JP4260996B2 - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP4260996B2
JP4260996B2 JP26131899A JP26131899A JP4260996B2 JP 4260996 B2 JP4260996 B2 JP 4260996B2 JP 26131899 A JP26131899 A JP 26131899A JP 26131899 A JP26131899 A JP 26131899A JP 4260996 B2 JP4260996 B2 JP 4260996B2
Authority
JP
Japan
Prior art keywords
cooling
cooling fluid
cooled
control valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26131899A
Other languages
Japanese (ja)
Other versions
JP2001082845A (en
Inventor
祐介 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP26131899A priority Critical patent/JP4260996B2/en
Publication of JP2001082845A publication Critical patent/JP2001082845A/en
Application granted granted Critical
Publication of JP4260996B2 publication Critical patent/JP4260996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却室内を吸引手段で吸引しながら被冷却物を冷却流体の蒸発潜熱によって気化冷却するものに関し、具体的には、重合や縮合等の各種反応を行う反応釜の冷却装置、食品や医療品等の気化冷却装置に関する。これらの被冷却物は、少しの温度変化によって変質してしまう場合があり、高精度の温度制御が必要とされる。
【0002】
【従来の技術】
従来の気化冷却装置としては、例えば特開平11−230653号公報に示されたものがある。これは、反応釜1のジャケット部2に冷却流体供給管4から開閉弁32とノズル5を介して冷却流体を供給することにより、反応釜を気化冷却するものである。
【0003】
【発明が解決しようとする課題】
上記従来のものでは、ノズルから噴射する冷却流体の量が変動して、冷却遅れや冷却ムラを生じる問題があった。ノズルから供給される冷却流体は、開閉弁の弁開度に応じて所定の量がジャケット部に供給されるのであるが、例えばジャケット部内の圧力状態が変化すると、ノズル前後の圧力差が変動してしまい、その結果ノズルから供給される流体量も変化してしまい、冷却遅れや冷却ムラを生じてしまうのである。
【0004】
従って本発明の課題は、気化冷却室に供給する冷却流体の量を、常に一定量に維持することによって、冷却遅れや冷却ムラを生じることのない気化冷却装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するための手段は、流体を吸引する吸引手段と、該吸引手段に連通した気化冷却室と、該気化冷却室に噴射手段を介して冷却流体を供給する冷却流体供給通路と、気化冷却室から冷却流体を排出する冷却流体排出通路を設けて、気化冷却室で冷却流体の蒸発潜熱により被冷却物を気化冷却するものにおいて、冷却流体の供給量を検出する流量検出手段を設けて、当該流量検出手段からの検出信号に応じて弁開度を制御する制御弁を冷却流体供給通路に配置すると共に、冷却流体供給通路にコントロールバルブと逆止弁を介して熱交換流体供給管を接続したエゼクタ式のインラインヒータを配置したものである。
【0006】
【発明の実施の形態】
流量検出手段により冷却流体の供給量を検出して、この検出信号に応じて供給量が一定になるように制御弁の開度を制御することにより、冷却流体の噴射量を気化冷却室の圧力変動に関わらず一定量に維持することができ、冷却遅れや冷却ムラを防止することができる。
【0007】
【実施例】
本実施例においては、気化冷却室として反応釜1のジャケット部2を用いた例を示す。気化冷却室としてのジャケット部2を備えた反応釜1と、吸引手段としての真空ポンプ4と、ジャケット部2に冷却流体を供給する冷却流体供給通路7と、冷却流体供給通路7に配置した制御弁28、及び、ジャケット部2から冷却流体を排出する冷却流体排出通路11で気化冷却装置を構成する。
【0008】
反応釜1は、ほぼ全周にわたりジャケット部2を形成し、内部に図示しない被冷却物を収容すると共に、被冷却物の温度を検出する温度センサ10を備える。ジャケット部2にジャット部2内の圧力を検出する圧力センサ12と、同様に温度を検出する温度センサ13を取り付ける。ジャケット部2の下部には、冷却流体排出通路11に制御弁8を取り付けて後述する熱交換器3と接続する。
【0009】
熱交換器3は、内部に冷却流体排出通路11と連通した排出流体コイル6を設けたもので、下端部に冷却流体管5をポンプ9を介して接続すると共に、上端部に冷却流体供給通路7と連通した管路26を接続する。冷却流体管5から供給される冷却流体が、熱交換器3内の排出流体コイル6で熱交換されて、管路26と冷却流体供給通路7、及び、冷却流体供給通路7のジャケット部2側端部に取り付けた図示しない噴射手段としてのスプレーノズルからジャケット部2に供給されて、反応釜1内の被冷却物を気化冷却するものである。
【0010】
冷却流体供給通路7内で制御弁28の出口側に流量検出手段としての流量センサ15を取り付けて、制御弁28からジャケット部2に供給される冷却流体の量を検出する。流量センサ15としては、超音波式や電磁波式等従来公知のものを用いることができる。流量センサ15は図示はしないがコントローラを介して制御弁28と接続する。制御弁28は、流量センサ15からの検出信号によって弁開度を自動的に制御して、噴射手段からジャケット部2に供給される冷却流体の量を一定量に維持するものである。
【0011】
熱交換器3の排出流体コイル6の二次側には、吸引手段としての真空ポンプ4を接続する。また、熱交換器3上部の管路26と冷却流体供給通路7の間に、エゼクタ式のインラインヒータ21と温度センサ27を配置する。このインラインヒータ21にはコントロールバルブ22と逆止弁23を介して熱交換流体供給管24を接続する。このインラインヒータ21は、ジャケット部2に冷却流体を供給する冷却流体供給通路7の流体温度を、例えば加熱用の蒸気又は冷却用の冷却水をコントロールバルブ22の弁開度をコントロールして供給することにより任意に且つ補助的に温度制御できるものである。
【0012】
本実施例においては、ジャケット部2で冷却流体による気化冷却のみならず、加熱用の蒸気を供給して蒸気加熱を行うこともできるものである。即ち、ジャケット部2に、加熱用蒸気供給管30を、減圧弁31とコントロールバルブ32と気液分離器45と圧力センサ33をそれぞれ介して接続する。ジャケット部2の下端部に加熱用蒸気が凝縮したドレンを排出するドレン排出管34を接続する。ドレン排出管34は、開閉弁35とスチームトラップ36を並行に配置して、加熱用の吸引手段37と接続する。加熱用の吸引手段37は、エゼクタ38とタンク39と循環ポンプ40で構成して、エゼクタ38でジャケット部2内のドレン及び凝縮しきれなかった一部の蒸気を吸引するものである。
【0013】
加熱用の吸引手段37の循管路を分岐して管路41により加熱用蒸気供給管30と接続する。管路41には、ストレーナ42と開度調整弁43を取り付ける。管路41から加熱用蒸気供給管30に、吸引手段37を循環する循環流体の一部を供給することによって、加熱用蒸気供給管30内の蒸気の温度を適宜低下させることができるものである。特に、加熱用蒸気が過熱蒸気となった場合に、循環流体を供給することにより、飽和温度蒸気とするのに適したものである。
【0014】
図示はしていないが、各センサやコントロールバルブや制御弁やその他の弁、あるいは、ポンプ等はコントローラや制御部と接続して集中制御できるようにする。
【0015】
反応釜1内の図示しない被冷却物を冷却する場合は、制御弁28と冷却流体供給通路7とスプレーノズル等の噴射手段から所定温度の冷却流体をジャケット部2内の全体に且つ均一に供給することにより、冷却流体が反応釜1内の被冷却物の熱を奪って気化して、その蒸発潜熱によって被冷却物を気化冷却する。この場合、制御弁28から供給される冷却流体は、流量センサ15によって供給量が一定量に維持される。
【0016】
例えば、反応釜1内の被冷却物の実際の温度が61乃至62℃程度であり、この被冷却物の温度を60℃に冷却する場合は、ジェケット部2内の冷却流体温度が58乃至59℃程度となるように、熱交換器3で熱交換し、あるいは、インラインヒータ21で温度制御することにより、被冷却物の温度のバラツキ、オーバーシュートを防止して精度良く所定値に維持することができる。
【0017】
また本実施例においては、制御弁8の弁開度を調節してジャケット部2内の温度、あるいは、圧力を更に精度良く制御することにより、被冷却物の温度精度を向上することができる。
【0018】
ジャケット部2で被冷却物の熱を奪って気化した気化蒸気と、気化せずに残った冷却流体は、ジャケット部2下部の冷却流体排出通路11と制御弁8を通って熱交換器3に至り、供給される冷却流体と熱交換して、真空ポンプ4から系外へ排出される。
【0019】
【発明の効果】
気化冷却室に供給する冷却流体の量を、常に一定量に維持することによって、冷却遅れや冷却ムラを生じることのない気化冷却装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の気化冷却装置の実施例を示す構成図。
【符号の説明】
1 反応釜
2 ジャケット部
3 熱交換器
4 真空ポンプ
6 排出流体コイル
7 冷却流体供給通路
11 冷却流体排出通路
12 圧力センサ
15 流量センサ
28 制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for evaporating and cooling an object to be cooled by a latent heat of vaporization of a cooling fluid while sucking a cooling chamber with suction means, and specifically, a cooling device for a reaction kettle that performs various reactions such as polymerization and condensation, and food The present invention relates to a vaporization cooling device for medical and medical products. These objects to be cooled may be deteriorated by a slight temperature change, and high-precision temperature control is required.
[0002]
[Prior art]
