JPH05187749A - Reduced pressure cooling device - Google Patents

Reduced pressure cooling device

Info

Publication number
JPH05187749A
JPH05187749A JP2439792A JP2439792A JPH05187749A JP H05187749 A JPH05187749 A JP H05187749A JP 2439792 A JP2439792 A JP 2439792A JP 2439792 A JP2439792 A JP 2439792A JP H05187749 A JPH05187749 A JP H05187749A
Authority
JP
Japan
Prior art keywords
cooling
temperature
cooling water
decompression
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2439792A
Other languages
Japanese (ja)
Other versions
JP2684288B2 (en
Inventor
Takayuki Morii
高之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2439792A priority Critical patent/JP2684288B2/en
Publication of JPH05187749A publication Critical patent/JPH05187749A/en
Application granted granted Critical
Publication of JP2684288B2 publication Critical patent/JP2684288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a reduced pressure cooling device in which a large amount of cooling water may not be required due to evaporative cooling and water cooling and further a cooling disturbance and delay in cooling are not generated. CONSTITUTION:A cooling water supplying pipe 12 is connected to a jacket part 5 of a reaction device 21 through a flow, adjusting valve 13. A temperature sensor 15 for use in sensing the temperature of cooling water within the reaction device 21 and a temperature sensor 16 for use in sensing the temperature of the cooling water in the jacket part 5 are fixed. The temperature sensors 15, 16 and the flow, adjusting valve 13 are connected through a control part. A lower part of the jacket part 5 is connected to an ejector 32 of a combined pump 22. The ejector 32, a tank 31 and the pump 30 are made to communicate with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却室内を減圧状態に
して被冷却物を冷却するものに関し、特に減圧状態に伴
う冷却水の蒸発潜熱による気化冷却と、冷却水による水
冷却とを行う冷却装置に関する。具体的には、各種反応
を行う反応釜の冷却装置、食品、フィルム、合成繊維等
の冷却装置に関する。これらのものは少しの温度変化に
より、変質したり異常反応を起こす場合があり、冷却温
度制御精度の向上が製品品質や生産性に大きな影響を及
ぼすこととなる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling an object to be cooled by reducing the pressure in a cooling chamber, and in particular, vaporizing cooling by evaporation latent heat of cooling water and cooling water by cooling water. Regarding a cooling device. Specifically, the present invention relates to a cooling device for a reaction kettle that performs various reactions, and a cooling device for foods, films, synthetic fibers and the like. These things may be altered or cause an abnormal reaction due to a slight temperature change, and the improvement of cooling temperature control accuracy has a great influence on product quality and productivity.

【0002】[0002]

【従来の技術】従来の減圧冷却装置の一例としての反応
釜の気化冷却装置として、例えば特開平1−31533
6号公報に示されたものがある。これは、エゼクタとタ
ンクとポンプを組合せた組合せポンプと、反応釜の流体
室に組合せポンプの吐出水の一部を供給できる切替え弁
手段と、エゼクタ内を通過する流体の温度を制御する温
度制御部とから成り、反応釜の流体室に冷却用の組合せ
ポンプからの吐出水を供給して、反応釜を気化冷却する
ものである。流体室はエゼクタの吸引作用により減圧状
態となり、供給された冷却水としての吐出水は反応釜の
熱を奪ってただちに気化し、蒸発潜熱の大きな熱量でも
って効率的に冷却するものである。
2. Description of the Related Art As a vaporization cooling device for a reaction vessel as an example of a conventional reduced pressure cooling device, for example, Japanese Patent Laid-Open No. 1-31533
There is one disclosed in Japanese Patent No. This is a combination pump that combines an ejector, a tank, and a pump, a switching valve means that can supply a part of the discharge water of the combination pump to the fluid chamber of the reaction vessel, and a temperature control that controls the temperature of the fluid passing through the inside of the ejector. And discharge water from a combination pump for cooling is supplied to the fluid chamber of the reaction vessel to evaporatively cool the reaction vessel. The fluid chamber is depressurized by the suction action of the ejector, and the supplied discharge water as cooling water takes the heat of the reaction kettle and immediately vaporizes it, thereby efficiently cooling it with a large amount of latent heat of vaporization.

