JP4249325B2 - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP4249325B2
JP4249325B2 JP11990199A JP11990199A JP4249325B2 JP 4249325 B2 JP4249325 B2 JP 4249325B2 JP 11990199 A JP11990199 A JP 11990199A JP 11990199 A JP11990199 A JP 11990199A JP 4249325 B2 JP4249325 B2 JP 4249325B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
suction means
fluid
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11990199A
Other languages
Japanese (ja)
Other versions
JP2000310466A (en
Inventor
雅克 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP11990199A priority Critical patent/JP4249325B2/en
Publication of JP2000310466A publication Critical patent/JP2000310466A/en
Application granted granted Critical
Publication of JP4249325B2 publication Critical patent/JP4249325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷却室内を吸引手段で吸引しながら、被冷却物を冷却流体の蒸発潜熱により気化冷却するものに関し、具体的には、重合や縮合等の各種反応を行う反応釜の冷却装置、食品や医療品等の冷却装置等に関する。これらの被冷却物は、少しの温度変化によって変質してしまう場合が多く、高精度の温度制御が必要とされる。
【0002】
【従来の技術】
従来の気化冷却装置としては、例えば特開平10−2647号公報に示されたものがある。これは、エゼクタ3とタンク4と循環ポンプ5で構成した吸引手段と、該吸引手段に連通した気化冷却室としてのジャケット部2と、該ジャケット部2に冷却流体を注入する冷却流体供給通路9を設けて、ジャケット部2で冷却流体の蒸発潜熱により被冷却物を気化冷却するものであり、タンク4内に熱交換手段7を取り付けて、タンク4内の流体温度を熱交換手段7で熱交換して所定値に調節することにより、エゼクタ3で生じる吸引力を調整して冷却温度を時間遅れなく変更することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来のものでは冷却温度を変更する場合に未だ尚、時間遅れを生じてしまい、冷却温度を精度良く所定値に維持することができなかったり、また、被冷却物が熱損傷してしまう問題があった。これは、タンク内の熱交換手段でタンク内の流体温度を調節することによりエゼクタで生じる吸引力を調整するために、タンク内の流体がエゼクタに達して所定の吸引力を生じるまでに時間を要し遅れを生じてしまうのである。
【0004】
従って本発明の課題は、冷却温度を変更する場合に時間遅れを生じることがなく、精度良く冷却温度を所定値に維持することのできる気化冷却装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するための手段は、流体を吸引する吸引手段と、該吸引手段に連通した気化冷却室と、該気化冷却室に冷却流体を注入する冷却流体供給通路を設けて、気化冷却室で冷却流体の蒸発潜熱により被冷却物を気化冷却するものにおいて、吸引手段をエゼクタとタンクと循環ポンプとで形成して、当該循環ポンプとエゼクタの間に、エゼクタ式のインラインヒータを配置して、当該インラインヒータにコントロールバルブと逆止弁を介して熱交換流体供給管を接続すると共に、気化冷却室と吸引手段の間に、気化冷却室の圧力又は温度を制御する制御弁を配置したものである。
【0006】
【発明の実施の形態】
気化冷却室と吸引手段の間に圧力又は温度を制御する制御弁を配置したことにより、制御弁を操作することによって気化冷却室の圧力又は温度を時間遅れなく瞬時に、且つ、制御弁の制御精度に応じた精度でもって変更し維持することができる。通常、飽和蒸気は圧力と温度の関係が一義的に定まっているために、圧力を制御することにより、温度も同時に制御することができる。
【0007】
制御弁は、弁開度を調節して流体の通過流量をコントロールすることにより、気化冷却室側の圧力や温度を制御することができるものであれば良く、各種自動調節弁や圧力調整弁や温度調整弁等を用いることができる。
【0008】
例えば、吸引手段の吸引力を最大に近い値に維持しながら、制御弁の弁開度を大きくなるように操作すれば、吸引手段で吸引される流体量が増えて気化冷却室の圧力は低下して減圧度が高まり、冷却温度をより低くすることができる。一方、制御弁の弁開度を小さくなるように操作すれば、吸引手段の吸引量が減少して気化冷却室の圧力は上昇して減圧度が低くなり冷却温度をより高くすることができる。
【0009】
【実施例】
図示の実施例を詳細に説明する。
本実施例においては、気化冷却室として反応釜1のジャケット部2を用いた例を示す。気化冷却室としてのジャケット部2を備えた反応釜1と、吸引手段6と、ジャケット部2に冷却流体を供給する冷却流体供給通路7と、ジャケット部2と吸引手段6の間に配置した制御弁8で気化冷却装置を構成する。