A conventional evaporative cooling device is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-230653. In this method, the reaction kettle is vaporized and cooled by supplying the cooling fluid from the cooling fluid supply pipe 4 to the jacket portion 2 of the reaction kettle 1 through the on-off valve 32 and the nozzle 5.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional one, there is a problem that the amount of cooling fluid ejected from the nozzle fluctuates, resulting in cooling delay and cooling unevenness. A predetermined amount of the cooling fluid supplied from the nozzle is supplied to the jacket portion according to the valve opening degree of the on-off valve.For example, when the pressure state in the jacket portion changes, the pressure difference before and after the nozzle changes. As a result, the amount of fluid supplied from the nozzle also changes, resulting in cooling delay and cooling unevenness.
[0004]
Accordingly, an object of the present invention is to obtain an evaporative cooling device that does not cause cooling delay and uneven cooling by always maintaining a constant amount of the cooling fluid supplied to the evaporative cooling chamber.
[0005]
[Means for Solving the Problems]
Means for solving the above problems include a suction means for sucking a fluid, a vaporization cooling chamber communicating with the suction means, and a cooling fluid supply passage for supplying a cooling fluid to the vaporization cooling chamber via an injection means. A flow rate detecting means for detecting the supply amount of the cooling fluid in the evaporative cooling chamber provided with a cooling fluid discharge passage for discharging the cooling fluid and evaporating and cooling the object to be cooled by the latent heat of vaporization of the cooling fluid in the evaporative cooling chamber; A control valve that controls the valve opening degree according to the detection signal from the flow rate detecting means is disposed in the cooling fluid supply passage, and the heat exchange fluid is supplied to the cooling fluid supply passage through the control valve and the check valve. An ejector-type in-line heater with pipes connected is arranged .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
By detecting the supply amount of the cooling fluid by the flow rate detection means and controlling the opening of the control valve so that the supply amount becomes constant according to this detection signal, the injection amount of the cooling fluid is changed to the pressure of the vaporization cooling chamber. A constant amount can be maintained regardless of fluctuations, and cooling delays and uneven cooling can be prevented.
[0007]
【Example】
In the present embodiment, an example in which the jacket portion 2 of the reaction kettle 1 is used as a vaporization cooling chamber is shown. A reaction kettle 1 provided with a jacket portion 2 as a vaporization cooling chamber, a vacuum pump 4 as a suction means, a cooling fluid supply passage 7 for supplying a cooling fluid to the jacket portion 2, and a control disposed in the cooling fluid supply passage 7. The evaporative cooling device is configured by the valve 28 and the cooling fluid discharge passage 11 for discharging the cooling fluid from the jacket portion 2.
[0008]
The reaction kettle 1 is formed with a jacket portion 2 over substantially the entire circumference, and includes a temperature sensor 10 that accommodates an object to be cooled (not shown) and detects the temperature of the object to be cooled. A pressure sensor 12 that detects the pressure in the jacket portion 2 and a temperature sensor 13 that similarly detects the temperature are attached to the jacket portion 2. A control valve 8 is attached to the cooling fluid discharge passage 11 at the lower part of the jacket portion 2 and connected to a heat exchanger 3 to be described later.
[0009]
The heat exchanger 3 is provided with a discharge fluid coil 6 in communication with the cooling fluid discharge passage 11 therein, and a cooling fluid pipe 5 is connected to a lower end portion via a pump 9 and a cooling fluid supply passage is provided to the upper end portion. 7 is connected. The cooling fluid supplied from the cooling fluid pipe 5 is heat-exchanged by the exhaust fluid coil 6 in the heat exchanger 3, and the pipe 26, the cooling fluid supply passage 7, and the jacket portion 2 side of the cooling fluid supply passage 7. The material to be cooled in the reaction vessel 1 is vaporized and cooled by being supplied to the jacket portion 2 from a spray nozzle (not shown) as an injection means (not shown) attached to the end portion.
[0010]
A flow rate sensor 15 as a flow rate detecting means is attached to the outlet side of the control valve 28 in the cooling fluid supply passage 7 to detect the amount of cooling fluid supplied from the control valve 28 to the jacket portion 2. As the flow sensor 15, a conventionally known sensor such as an ultrasonic type or an electromagnetic type can be used. Although not shown, the flow sensor 15 is connected to the control valve 28 via a controller. The control valve 28 automatically controls the valve opening degree according to a detection signal from the flow sensor 15, and maintains a constant amount of cooling fluid supplied from the injection means to the jacket portion 2.