【0003】[0003]

【本発明が解決しようとする課題】上記従来のもので
は、高精度に被冷却物の温度を制御できない問題があっ
た。これは、被冷却物の温度を制御するためには冷却水
の蒸発量を制御する必要があり、また蒸発量を制御する
ためには流体室の減圧状態を精度良く制御しなければな
らないのであるが、減圧状態を制御するためにはエゼク
タを通過する流体の温度を制御しなければならず、実際
上はポンプや循環に伴うジュ―ル熱やあるいは放熱等に
より精度良く流体温度を制御することが困難なためであ
る。また、冷却水の蒸発潜熱による気化冷却ではなく、
単純な水冷却だけでは冷却熱量が少ないために、冷却水
を多量に必要としたり、冷却ムラを生じたりあるいは冷
却遅れを生じてしまう問題がある。
The above-mentioned conventional device has a problem that the temperature of the object to be cooled cannot be controlled with high accuracy. This is because it is necessary to control the evaporation amount of the cooling water in order to control the temperature of the object to be cooled, and it is necessary to accurately control the depressurized state of the fluid chamber in order to control the evaporation amount. However, in order to control the depressurized state, it is necessary to control the temperature of the fluid passing through the ejector. Actually, it is necessary to control the fluid temperature with high precision by means of the jule heat or heat dissipation associated with the pump and circulation. Because it is difficult. Also, instead of evaporative cooling by latent heat of vaporization of cooling water,
Since the amount of cooling heat is small with only simple water cooling, there are problems that a large amount of cooling water is required, uneven cooling occurs, or a cooling delay occurs.

【0004】従って本発明の技術的課題は、多量の冷却
水を必要とせず、また冷却ムラや遅れを生じることがな
いと共に、温度精度良く被冷却物を冷却できる減圧冷却
装置を得ることである。
Therefore, a technical object of the present invention is to obtain a decompression cooling device which does not require a large amount of cooling water, does not cause uneven cooling or delay, and can cool an object to be cooled with high temperature accuracy. ..

【0005】[0005]

【課題を解決する為の手段】本発明の減圧冷却装置の構
成は次の通りである。被冷却物を冷却する減圧冷却室
と、該減圧冷却室に連通した冷却水供給通路と、該冷却
水供給通路に設けた流量調節弁と、上記減圧冷却室に連
通した減圧ポンプとから成り、被冷却物と冷却水の温度
を検出する温度検出手段を設け、該温度検出手段からの
検出信号により上記流量調節弁を開閉制御する制御部を
設けたものである。
The structure of the reduced pressure cooling device of the present invention is as follows. A decompression cooling chamber for cooling the object to be cooled, a cooling water supply passage communicating with the decompression cooling chamber, a flow rate control valve provided in the cooling water supply passage, and a decompression pump communicating with the decompression cooling chamber, A temperature detecting means for detecting the temperature of the object to be cooled and the cooling water is provided, and a control section for controlling the opening and closing of the flow rate adjusting valve by a detection signal from the temperature detecting means is provided.

【0006】[0006]

【作用】減圧冷却室は連通した減圧ポンプにより減圧状
態となる。一方、減圧冷却室には冷却水供給通路から流
量調節弁を介して冷却水が供給される。冷却する場合の
冷却熱量すなわち総熱伝達量:Qは下記の一般式により
算出することができる。 Q=A・U・△T ここで、A:冷却伝熱面積 U:総括熱伝達係数 △T:被冷却物と冷却水との温度差 冷却伝熱面積(A)は冷却室の形状や大きさが決れば確
定する値であり、総括熱伝達係数(U)は、気化冷却に
おいては冷却水の蒸発潜熱が決れば確定する値である。
従って、上記の△Tすなわち被冷却物と冷却水の温度を
温度検出手段で検出して、これらの温度差が所定値とな
るように制御部を介して流量調節弁をコントロ―ルし冷
却水量を調節することにより、冷却熱量(Q)を制御
し、ひいては被冷却物の温度を制御することができる。
冷却熱量が不足してさらに被冷却物を冷却する必要があ
る場合は、被冷却物の温度検出手段からの検出信号によ
り、流量調節弁の開度が大きくなりより多量の冷却水を
供給することによって被冷却物は気化冷却及び水冷却さ
れる。
Function The decompression cooling chamber is decompressed by the communicating decompression pump. On the other hand, cooling water is supplied to the decompression cooling chamber from the cooling water supply passage via the flow rate control valve. The cooling heat quantity for cooling, that is, the total heat transfer quantity: Q can be calculated by the following general formula. Q = A ・ U ・ ΔT where A: cooling heat transfer area U: overall heat transfer coefficient ΔT: temperature difference between the object to be cooled and cooling water The cooling heat transfer area (A) is the shape and size of the cooling chamber. Is a value that is determined when the value is determined, and the overall heat transfer coefficient (U) is a value that is determined when the latent heat of vaporization of cooling water is determined in evaporative cooling.
Therefore, the above ΔT, that is, the temperature of the object to be cooled and the temperature of the cooling water are detected by the temperature detecting means, and the flow control valve is controlled through the control unit so that the temperature difference between them becomes a predetermined value. It is possible to control the amount of cooling heat (Q) and, by extension, control the temperature of the object to be cooled by adjusting.
When the amount of cooling heat is insufficient and it is necessary to further cool the object to be cooled, the opening degree of the flow rate control valve is increased by the detection signal from the temperature detecting means of the object to be cooled and a larger amount of cooling water is supplied. Thus, the object to be cooled is vaporized and water cooled.

【0007】[0007]

【実施例】図示の実施例を詳細に説明する。本実施例に
おいては、減圧冷却装置として反応釜を用いた例を示
す。減圧冷却室としてのジャケット部5を備えた反応釜
21と、減圧ポンプとしての組合せポンプ22と、冷却
水供給通路12及び流量調節弁13とで減圧冷却装置を
構成する。反応釜21は、ほぼ全周にわたりジャケット
部5を形成すると共に、原料入口3、原料供給弁7を介
した供給管8、製品出口4、撹拌器6を備え、ジャケッ
ト部5には冷却水供給口1と冷却液あるいは気化蒸気の
排出口2及び9を設ける。反応釜21内には被冷却物の
温度を検出する温度検出手段としての温度センサ―15
を取り付けると共に、ジャケット部5内にも冷却水の温
度を検出する温度センサ―16を取り付ける。温度セン
サ―15,16は図示しない制御部を介して流量調節弁
13と接続する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The illustrated embodiment will be described in detail. In the present embodiment, an example using a reaction kettle as a reduced pressure cooling device is shown. The reaction vessel 21 having the jacket portion 5 as the decompression cooling chamber, the combination pump 22 as the decompression pump, the cooling water supply passage 12 and the flow rate control valve 13 constitute a decompression cooling device. The reaction vessel 21 forms a jacket portion 5 over substantially the entire circumference, and is provided with a raw material inlet 3, a supply pipe 8 through a raw material supply valve 7, a product outlet 4, and an agitator 6, and the jacket portion 5 is supplied with cooling water. A port 1 and outlets 2 and 9 for cooling liquid or vaporized vapor are provided. A temperature sensor 15 as a temperature detecting means for detecting the temperature of the object to be cooled is provided in the reaction vessel 21.
At the same time, the temperature sensor 16 for detecting the temperature of the cooling water is attached inside the jacket 5. The temperature sensors 15 and 16 are connected to the flow rate control valve 13 via a control unit (not shown).

【0008】減圧ポンプとしての組合せポンプ22はタ
ンク31とポンプ30とエゼクタ32とで構成する。ポ
ンプ30がタンク31に吸込側を接続され吐出側をエゼ
クタ32のノズル33に接続し、エゼクタ32のディフ
ュ―ザ34がタンク31の上部空間に接続された構成の
ものであり、エゼクタ32と反応釜21の排出口2及び
9とが弁10、11を介して接続されている。タンク3
1は上部に大気と連通する連通孔35を設けると共に、
タンク31内に冷却水を追加する管36を接続し、下部
には余剰水を排出する排出管37を接続する。この組合
せポンプ22は、ポンプ30の作動によりタンク31内
の冷却水をエゼクタ32に供給して吸引作用させ、タン
ク31に戻すようになっている。減圧ポンプとしては本
実施例のような組合せポンプ22に限らずその他従来周
知の真空ポンプを用いることもできる。
The combination pump 22 as a pressure reducing pump comprises a tank 31, a pump 30, and an ejector 32. The pump 30 has a structure in which the suction side is connected to the tank 31, the discharge side is connected to the nozzle 33 of the ejector 32, and the diffuser 34 of the ejector 32 is connected to the upper space of the tank 31 to react with the ejector 32. The outlets 2 and 9 of the shuttle 21 are connected via valves 10 and 11. Tank 3
1 has a communication hole 35 communicating with the atmosphere in the upper part,
A pipe 36 for adding cooling water is connected to the inside of the tank 31, and a discharge pipe 37 for discharging excess water is connected to the lower portion. The combination pump 22 is configured to supply the cooling water in the tank 31 to the ejector 32 by the operation of the pump 30 to cause the ejector 32 to suck the cooling water, and then to return it to the tank 31. The decompression pump is not limited to the combination pump 22 of the present embodiment, but other conventionally known vacuum pumps can be used.

【0009】冷却水供給管12には熱交換器25を接続
する。熱交換器25は内部に冷媒供給管26を連通して
冷却水の温度を調節する。この熱交換器25は冷却水の
温度を調節する必要が無い場合は不要である。
A heat exchanger 25 is connected to the cooling water supply pipe 12. The heat exchanger 25 adjusts the temperature of the cooling water by communicating the refrigerant supply pipe 26 therein. This heat exchanger 25 is unnecessary if it is not necessary to adjust the temperature of the cooling water.

【0010】流量調節弁13と接続した図示しない制御
部には冷却熱量を演算する式 Q=A・U・△Tを予め
記憶しておく記憶部や被冷却物温度の設定を行う設定部
や設定温度に基づいて流量調節弁13の開度を演算する
演算部や検出温度を表示する表示部等を内蔵する。
A control unit (not shown) connected to the flow rate control valve 13 has a storage unit for preliminarily storing an equation Q = A · U · ΔT for calculating a cooling heat quantity, and a setting unit for setting the temperature of the object to be cooled. A built-in computing unit that computes the opening of the flow rate control valve 13 based on the set temperature, a display unit that displays the detected temperature, and the like.

【0011】次に作用を説明する。ポンプ30を駆動し
てエゼクタ32に吸引作用をさせてジャケット部5内を
減圧状態とする。流量調節弁13を介してジャケット部
5に供給された冷却水は、反応釜21の熱と減圧状態で
あるが故にただちに蒸発して反応釜21を気化冷却す
る。反応釜21内の被冷却物の温度が温度センサ―15
で検出され、ジャケット部5内の冷却水の温度が温度セ
ンサ―16により検出されて、制御部において流量調節
弁13の開度が大きくなり多量の冷却水が供給されるこ
とにより、反応釜21は冷却水の気化冷却と水冷却によ
りさらに冷却される。
Next, the operation will be described. The pump 30 is driven to cause the ejector 32 to perform a suction action so that the inside of the jacket portion 5 is depressurized. The cooling water supplied to the jacket portion 5 via the flow rate control valve 13 immediately evaporates and evaporates and cools the reaction vessel 21 due to the heat and reduced pressure of the reaction vessel 21. The temperature of the object to be cooled in the reaction vessel 21 is detected by the temperature sensor-15.
The temperature of the cooling water in the jacket portion 5 is detected by the temperature sensor 16, and the opening of the flow rate control valve 13 is increased in the control portion to supply a large amount of cooling water. Is further cooled by evaporative cooling of cooling water and water cooling.

【0012】ジャケット部5内の冷却水及び気化冷却に
より生じた気化蒸気はそれぞれの排出口2,9からエゼ
クタ32に吸引され、タンク31に至る。一部の冷却水
は連通孔35から大気へ蒸発し、あるいは排出管37か
ら系外に排出される。
The cooling water in the jacket portion 5 and the vaporized steam generated by the vaporization cooling are sucked into the ejector 32 from the respective outlets 2 and 9 and reach the tank 31. A part of the cooling water is evaporated into the atmosphere through the communication hole 35 or is discharged out of the system through the discharge pipe 37.

【0013】[0013]

【発明の効果】本発明は次のような効果を奏する。被冷
却物の温度により、気化冷却を行ったり、気化冷却と水
冷却を行うことにより、水冷却のみの場合のように多量
の冷却水を必要とせず、また、冷却ムラや冷却遅れ生じ
ることがないと共に、減圧冷却室に供給する冷却水は循
環等がなく一定温度とすることができるので被冷却物の
温度を高精度に維持することができる。
The present invention has the following effects. By performing evaporative cooling or evaporative cooling and water cooling depending on the temperature of the object to be cooled, a large amount of cooling water is not required as in the case of only water cooling, and uneven cooling or cooling delay may occur. In addition, since the cooling water supplied to the decompression cooling chamber can be kept at a constant temperature without circulation, the temperature of the object to be cooled can be maintained with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の減圧冷却装置の実施例の構成図であ
る。
FIG. 1 is a configuration diagram of an embodiment of a reduced pressure cooling device of the present invention.

【符号の説明】[Explanation of symbols]

5 ジャケット部 12 冷却水供給管 13 流量調節弁 15,16 温度センサ― 21 反応釜 22 組合せポンプ 30 ポンプ 31 タンク 32 エゼクタ 5 Jacket part 12 Cooling water supply pipe 13 Flow rate control valve 15, 16 Temperature sensor 21 Reactor 22 Combined pump 30 Pump 31 Tank 32 Ejector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被冷却物を冷却する減圧冷却室と、該減
圧冷却室に連通した冷却水供給通路と、該冷却水供給通
路に設けた流量調節弁と、上記減圧冷却室に連通した減
圧ポンプとから成り、被冷却物と冷却水の温度を検出す
る温度検出手段を設け、該温度検出手段からの検出信号
により上記流量調節弁を開閉制御する制御部を設けた減
圧冷却装置。
1. A decompression cooling chamber for cooling an object to be cooled, a cooling water supply passage communicating with the decompression cooling chamber, a flow rate control valve provided in the cooling water supply passage, and a decompression communicating with the decompression cooling chamber. A decompression cooling device comprising a pump, temperature detecting means for detecting the temperature of an object to be cooled and cooling water, and a control section for controlling the opening and closing of the flow rate adjusting valve according to a detection signal from the temperature detecting means.
JP2439792A 1992-01-14 1992-01-14 Decompression cooling device Expired - Fee Related JP2684288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2439792A JP2684288B2 (en) 1992-01-14 1992-01-14 Decompression cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2439792A JP2684288B2 (en) 1992-01-14 1992-01-14 Decompression cooling device

Publications (2)

Publication Number Publication Date
JPH05187749A true JPH05187749A (en) 1993-07-27
JP2684288B2 JP2684288B2 (en) 1997-12-03

Family

ID=12137036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2439792A Expired - Fee Related JP2684288B2 (en) 1992-01-14 1992-01-14 Decompression cooling device

Country Status (1)

Country Link
JP (1) JP2684288B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317238A (en) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system for vehicle
JP2008096061A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Evaporative cooling apparatus
JP2008124032A (en) * 1997-12-22 2008-05-29 Equos Research Co Ltd Fuel cell system for vehicle
CN112403404A (en) * 2020-11-16 2021-02-26 徐州亚兴医疗科技有限公司 Reaction kettle for catalysis and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317238A (en) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system for vehicle
JP2008124032A (en) * 1997-12-22 2008-05-29 Equos Research Co Ltd Fuel cell system for vehicle
JP4501165B2 (en) * 1997-12-22 2010-07-14 株式会社エクォス・リサーチ Fuel cell system for vehicles
JP4544298B2 (en) * 1997-12-22 2010-09-15 株式会社エクォス・リサーチ Fuel cell system for vehicles
JP2008096061A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Evaporative cooling apparatus
CN112403404A (en) * 2020-11-16 2021-02-26 徐州亚兴医疗科技有限公司 Reaction kettle for catalysis and control method thereof

Also Published As

Publication number Publication date
JP2684288B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JP2684288B2 (en) Decompression cooling device
JP2001082845A (en) Vaporization cooling device
JP2665832B2 (en) Heating and cooling device
JPH0537181Y2 (en)
JP2724774B2 (en) Decompression evaporative cooling equipment
JP2684289B2 (en) Decompression evaporative cooling equipment
JP2684271B2 (en) Decompression evaporative cooling equipment
JP2821958B2 (en) Decompression evaporative cooling equipment
JP2665835B2 (en) Heating and cooling device
JP2932231B2 (en) Decompression cooling device
JPH0517575Y2 (en)
JP3443614B2 (en) Evaporative cooling device
JPH0517572Y2 (en)
JP2729415B2 (en) Decompression evaporative cooling equipment
JP2001082844A (en) Vaporization cooling device
JPH0517574Y2 (en)
JP3484528B2 (en) Decompression evaporative cooling system
JP2546583Y2 (en) Decompression evaporative cooling equipment
JPH0545036A (en) Device for vaporization-cooling under reduced pressure
JPH0517573Y2 (en)
JPH11230655A (en) Evaporative cooling device
JPH0581295B2 (en)
JP3455302B2 (en) Decompression evaporative cooling system
JPH085217A (en) Reduced-pressure evaporation cooling equipment
JPH06241634A (en) Evaporation cooling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110815

LAPS Cancellation because of no payment of annual fees