【0010】
反応釜1は、ほぼ全周にわたりジャケット部2を形成し、内部に図示しない被冷却物を収容すると共に、被冷却物の温度を検出する温度センサー10を備える。ジャケット部2にジャット部2内の圧力を検出する圧力センサ12と、同様に温度を検出する温度センサ13を取り付けると共に、ジャケット部2の下部には、管路11に制御弁8を取り付けて後述する吸引手段6のエゼクタ3と接続する。
【0011】
制御弁8は、本実施例においては電動機で駆動されて弁開度を大きくしたりあるいは小さく制御することのできる自動調節弁を用いる。自動調節弁8は、ジャケット部2に取り付けた圧力センサ12と温度センサ13に、図示しないコントローラを介して電気的に接続する。ジャケット部2内の圧力又は温度を、圧力センサ12又は温度センサ13で検出して、この圧力又は温度の検出値に応じて制御弁8の弁開度を制御するものである。
【0012】
吸引手段6は、エゼクタ3とタンク4と循環ポンプ5とで形成し、循環ポンプ5の吸込み側をタンク4に接続し、吐出側をエゼクタ3のノズル部14に接続し、エゼクタ3のディフューザ15をタンク4の上部空間に接続したものである。タンク4には、冷却流体を補給する冷却流体補給管18とオーバーフロー管19を取り付ける。
【0013】
タンク4内の流体は、循環ポンプ5を介してエゼクタ3へ供給されタンク4に戻ることにより、吸引手段6内を循環する。循環流体の一部は分岐管26からコントロールバルブ28と冷却流体供給通路7を通ってジャケット部2へ供給されることにより、反応釜1内の被冷却物を冷却するものである。
【0014】
吸引手段6内の循環ポンプ5とエゼクタ3の間に、エゼクタ式のインラインヒータ9と温度センサ25を配置する。インラインヒータ9にはコントロールバルブ16と逆止弁17を介して熱交換流体供給管20を接続する。熱交換流体供給管20から、吸引手段6を循環する循環流体を加熱する場合は、例えば、加熱用の蒸気を供給して、インラインヒータ9でこの蒸気と循環流体を混合することによって、循環流体の温度を任意に上昇させることができ、反対に循環流体の温度を低下させる場合は、熱交換流体供給管20から、例えば冷却水をインラインヒータ9に供給することにより、循環流体の温度を任意に下げることができるものである。
【0015】
吸引手段6の分岐管26と冷却流体供給通路7の間に、エゼクタ式のインラインヒータ21と温度センサ27を同様に配置する。このインラインヒータ21にもコントロールバルブ22と逆止弁23を介して熱交換流体供給管24を接続する。このインラインヒータ21は、ジャケット部2に冷却流体を供給する冷却流体供給通路7の流体温度を、加熱用の蒸気又は冷却用の冷却水をコントロールバルブ22の弁開度をコントロールして供給することにより任意に温度制御できるものである。
【0016】
本実施例においては、ジャケット部2で冷却流体による気化冷却のみならず、加熱用の蒸気を供給して蒸気加熱を行うこともできるものである。即ち、ジャケット部2に、加熱用蒸気供給管30を、減圧弁31とコントロールバルブ32と気液分離器45と圧力センサ33をそれぞれ介して接続する。ジャケット部2の下端部に加熱用蒸気が凝縮したドレンを排出するドレン排出管34を接続する。ドレン排出管34は、開閉弁35とスチームトラップ36を並行に配置して、加熱用の吸引手段37と接続する。加熱用の吸引手段37は、エゼクタ38とタンク39と循環ポンプ40から構成して、別途の吸引手段6と同様にエゼクタ38でジャケット部2内のドレン及び凝縮しきれなかった一部の蒸気を吸引するものである。
【0017】
加熱用の吸引手段37の循管路を分岐して管路41により加熱用蒸気供給管30と接続する。管路41には、ストレーナ42と開度調整弁43を取り付ける。管路41から加熱用蒸気供給管30に、吸引手段37を循環する循環流体の一部を供給することによって、加熱用蒸気供給管30内の蒸気の温度を適宜低下させることができるものである。特に、加熱用蒸気が過熱蒸気となった場合に、循環流体を供給することにより、飽和温度蒸気とするのに適したものである。
【0018】
図示していないが、各センサやコントロールバルブや制御弁やその他の弁、あるいは、ポンプ等はコントローラや制御部と接続して集中制御できるようにする。
【0019】
反応釜1内の図示しない被冷却物を冷却する場合は、分岐管26と冷却流体供給通路7から所定温度の冷却流体をジャケット部2へ供給することにより、冷却流体が反応釜1内の被冷却物の熱を奪って気化することにより、その蒸発潜熱によって被冷却物を気化冷却する。
【0020】
例えば、反応釜1内の被冷却物の実際の温度が61乃至62℃程度であり、この被冷却物の温度を60℃に冷却する場合は、制御弁8の弁開度を調節してジャケット部2内の温度を58乃至59℃程度に制御するか、あるいは、ジャケット部2内の圧力を140乃至150トール程度に制御することにより、被冷却物の温度のバラツキ、オーバーシュートを防止して精度良く所定値に維持することができる。この場合、吸引手段6の吸引力は140乃至150トール以下の値に設定しておく。
【0021】
ジャケット部2で被冷却物の熱を奪って気化した気化蒸気と、気化せずに残った冷却流体は、ジャケット部2下部の管路11と制御弁8を通ってエゼクタ3に吸引され、タンク4へ至る。
【0022】
ジャケット部2に供給する冷却流体の温度は、インラインヒータ9又は21で任意に調節することにより、適宜制御することができる。また、エゼクタ3の吸引力も通過する流体の温度低くすることにより高めることが、流体の温度を高くすることにより吸引力を低くすることができる。
【0023】
【発明の効果】