[0011]
A vacuum pump 4 as suction means is connected to the secondary side of the exhaust fluid coil 6 of the heat exchanger 3. Further, an ejector-type inline heater 21 and a temperature sensor 27 are disposed between the pipe line 26 at the top of the heat exchanger 3 and the cooling fluid supply passage 7. A heat exchange fluid supply pipe 24 is connected to the inline heater 21 via a control valve 22 and a check valve 23. The in-line heater 21 supplies the fluid temperature of the cooling fluid supply passage 7 for supplying a cooling fluid to the jacket portion 2, for example, heating steam or cooling water for cooling while controlling the valve opening degree of the control valve 22. Therefore, the temperature can be controlled arbitrarily and auxiliary.
[0012]
In the present embodiment, not only evaporative cooling by the cooling fluid in the jacket part 2 but also steam for heating can be performed by supplying steam for heating. That is, the heating steam supply pipe 30 is connected to the jacket portion 2 via the pressure reducing valve 31, the control valve 32, the gas-liquid separator 45, and the pressure sensor 33, respectively. A drain discharge pipe 34 is connected to the lower end of the jacket portion 2 for discharging the drain condensed with the heating steam. The drain discharge pipe 34 has an on-off valve 35 and a steam trap 36 arranged in parallel, and is connected to a suction means 37 for heating. The heating suction means 37 includes an ejector 38, a tank 39, and a circulation pump 40, and sucks the drain in the jacket portion 2 and a part of the steam that could not be condensed by the ejector 38.
[0013]
A circulation path of the suction means 37 for heating is branched and connected to the heating steam supply pipe 30 by a pipe 41. A strainer 42 and an opening degree adjusting valve 43 are attached to the pipeline 41. By supplying a part of the circulating fluid circulating through the suction means 37 from the pipe 41 to the heating steam supply pipe 30, the temperature of the steam in the heating steam supply pipe 30 can be appropriately reduced. . In particular, when the heating steam becomes superheated steam, it is suitable for obtaining a saturated temperature steam by supplying a circulating fluid.
[0014]
Although not shown, each sensor, control valve, control valve, other valve, pump, or the like is connected to a controller or control unit so that it can be centrally controlled.
[0015]
When cooling an object (not shown) in the reaction kettle 1, a cooling fluid of a predetermined temperature is uniformly and uniformly supplied from the control valve 28, the cooling fluid supply passage 7, and spraying means such as a spray nozzle. By doing so, the cooling fluid takes the heat of the object to be cooled in the reaction kettle 1 and vaporizes, and the object to be cooled is vaporized and cooled by the latent heat of vaporization. In this case, the supply amount of the cooling fluid supplied from the control valve 28 is maintained at a constant amount by the flow rate sensor 15.
[0016]
For example, when the actual temperature of the object to be cooled in the reaction kettle 1 is about 61 to 62 ° C., and the temperature of the object to be cooled is cooled to 60 ° C., the temperature of the cooling fluid in the jacket 2 is 58 to 59. Heat exchange is performed by the heat exchanger 3 or the temperature is controlled by the in-line heater 21 so that the temperature is about 0 ° C., thereby preventing the temperature variation and overshoot of the object to be cooled and maintaining the predetermined value with high accuracy. Can do.
[0017]
In this embodiment, the temperature accuracy of the object to be cooled can be improved by adjusting the valve opening degree of the control valve 8 and controlling the temperature or pressure in the jacket portion 2 with higher accuracy.
[0018]
The vaporized vapor obtained by removing the heat of the object to be cooled in the jacket portion 2 and the cooling fluid remaining without being vaporized pass through the cooling fluid discharge passage 11 and the control valve 8 below the jacket portion 2 to the heat exchanger 3. Finally, it exchanges heat with the supplied cooling fluid and is discharged out of the system from the vacuum pump 4.
[0019]
【The invention's effect】
By always maintaining the amount of the cooling fluid supplied to the evaporative cooling chamber at a constant amount, it is possible to obtain an evaporative cooling device that does not cause cooling delay or uneven cooling.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a vaporization cooling apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 3 Heat exchanger 4 Vacuum pump 6 Discharge fluid coil 7 Cooling fluid supply passage 11 Cooling fluid discharge passage 12 Pressure sensor 15 Flow rate sensor 28 Control valve

Claims (1)

流体を吸引する吸引手段と、該吸引手段に連通した気化冷却室と、該気化冷却室に噴射手段を介して冷却流体を供給する冷却流体供給通路と、気化冷却室から冷却流体を排出する冷却流体排出通路を設けて、気化冷却室で冷却流体の蒸発潜熱により被冷却物を気化冷却するものにおいて、冷却流体の供給量を検出する流量検出手段を設けて、当該流量検出手段からの検出信号に応じて弁開度を制御する制御弁を冷却流体供給通路に配置すると共に、冷却流体供給通路にコントロールバルブと逆止弁を介して熱交換流体供給管を接続したエゼクタ式のインラインヒータを配置したことを特徴とする気化冷却装置。A suction means for sucking fluid, a vaporization cooling chamber communicating with the suction means, a cooling fluid supply passage for supplying a cooling fluid to the vaporization cooling chamber via an injection means, and a cooling for discharging the cooling fluid from the vaporization cooling chamber In the evaporative cooling chamber in which the object to be cooled is vaporized and cooled by the latent heat of evaporation of the cooling fluid in the evaporative cooling chamber, a flow rate detecting means for detecting the supply amount of the cooling fluid is provided, and a detection signal from the flow rate detecting means A control valve that controls the valve opening according to the temperature is arranged in the cooling fluid supply passage, and an ejector-type inline heater with a heat exchange fluid supply pipe connected to the cooling fluid supply passage through a control valve and a check valve is arranged An evaporative cooling device characterized by that.
JP26131899A 1999-09-16 1999-09-16 Evaporative cooling device Expired - Fee Related JP4260996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26131899A JP4260996B2 (en) 1999-09-16 1999-09-16 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26131899A JP4260996B2 (en) 1999-09-16 1999-09-16 Evaporative cooling device

Publications (2)

Publication Number Publication Date
JP2001082845A JP2001082845A (en) 2001-03-30
JP4260996B2 true JP4260996B2 (en) 2009-04-30

Family

ID=17360150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26131899A Expired - Fee Related JP4260996B2 (en) 1999-09-16 1999-09-16 Evaporative cooling device

Country Status (1)

Country Link
JP (1) JP4260996B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037047A (en) * 2003-07-15 2005-02-10 Tlv Co Ltd Heat exchanging device
JP5197964B2 (en) * 2007-01-15 2013-05-15 株式会社テイエルブイ Ejector type vacuum pump
JP2008309419A (en) * 2007-06-15 2008-12-25 Tlv Co Ltd Heat exchanger
JP2008309421A (en) * 2007-06-15 2008-12-25 Tlv Co Ltd Heat exchanger
JP2008309417A (en) * 2007-06-15 2008-12-25 Tlv Co Ltd Steam cooling system
JP2008309420A (en) * 2007-06-15 2008-12-25 Tlv Co Ltd Heat exchanger
JP2008309416A (en) * 2007-06-15 2008-12-25 Tlv Co Ltd Steam cooling system
KR101047138B1 (en) 2011-02-17 2011-07-07 문경화 Pulverizer of low material temperature and air current type
JP2016023806A (en) * 2014-07-16 2016-02-08 株式会社テイエルブイ Cooling device

Also Published As

Publication number Publication date
JP2001082845A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP4260996B2 (en) Evaporative cooling device
JP2006258316A (en) Heating/cooling device
JPH083906Y2 (en) Decompression evaporation cooling device
JP4202552B2 (en) Evaporative cooling device
JP2006258317A (en) Evaporative cooling device
JP2007330896A (en) Heating and cooling device
JP3352968B2 (en) Steam supply device
JP4249325B2 (en) Evaporative cooling device
JP2665832B2 (en) Heating and cooling device
JPH07163865A (en) Heating and cooling apparatus
JP3443614B2 (en) Evaporative cooling device
JP4260995B2 (en) Evaporative cooling device
JP4087013B2 (en) Evaporative cooling device
JP3013070B2 (en) Heating and cooling device
JP2001079386A (en) Heating and cooling device
JP2665835B2 (en) Heating and cooling device
JP3785216B2 (en) Heating and cooling device
JP2006255503A (en) Heating/cooling apparatus
JP2000356443A (en) Evaporative cooling device
JP3510010B2 (en) Vacuum steam heating device
JPH0953802A (en) Heating/cooling device using heat medium
JP3282034B2 (en) Heating and cooling device
JP2764226B2 (en) Decompression evaporative cooling equipment
JP2006308187A (en) Vaporization cooling device
JPH102647A (en) Heating and cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees