperature of the fluid passing through the nozzle by the temperature control unit.

【0003】[0003]

【本発明が解決しようとする課題】上記従来のもので
は、ノズルを通過する流体の温度を調節して減圧度を変
化させることはできるが、気化冷却の度合を変化させる
場合に時間遅れを生じる問題があった。例えば反応釜に
おいては、反応の過程において温度を精度良く調節する
必要があり、時間遅れを生じると反応物が劣化したり、
損傷したりする恐れがある。この時間遅れの原因は、ノ
ズルを通過する流体圧力を速やかに変化させることがで
きないためである。ノズルを通過する流体圧力を高めた
り、低めたりすることにより、ノズルの吸引能力すなわ
ち単位時間当りの流体の吸引量を増やしたり、減したり
することができるのであるが、上記従来のものでは、ポ
ンプの回転数を制御してポンプの吐出圧力を調整するこ
とによりノズルを通過する流体圧力を変化させていたの
であるが、ポンプの回転数の制御から実際にノズルを通
過する流体の圧力が変更されるまでに時間がかかってし
まい、遅れを生じるのである。
In the above-mentioned conventional apparatus, the degree of pressure reduction can be changed by adjusting the temperature of the fluid passing through the nozzle, but a time delay occurs when the degree of evaporative cooling is changed. There was a problem. For example, in a reaction kettle, it is necessary to accurately adjust the temperature in the course of the reaction, and if a time delay occurs, the reaction product may deteriorate,
There is a risk of damage. The cause of this time delay is that the fluid pressure passing through the nozzle cannot be changed quickly. By increasing or decreasing the fluid pressure passing through the nozzle, it is possible to increase or decrease the suction capacity of the nozzle, that is, the suction amount of the fluid per unit time. The fluid pressure passing through the nozzle was changed by controlling the pump rotation speed and adjusting the pump discharge pressure.However, the pressure of the fluid actually passing through the nozzle was changed by controlling the pump rotation speed. It takes time to be done, and there is a delay.

【0004】従って本発明の技術的課題は、時間遅れを
生じることなく気化冷却の度合すなわちノズルの吸引能
力を制御することができるようにして、冷却温度を精度
良く調節することができる減圧気化冷却装置を得ること
である。
Therefore, a technical problem of the present invention is that the degree of evaporative cooling can be controlled without causing a time delay, that is, the suction capacity of the nozzle can be controlled, and the cooling temperature can be adjusted with high accuracy. To get the equipment.

【0005】[0005]

【課題を解決する為の手段】本発明の減圧気化冷却装置
の構成は次の通りである。ノズルと吸込室から成るエゼ
クタと、該エゼクタとタンクとポンプを組合せた組合せ
ポンプと、上記吸込室と連通した気化冷却室と、該気化
冷却室と上記タンクに冷却水を供給する冷却水供給通路
とから成る気化冷却装置において、ノズルを複数の細孔
で形成し、該細孔の一部を開閉する細孔開閉手段を設け
たものである。
The structure of the reduced pressure evaporative cooling device of the present invention is as follows. An ejector including a nozzle and a suction chamber, a combination pump that combines the ejector, a tank, and a pump, an evaporative cooling chamber that communicates with the suction chamber, and a cooling water supply passage that supplies cooling water to the evaporative cooling chamber and the tank. In the evaporative cooling device consisting of, the nozzle is formed of a plurality of fine holes, and fine hole opening / closing means for opening / closing a part of the fine holes is provided.

【0006】[0006]

【作用】タンク内の流体をポンプによりエゼクタのノズ
ルに供給することにより、エゼクタ部では流体温度に応
じた飽和圧力となり、流体温度を100度C以下とする
ことによって大気圧以下の減圧状態とすることができ
る。エゼクタで減圧状態となると吸込室と連通した気化
冷却室も減圧状態となり、供給された冷却水は気化して
被冷却物を気化冷却する。熱を奪って気化した蒸気はエ
ゼクタの吸込室に吸引されタンクに至る。
By supplying the fluid in the tank to the nozzle of the ejector by the pump, the ejector section has a saturation pressure corresponding to the fluid temperature, and by setting the fluid temperature to 100 ° C. or less, the pressure is reduced to the atmospheric pressure or less. be able to. When the pressure is reduced by the ejector, the vaporization cooling chamber communicating with the suction chamber is also depressurized, and the supplied cooling water is vaporized to vaporize and cool the object to be cooled. The vapor that takes away the heat and vaporizes is drawn into the suction chamber of the ejector and reaches the tank.

【0007】ノズルの吸引能力を変更して気化冷却の度
合を調節する場合は、細孔開閉手段により複数の細孔の
一部を開閉することにより、ノズルを通過する流体量が
変化して流体圧力も変化し、ノズルの吸引能力を速やか
に変更することができる。
When the degree of evaporative cooling is adjusted by changing the suction capacity of the nozzle, the amount of fluid passing through the nozzle is changed by opening and closing a part of the plurality of pores by the pore opening and closing means. The pressure also changes, and the suction capacity of the nozzle can be changed quickly.

【0008】[0008]

【実施例】図示の実施例を詳細に説明する。本実施例に
おいては、気化冷却装置として反応釜を用いると共に、
2台の組合せポンプを用いた例を示す。気化冷却室とし
てのジャケット部20を備えた反応釜21と、組合せポ
ンプ22、23と、冷却水供給通路24とで減圧気化冷
却装置を構成する。反応釜21は、ほぼ全周にわたりジ
ャケット部20を形成すると共に、原料入口25、製品
出口26、撹拌器27、被冷却物の温度を検出する温度
センサ―28を備え、ジャケット部20には冷却水供給
口29と流体排出口30を設ける。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In this embodiment, a reaction kettle is used as an evaporative cooling device,
An example using two combination pumps is shown. A reduced pressure evaporative cooling device is constituted by a reaction vessel 21 having a jacket portion 20 as an evaporative cooling chamber, combination pumps 22 and 23, and a cooling water supply passage 24. The reaction kettle 21 forms a jacket portion 20 over substantially the entire circumference, and is equipped with a raw material inlet 25, a product outlet 26, a stirrer 27, and a temperature sensor 28 for detecting the temperature of an object to be cooled, and the jacket portion 20 is cooled. A water supply port 29 and a fluid discharge port 30 are provided.

【0009】組合せポンプ22、23は共に、ポンプ3
1、32がタンク33、34に吸込側を接続され吐出側
をエゼクタ35、36に接続し、エゼクタ35、36の
ディフュ―ザ37、38がタンク33、34の上部空間
に接続された構成のものであり、エゼクタ35と反応釜
21の流体排出口30とが弁50とトラップ51を介し
て接続されていると共に、エゼクタ36とジャケット部
20の上部が弁52を介して接続されている。この組合
せポンプ22、23は、ポンプ31、32の作動により
タンク33、34内の水をエゼクタ35、36に供給し
て吸引作用させ、タンク33、34に戻すようになって
いる。
The combination pumps 22 and 23 are both pumps 3.
1, 32 are connected to the tanks 33 and 34 on the suction side and are connected to the discharge sides on the ejectors 35 and 36, and the diffusers 37 and 38 of the ejectors 35 and 36 are connected to the upper space of the tanks 33 and 34. The ejector 35 and the fluid discharge port 30 of the reaction vessel 21 are connected via a valve 50 and a trap 51, and the ejector 36 and the upper portion of the jacket 20 are connected via a valve 52. The combination pumps 22 and 23 are configured to supply the water in the tanks 33 and 34 to the ejectors 35 and 36 by the operation of the pumps 31 and 32 to cause the ejectors 35 and 36 to suck the water, and to return the water to the tanks 33 and 34.

【0010】エゼクタ35のノズル39は単孔で形成す
る一方、上部のエゼクタ36は図2と図3に詳細を示す
ように複数の細孔3によりノズル2を形成する。すなわ
ちエゼクタ36は、ポンプ32の吐出側と接続する駆動
流体入口1と、底部に複数の細孔3を有する円筒部材5
で形成したノズル2と、ノズル2の周囲に設けた吸込室
6と、吸込室6と接続したエゼクタ吸込口7及びディフ
ュ―ザ38とで構成する。ノズル2を形成する細孔3の
上面には細孔開閉手段としての板状弁9を配置し、連結
軸10を介してハンドル11と接続する。板状弁9は図
3に示すように、細孔3を覆うことができる幅を有した
十字状に形成する。板状弁9を図3の実線で示す位置に
配置すると8個の細孔3(破線の細孔3)が全閉状態と
なり、この状態から30度時計方向に連結軸10により
板状弁9を回転すると(一点鎖線で示す位置)4個の細
孔が全閉となり、更に時計方向に回転すると(破線で示
す位置)塞がれる細孔3は無く全ての細孔3が全開状態
となる。
The nozzle 39 of the ejector 35 is formed by a single hole, while the upper ejector 36 forms the nozzle 2 by a plurality of pores 3 as shown in detail in FIGS. That is, the ejector 36 includes the driving fluid inlet 1 connected to the discharge side of the pump 32 and the cylindrical member 5 having a plurality of pores 3 at the bottom.
The nozzle 2 formed in 1., the suction chamber 6 provided around the nozzle 2, and the ejector suction port 7 and the diffuser 38 connected to the suction chamber 6. A plate-like valve 9 serving as a fine hole opening / closing means is arranged on the upper surface of the fine hole 3 forming the nozzle 2, and is connected to the handle 11 via a connecting shaft 10. As shown in FIG. 3, the plate valve 9 is formed in a cross shape having a width capable of covering the pore 3. When the plate-shaped valve 9 is arranged at the position shown by the solid line in FIG. 3, the eight pores 3 (the broken-line pores 3) are fully closed, and from this state, the plate-shaped valve 9 is rotated 30 degrees clockwise by the connecting shaft 10. When is rotated (the position indicated by the alternate long and short dash line), the four pores are fully closed, and when further rotated in the clockwise direction (the position indicated by the broken line), there are no closed pores 3 and all the pores 3 are fully opened. .

【0011】冷却水供給通路24は、ジャケット部20
に冷却水供給口29から冷却水を供給すると共に、タン
ク33あるいは34内の水温を制御するように設けたも
のであり、タンク33又は34内に弁53、54を介し
て冷却水を供給することによって制御するようになって
いる。タンク33、34内の余剰水はポンプ31、32
の吐出側に設けた弁55、56により系外に排出する。
The cooling water supply passage 24 has a jacket portion 20.
Is provided to control the water temperature in the tank 33 or 34 while supplying the cooling water from the cooling water supply port 29 to the tank 33 or 34 and supplying the cooling water to the tank 33 or 34 via the valves 53 and 54. It is controlled by the thing. Excess water in the tanks 33 and 34 is pumps 31 and 32.
It is discharged to the outside of the system by valves 55 and 56 provided on the discharge side.

【0012】組合せポンプ22の循環水の一部は弁57
を介してジャケット部20の冷却水供給口29と接続す
ると共に、冷却水供給口29には別途弁58を介して冷
却ではなく加熱用の蒸気供給管59を接続しても良い。
A part of the circulating water of the combination pump 22 is valve 57.
The cooling water supply port 29 of the jacket portion 20 may be connected to the cooling water supply port 29 via a separate valve 58, and a steam supply pipe 59 for heating instead of cooling may be connected to the cooling water supply port 29.

【0013】反応釜21内の被冷却物を冷却する場合、
即ちジャケット部5で気化冷却を行う場合、冷却水供給
通路24から弁53、54を介してタンク33、34内
に冷却水を供給すると共に、冷却水供給口29を介して
ジャケット部20にも冷却水を供給する。この場合弁5
7、58は閉じ、弁50、52は開いておく。ポンプ3
1、32の駆動によりタンク33、34内の流体はエゼ
クタ35、36に至り吸引力を生じる。エゼクタ35及
び36の吸引力により、ジャケット部20内も減圧状態
となり、供給された冷却水は被冷却物の熱により蒸発
し、被冷却物を気化冷却する。気化した蒸気及び気化し
きれなかった冷却水は弁52と50を通り、エゼクタ3
6、35に吸引されタンク34、33に至る。この場
合、気化蒸気は主にエゼクタ36に吸引され、冷却水は
主にエゼクタ35に吸引される。
When cooling the object to be cooled in the reaction vessel 21,
That is, when evaporative cooling is performed in the jacket portion 5, cooling water is supplied from the cooling water supply passage 24 into the tanks 33 and 34 through the valves 53 and 54, and also to the jacket portion 20 through the cooling water supply port 29. Supply cooling water. In this case valve 5
7, 58 are closed and valves 50, 52 are open. Pump 3
The fluid in the tanks 33 and 34 is driven by the motors 1 and 32 and reaches the ejectors 35 and 36 to generate a suction force. Due to the suction force of the ejectors 35 and 36, the inside of the jacket portion 20 is also depressurized, and the supplied cooling water is evaporated by the heat of the object to be cooled, and the object to be cooled is vaporized and cooled. The vaporized vapor and the non-vaporized cooling water pass through the valves 52 and 50, and the ejector 3
6 and 35 are sucked to reach the tanks 34 and 33. In this case, the vaporized steam is mainly sucked by the ejector 36, and the cooling water is mainly sucked by the ejector 35.

【0014】例えば瞬時にジャケット部20内の減圧度
を高くして冷却度合を高める場合、タンク33、34内
に冷却水を補給すると共に、上部のエゼクタ36の細孔
3をハンドル11を操作して全て全開状態とすることに
より、ノズル2を通過する流体の圧力が上昇してエゼク
タ36の吸引能力は高まり、ジャケット部20内の気化
蒸気を速やかに吸引して減圧度が時間遅れなく高まる。
For example, when the degree of pressure reduction in the jacket portion 20 is instantly increased to enhance the degree of cooling, cooling water is replenished in the tanks 33 and 34, and the handle 3 is operated through the pores 3 of the upper ejector 36. As a result, the pressure of the fluid passing through the nozzle 2 rises and the suction capability of the ejector 36 increases, so that the vaporized vapor in the jacket 20 is quickly sucked and the degree of pressure reduction increases without time delay.

【0015】本実施例においては、組合せポンプ22、
23を2台用いた例を示したがもちろん1台であっても
良いし、2台以上を用いても同様の作用効果を生じるも
のである。
In the present embodiment, the combination pump 22,
Although an example in which two 23 are used is shown, of course, one may be used, or the same effect can be obtained by using two or more.

【0016】また本実施例においては、弁58を介して
加熱用の蒸気供給管59を設けたことにより、減圧気化
冷却のみならず、減圧蒸気加熱あるいは正圧蒸気加熱を
行うこともできる。この場合加熱により生じた復水はト
ラップ51あるいは弁50を介してエゼクタ35に吸引
されると共に、復水化しきれなかった蒸気は上部のエゼ
クタ36により吸引されることとなる。
Further, in this embodiment, since the steam supply pipe 59 for heating is provided through the valve 58, not only the reduced pressure evaporative cooling but also the reduced pressure steam heating or the positive pressure steam heating can be performed. In this case, the condensate generated by heating is sucked into the ejector 35 via the trap 51 or the valve 50, and the steam that has not been completely condensed is sucked into the ejector 36 above.

【0017】[0017]

【発明の効果】本発明は次のような効果を奏する。細孔
開閉手段によりノズルを形成する細孔の一部を開閉し
て、ノズルを通過する流体圧力を調節することができる
ので、従来のポンプの吐出圧力制御によるような時間遅
れを生じることがない。従って、ノズルの吸引能力を時
間遅れなく速やかに調節することができ、気化冷却の冷
却温度を精度良く調節することができる。
The present invention has the following effects. Since the pore opening / closing means can open / close a part of the pores forming the nozzle to adjust the fluid pressure passing through the nozzle, there is no time delay as in the conventional discharge pressure control of the pump. . Therefore, the suction capacity of the nozzle can be quickly adjusted without a time delay, and the cooling temperature of the evaporative cooling can be adjusted accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の減圧気化冷却装置の実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a reduced-pressure evaporative cooling device of the present invention.

【図2】本発明の減圧気化冷却装置に用いるエゼクタの
断面図である。
FIG. 2 is a sectional view of an ejector used in the reduced pressure evaporative cooling apparatus of the present invention.

【図3】図2におけるA−A線断面部分拡大図である。FIG. 3 is a partially enlarged view taken along the line AA in FIG.

【符号の説明】[Explanation of symbols]

2 ノズル 3 細孔 9 板状弁 20 ジャケット部 21 反応釜 22,23 組合せポンプ 31,32 ポンプ 33,34 タンク 35,36 エゼクタ 2 Nozzle 3 Pore 9 Plate-shaped valve 20 Jacket 21 Reaction kettle 22,23 Combination pump 31,32 Pump 33,34 Tank 35,36 Ejector

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ノズルと吸込室から成るエゼクタと、該
エゼクタとタンクとポンプを組合せた組合せポンプと、
上記吸込室と連通した気化冷却室と、該気化冷却室と上
記タンクに冷却水を供給する冷却水供給通路とから成る
気化冷却装置において、ノズルを複数の細孔で形成し、
該細孔の一部を開閉する細孔開閉手段を設けたことを特
徴とする減圧気化冷却装置。
1. An ejector comprising a nozzle and a suction chamber, and a combination pump comprising a combination of the ejector, a tank and a pump.
In the evaporative cooling device consisting of the evaporative cooling chamber communicating with the suction chamber, the evaporative cooling chamber and the cooling water supply passage for supplying the cooling water to the tank, the nozzle is formed with a plurality of pores,
A reduced pressure evaporative cooling apparatus comprising a fine hole opening / closing means for opening / closing a part of the fine holes.
JP6140392A 1992-02-14 1992-02-14 Decompression evaporative cooling equipment Expired - Fee Related JP2684291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140392A JP2684291B2 (en) 1992-02-14 1992-02-14 Decompression evaporative cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140392A JP2684291B2 (en) 1992-02-14 1992-02-14 Decompression evaporative cooling equipment

Publications (2)

Publication Number Publication Date
JPH05223426A JPH05223426A (en) 1993-08-31
JP2684291B2 true JP2684291B2 (en) 1997-12-03

Family

ID=13170143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140392A Expired - Fee Related JP2684291B2 (en) 1992-02-14 1992-02-14 Decompression evaporative cooling equipment

Country Status (1)

Country Link
JP (1) JP2684291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678639B (en) * 2012-05-28 2015-08-26 中国瑞林工程技术有限公司 Intelligent water jet vacuum

Also Published As

Publication number Publication date
JPH05223426A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP2684291B2 (en) Decompression evaporative cooling equipment
JPH083906Y2 (en) Decompression evaporation cooling device
JP2724774B2 (en) Decompression evaporative cooling equipment
JP2821958B2 (en) Decompression evaporative cooling equipment
JP2684266B2 (en) Decompression evaporative cooling equipment
JP4249325B2 (en) Evaporative cooling device
JP2724776B2 (en) Heating and cooling device
JP2729433B2 (en) Decompression heating and cooling equipment
JP2729415B2 (en) Decompression evaporative cooling equipment
JP3455302B2 (en) Decompression evaporative cooling system
JP2764226B2 (en) Decompression evaporative cooling equipment
JP2000356443A (en) Evaporative cooling device
JP2517217Y2 (en) Decompression evaporation cooling device
JP3484528B2 (en) Decompression evaporative cooling system
JPH051871A (en) Evacuating and evaporating cooler
JP2942854B2 (en) Decompression evaporative cooling equipment
JP2546583Y2 (en) Decompression evaporative cooling equipment
JP2761697B2 (en) Evaporative cooling device
JP2684271B2 (en) Decompression evaporative cooling equipment
JP3188990B2 (en) Steam heating evaporative cooling system
JP3245666B2 (en) Decompression evaporative cooling system
JPH05187749A (en) Reduced pressure cooling device
JPH0829040A (en) Heating and cooling device
JP3245667B2 (en) Heating and cooling device
JPH06241634A (en) Evaporation cooling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110815

LAPS Cancellation because of no payment of annual fees