気化冷却室と吸引手段の間に制御弁を配置したことにより、冷却温度を変更する場合に時間遅れを生じることがなく、精度良く冷却温度を所定値に維持することのできる気化冷却装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の気化冷却装置の実施例を示す構成図。
【符号の説明】
1 反応釜
2 ジャケット部
3 エゼクタ
4 タンク
5 循環ポンプ
6 吸引手段
7 冷却流体供給通路
8 制御弁
9 インラインヒータ
12 圧力センサ
13 温度センサ
21 インラインヒータ
26 分岐管
30 加熱用蒸気供給管
37 加熱用吸引手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for evaporating and cooling an object to be cooled by latent heat of vaporization of a cooling fluid while sucking the cooling chamber with suction means, specifically, a reactor cooling device for performing various reactions such as polymerization and condensation, The present invention relates to a cooling device for food and medical products. These objects to be cooled often change in quality due to slight temperature changes, and high-precision temperature control is required.
[0002]
[Prior art]
A conventional evaporative cooling device is disclosed in, for example, Japanese Patent Laid-Open No. 10-2647. This includes a suction means composed of an ejector 3, a tank 4 and a circulation pump 5, a jacket part 2 as a vaporization cooling chamber communicating with the suction means, and a cooling fluid supply passage 9 for injecting a cooling fluid into the jacket part 2. The object to be cooled is vaporized and cooled by the latent heat of vaporization of the cooling fluid in the jacket portion 2, the heat exchanging means 7 is attached in the tank 4, and the fluid temperature in the tank 4 is heated by the heat exchanging means 7. The cooling temperature can be changed without a time delay by adjusting the suction force generated in the ejector 3 by exchanging and adjusting to a predetermined value.
[0003]
[Problems to be solved by the invention]
In the case of changing the cooling temperature in the above conventional system, there is still a time delay, and the cooling temperature cannot be accurately maintained at a predetermined value, or the object to be cooled is thermally damaged. was there. In order to adjust the suction force generated in the ejector by adjusting the fluid temperature in the tank with the heat exchange means in the tank, it takes time until the fluid in the tank reaches the ejector and generates a predetermined suction force. It will cause a delay.
[0004]
Accordingly, an object of the present invention is to obtain an evaporative cooling device that can maintain the cooling temperature at a predetermined value with high accuracy without causing a time delay when the cooling temperature is changed.
[0005]
[Means for Solving the Problems]
Means for solving the above problems includes evaporative cooling by providing a suction means for sucking a fluid, a vaporization cooling chamber communicating with the suction means, and a cooling fluid supply passage for injecting a cooling fluid into the vaporization cooling chamber. in which evaporative cooling of the object to be cooled by evaporation latent heat of the cooling fluid in the chamber, the suction means is formed in the ejector and the tank and the circulation pump, between the circulation pump and the ejector, arranged in-line heater of the ejector type In addition, a heat exchange fluid supply pipe is connected to the inline heater via a control valve and a check valve, and a control valve for controlling the pressure or temperature of the vaporization cooling chamber is disposed between the vaporization cooling chamber and the suction means. Is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
By arranging a control valve for controlling pressure or temperature between the evaporative cooling chamber and the suction means, the pressure or temperature of the evaporative cooling chamber can be instantaneously controlled without any time delay by operating the control valve. It can be changed and maintained with an accuracy according to the accuracy. Usually, since the relationship between pressure and temperature is uniquely determined for saturated steam, the temperature can be controlled simultaneously by controlling the pressure.
[0007]
The control valve only needs to be able to control the pressure and temperature on the evaporative cooling chamber side by adjusting the valve opening and controlling the flow rate of the fluid. Various automatic control valves, pressure control valves, A temperature control valve or the like can be used.
[0008]
For example, if the control valve is operated to increase the valve opening while maintaining the suction force of the suction means close to the maximum value, the amount of fluid sucked by the suction means increases and the pressure in the vaporization cooling chamber decreases. As a result, the degree of decompression is increased and the cooling temperature can be further lowered. On the other hand, if the control valve is operated to reduce the valve opening, the suction amount of the suction means decreases, the pressure in the vaporization cooling chamber increases, the degree of decompression decreases, and the cooling temperature can be increased.
[0009]
【Example】
The illustrated embodiment will be described in detail.
In the present embodiment, an example in which the jacket portion 2 of the reaction kettle 1 is used as a vaporization cooling chamber is shown. A reactor 1 provided with a jacket portion 2 as a vaporization cooling chamber, a suction means 6, a cooling fluid supply passage 7 for supplying a cooling fluid to the jacket portion 2, and a control disposed between the jacket portion 2 and the suction means 6. The valve 8 constitutes a vaporization cooling device.
[0010]
The reaction kettle 1 is formed with a jacket portion 2 over substantially the entire circumference, and includes a temperature sensor 10 that houses an object to be cooled (not shown) and detects the temperature of the object to be cooled. A pressure sensor 12 that detects the pressure in the jacket portion 2 and a temperature sensor 13 that similarly detects the temperature are attached to the jacket portion 2, and a control valve 8 is attached to the pipe line 11 at the lower portion of the jacket portion 2 to be described later. It connects with the ejector 3 of the suction means 6 to perform.
[0011]
In this embodiment, the control valve 8 is an automatic control valve that is driven by an electric motor and can control the valve opening to be increased or decreased. The automatic adjustment valve 8 is electrically connected to a pressure sensor 12 and a temperature sensor 13 attached to the jacket portion 2 via a controller (not shown). The pressure or temperature in the jacket portion 2 is detected by the pressure sensor 12 or the temperature sensor 13, and the valve opening degree of the control valve 8 is controlled according to the detected value of the pressure or temperature.
[0012]
The suction means 6 is formed by the ejector 3, the tank 4, and the circulation pump 5, the suction side of the circulation pump 5 is connected to the tank 4, the discharge side is connected to the nozzle portion 14 of the ejector 3, and the diffuser 15 of the ejector 3. Is connected to the upper space of the tank 4. A cooling fluid supply pipe 18 and an overflow pipe 19 for supplying cooling fluid are attached to the tank 4.
[0013]
The fluid in the tank 4 is circulated in the suction means 6 by being supplied to the ejector 3 via the circulation pump 5 and returning to the tank 4. A part of the circulating fluid is supplied from the branch pipe 26 to the jacket portion 2 through the control valve 28 and the cooling fluid supply passage 7, thereby cooling the object to be cooled in the reaction vessel 1.
[0014]
An ejector-type inline heater 9 and a temperature sensor 25 are arranged between the circulation pump 5 and the ejector 3 in the suction means 6. A heat exchange fluid supply pipe 20 is connected to the inline heater 9 via a control valve 16 and a check valve 17. When the circulating fluid circulating through the suction means 6 is heated from the heat exchange fluid supply pipe 20, for example, the heating fluid is supplied and the steam and the circulating fluid are mixed by the in-line heater 9, thereby circulating the circulating fluid. The temperature of the circulating fluid can be arbitrarily increased. Conversely, when the temperature of the circulating fluid is decreased, the temperature of the circulating fluid is arbitrarily determined by supplying cooling water, for example, from the heat exchange fluid supply pipe 20 to the in-line heater 9. Can be lowered.
[0015]
An ejector-type in-line heater 21 and a temperature sensor 27 are similarly arranged between the branch pipe 26 of the suction means 6 and the cooling fluid supply passage 7. A heat exchange fluid supply pipe 24 is also connected to the inline heater 21 via a control valve 22 and a check valve 23. The in-line heater 21 supplies the fluid temperature of the cooling fluid supply passage 7 that supplies the cooling fluid to the jacket portion 2, and supplies steam for heating or cooling water for cooling while controlling the valve opening degree of the control valve 22. Thus, the temperature can be controlled arbitrarily.
[0016]
In the present embodiment, not only evaporative cooling by the cooling fluid in the jacket part 2 but also steam for heating can be performed by supplying steam for heating. That is, the heating steam supply pipe 30 is connected to the jacket portion 2 via the pressure reducing valve 31, the control valve 32, the gas-liquid separator 45, and the pressure sensor 33, respectively. A drain discharge pipe 34 is connected to the lower end of the jacket portion 2 for discharging the drain condensed with the heating steam. The drain discharge pipe 34 has an on-off valve 35 and a steam trap 36 arranged in parallel, and is connected to a suction means 37 for heating. The suction means 37 for heating comprises an ejector 38, a tank 39, and a circulation pump 40. Like the separate suction means 6, the drain in the jacket portion 2 and a part of the steam that could not be condensed by the ejector 38 are used. It is to suck.
[0017]
A circulation path of the suction means 37 for heating is branched and connected to the heating steam supply pipe 30 by a pipe 41. A strainer 42 and an opening degree adjusting valve 43 are attached to the pipeline 41. By supplying a part of the circulating fluid circulating through the suction means 37 from the pipe 41 to the heating steam supply pipe 30, the temperature of the steam in the heating steam supply pipe 30 can be appropriately reduced. . In particular, when the heating steam becomes superheated steam, it is suitable for obtaining a saturated temperature steam by supplying a circulating fluid.
[0018]
Although not shown, each sensor, control valve, control valve, other valve, pump, or the like is connected to a controller or control unit so that it can be centrally controlled.
[0019]
When cooling an object to be cooled in the reaction vessel 1 (not shown), a cooling fluid having a predetermined temperature is supplied to the jacket portion 2 from the branch pipe 26 and the cooling fluid supply passage 7 so that the cooling fluid is supplied to the reaction vessel 1 in the reaction vessel 1. By taking the heat of the cooling object and evaporating, the object to be cooled is vaporized and cooled by the latent heat of evaporation.
[0020]
For example, when the actual temperature of the object to be cooled in the reaction kettle 1 is about 61 to 62 ° C., and the temperature of the object to be cooled is cooled to 60 ° C., the valve opening of the control valve 8 is adjusted to adjust the jacket. The temperature in the part 2 is controlled to about 58 to 59 ° C., or the pressure in the jacket part 2 is controlled to about 140 to 150 Torr to prevent temperature variation and overshoot of the object to be cooled. The predetermined value can be maintained with high accuracy. In this case, the suction force of the suction means 6 is set to a value of 140 to 150 Torr or less.
[0021]
The vaporized vapor obtained by removing the heat of the object to be cooled in the jacket portion 2 and the cooling fluid remaining without being vaporized are sucked into the ejector 3 through the pipe line 11 and the control valve 8 below the jacket portion 2, and are stored in the tank. To 4.
[0022]
The temperature of the cooling fluid supplied to the jacket portion 2 can be appropriately controlled by arbitrarily adjusting with the in-line heater 9 or 21. Further, the suction force of the ejector 3 can be increased by lowering the temperature of the fluid passing therethrough, and the suction force can be lowered by increasing the temperature of the fluid.
[0023]
【The invention's effect】
By arranging a control valve between the evaporative cooling chamber and the suction means, a evaporative cooling device capable of accurately maintaining the cooling temperature at a predetermined value without causing a time delay when changing the cooling temperature is obtained. be able to.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a vaporization cooling apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 3 Ejector 4 Tank 5 Circulating pump 6 Suction means 7 Cooling fluid supply passage 8 Control valve 9 Inline heater 12 Pressure sensor 13 Temperature sensor 21 Inline heater 26 Branch pipe 30 Heating steam supply pipe 37 Heating suction means

Claims (1)

流体を吸引する吸引手段と、該吸引手段に連通した気化冷却室と、該気化冷却室に冷却流体を注入する冷却流体供給通路を設けて、気化冷却室で冷却流体の蒸発潜熱により被冷却物を気化冷却するものにおいて、吸引手段をエゼクタとタンクと循環ポンプとで形成して、当該循環ポンプとエゼクタの間に、エゼクタ式のインラインヒータを配置して、当該インラインヒータにコントロールバルブと逆止弁を介して熱交換流体供給管を接続すると共に、気化冷却室と吸引手段の間に、気化冷却室の圧力又は温度を制御する制御弁を配置したことを特徴とする気化冷却装置。A suction means for sucking a fluid, a vaporization cooling chamber communicating with the suction means, and a cooling fluid supply passage for injecting a cooling fluid into the vaporization cooling chamber are provided, and an object to be cooled is caused by latent heat of vaporization of the cooling fluid in the vaporization cooling chamber. in which evaporative cooling, and the suction means is formed in the ejector and the tank and the circulation pump, between the circulation pump and the ejector, by placing the line heater of the ejector type, the control valve and the check on the line heater A vaporization cooling apparatus, wherein a heat exchange fluid supply pipe is connected via a valve, and a control valve for controlling the pressure or temperature of the vaporization cooling chamber is disposed between the vaporization cooling chamber and the suction means.
JP11990199A 1999-04-27 1999-04-27 Evaporative cooling device Expired - Fee Related JP4249325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11990199A JP4249325B2 (en) 1999-04-27 1999-04-27 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11990199A JP4249325B2 (en) 1999-04-27 1999-04-27 Evaporative cooling device

Publications (2)

Publication Number Publication Date
JP2000310466A JP2000310466A (en) 2000-11-07
JP4249325B2 true JP4249325B2 (en) 2009-04-02

Family

ID=14773031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11990199A Expired - Fee Related JP4249325B2 (en) 1999-04-27 1999-04-27 Evaporative cooling device

Country Status (1)

Country Link
JP (1) JP4249325B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112712A (en) * 2004-10-15 2006-04-27 Tlv Co Ltd Vacuum evaporative cooling device
JP2009165936A (en) * 2008-01-15 2009-07-30 Tlv Co Ltd Heating/cooling apparatus
JP2011226661A (en) * 2010-04-15 2011-11-10 Tlv Co Ltd Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665835B2 (en) * 1991-02-15 1997-10-22 株式会社テイエルブイ Heating and cooling device
JP2630869B2 (en) * 1991-06-14 1997-07-16 株式会社テイエルブイ Vacuum steam generator
JPH102647A (en) * 1996-06-14 1998-01-06 Tlv Co Ltd Heating and cooling device

Also Published As

Publication number Publication date
JP2000310466A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4260996B2 (en) Evaporative cooling device
JP4249325B2 (en) Evaporative cooling device
JP3443614B2 (en) Evaporative cooling device
JP2002031450A (en) Heating/cooling equipment
JP4202552B2 (en) Evaporative cooling device
JP2001079386A (en) Heating and cooling device
JP2665832B2 (en) Heating and cooling device
JP4087013B2 (en) Evaporative cooling device
JP2000356443A (en) Evaporative cooling device
JP4260995B2 (en) Evaporative cooling device
JP3282034B2 (en) Heating and cooling device
JPH102647A (en) Heating and cooling device
JP3785216B2 (en) Heating and cooling device
JP2009300014A (en) Evaporative cooling device
JP3188990B2 (en) Steam heating evaporative cooling system
JP5497979B2 (en) Heating and cooling device
JP3455308B2 (en) Steam or hot water heating device
JP2006349248A (en) Heating/cooling apparatus
JPH0953802A (en) Heating/cooling device using heat medium
JPH06300205A (en) Steam heating apparatus
JP2764226B2 (en) Decompression evaporative cooling equipment
JP2665838B2 (en) Heating and cooling device
JP2006110475A (en) Heating and cooling apparatus
JP2003251171A (en) Steam heat exchanger
JP2006112712A (en) Vacuum evaporative cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees